Dr. Abigail A. Bickley, PhD

Assistant Professor of Nuclear Engineering

Bio Photo

 

Contact:
Comm: 937-656-5704
Click to E-mail
View Department

Publications

[68]  A. Heffelfinger*, G. Varshney, A.A. Bickley, J.C. Petrosky, “Study of BOMARC Nuclear Weapon Accident Environmental Debris”, Journal of Radioanalytical and Nuclear Chemistry, submitted June 2022

[67] M.W. Brinker*, A.A. Bickley, B.J. Borghetti, A.L. Franz, B.L. Goldblum, J. Whetzel, J.E. Bevins, "Characterization of Nuclear Fuel Cycle Operations Using Convolutional Neural Network Analysis of High Frequency Magnetometer Data", Journal of Defense Research and Engineering, accepted for publication. (S//REL)

[66] J. Seik*, B.J. Borghetti, J.W. McClory, A. Holland and A.A. Bickley, “Application of an Artificial Neural Network to Elemental Assay Data for Nuclear Forensics Analysis,” Journal of Radiation Effects, Research and Engineering, vol. 40, no. 1, pp 93-100 (2022)

[65] A. Burkhardt, A.A. Bickley, J.E. Bevins, “Spatially-Variant Isotope Production Burnup Modeling in a CANDU-6 Reactor for Nuclear Treaty Monitoring”, Annals of Nuclear Energy, Vol 168, 108901 (2022)

[64] Brinker, Marcus W.*, Bickley, Abigail A., Borghetti, Brett J., Goldblum, Bethany F., Whetzel, Jonathan H., and Bevins, James E., "Machine Learning-Based Characterization of Nuclear Fuel Cycle Operations", IEEE Symposium on Radiation Measurements and Applications (SORMA) West, 27 May 2021

[63] D. Gum, G. Varshney, A. Holland, J.W. McClory, A.A. Bickley, “A Machine Learning Approach to Characterizing Particle Morphology in Nuclear Forensics,” submitted to the Journal of Radiation Effects Research and Engineering, May 2020

[62] N.J. Quartemont, A.A. Bickley, J.E. Bevins, “Nuclear Data Covariance Analysis in Radiation Transport Simulations Utilizing SCALE Sampler and the IRDFF Nuclear Data Library,” IEEE Transactions on Nuclear Science, Vol. 67, No. 3, 482 (2020)

[61] J. Cezeaux, A.A. Bickley, G. Varshney, J.C. Petrosky, “Morphological Classification and Analysis of Fuel Bearing Debris From a Non-Critical Event,” Journal of Radiation Effects Research and Engineering, Vol. 38, Issue 1, (2020). (S//RD) 

[60] M. R. Halstead, S. Lee, J. Petrosky, A. Bickley, J. W. McClory, S. Clark, P. Sokol, "Neutron Flux Spectrum Characterization of a Compact, Accelerator-Driven Neutron Source at Indiana University," Journal of Radiation Effects, Research and Engineering, 31, 117, (2013)

[59] A.A. Bickley, M.R. Halstead, J.W. McClory, S. Lee, P. Sokol, J.C. Petrosky, "Evaluation of the Neutron Energy Spectrum Produced at the Neutron Radiation Effects Beam Line Utilizing a Computational Monte Carlo Approach," Journal of Radiation Effects, Research and Engineering, 31, 23, (2013)

[58] A.A. Bickley, G.K. Demaree, J.W. McClory, W.H. Miller, T.M. Oakes, J.C. Petrosky, “Design optimization of a layered boron based solid state neutron spectrometer,” Nuclear Science Symposium and Medical Imaging Conference, IEEE, 4872 (2011)

[57] B.J. Singleton, B.S. Jones, A.A. Bickley, J.C. Petrosky, J.W. McClory, B.R. Kowash, “Radiation effects on YAG:Ce scintillating fiber,” Nuclear Science Symposium and Medical Imaging Conference, IEEE, 1935 (2011)

[56] M.R. Halstead, S. Lee, J.C. Petrosky, A.A. Bickley, P. Sokol, “Neutron energy spectrum characterization on TMR-1 at the Indiana University neutron source,” Physics Procedia 26, 188 (2012)

[55] A.A. Bickley, C. Young, B. Thomas, J. McClory, P. Dowben, J. Petrosky, “Performance evaluation of neutron detectors incorporating intrinsic Gd using a GEANT4 modeling approach,” Materials Research Society Proceedings, 1341-Nuclear Radiation Detection Materials, October 2011, mrss11-1341-u04-03 doi:10.1557/opl.2011.1507

[54] E. Richardson, et al., “A reaction plane detector for PHENIX at RHIC,” Nucl. Instr. Meth. A636, 99 (2011)

[53] B. Alver et al., “Non-flow correlations and elliptic flow fluctuations in Au+Au collisions at sqrt(s_NN)=200 GeV,” Phys. Rev. C81, 034915 (2010)

[52] A. Adare et al., “Detailed measurement of the e+e- pair continuum in p+p and Au+Au collisions at sqrt(s_NN)=200 GeV and implications for direct photon production,” Phys. Rev. C81, 034911 (2010)

[51] B. Alver et al., “Event-by-event fluctuations of azimuthal particle anisotropy in Au+Au collisions at sqrt(s_NN)=200 GeV,” Phys. Rev. Lett. 104, 142301 (2010)

[50] A. Adare et al., “Enhanced production of direct photons in Au+Au collisions at sqrt(s_NN)=200 GeV,” Phys. Rev. Lett. 104, 132301 (2010)

[49] B. Alver et al., “High transverse momentum triggered correlations over a large pseudorapidity acceptance in Au+Au collisions at sqrt(s_NN)=200 GeV,” Phys. Rev. Lett. 104, 062301 (2010)

[48] A. Adare et al., “Double helicity dependence of jet properties from dihadrons in longitudinally polarized p+p collisions at sqrt(s)=200 GeV,” Phys. Rev. D81, 012002 (2010)

[47] A. Adare et al., “Photon-hadron jet correlations in p+p and Au+Au collisions at sqrt(s_NN)=200 GeV,”Phys. Rev. C80, 024908 (2009)

[46] A. Adare et al., “Measurement of bottom vs charm as a function of transverse momentum with electron-hadron correlations in p+p collisions at sqrt(s)=200 GeV,” Phys. Rev. Lett. 103, 082002 (2009)

[45] A. Adare et al., “Gluon-spin contribution to the proton spin from the doublehelicity asymmetry in inclusive pi0 production in polarized p+p collisions at sqrt(s)=200 GeV,” Phys. Rev. Lett. 103, 012003 (2009)

[44] A. Bickley, “An Active Target Time Projection Chamber for Nuclear Structure and Reactions Experiments,” American Institute of Physics Conference Proceedings 1099, 708 (2009).

[43] A. Adare et al., “Cold nuclear matter effects on J/psi production as constrained by deuteron-gold measurements at sqrt(s_NN)=200 GeV,” Phys. Rev. C 77, 024912 (2008). Erratum Phys. Rev. C 79, 059901 (2009)

[42] A. Adare et al., “Inclusive cross section and double helicity asymmetry for pi0 production in p+p collisions at sqrt(s)=62.4 GeV,” Phys. Rev. D 79, 012003 (2009)

[41] A. Adare et al., “Dilepton mass spectra in p+p collisions at sqrt(s_NN)=200 GeV and the contribution from open charm,” Phys. Lett. B670, 313 (2009)

[40] A. Adare et al., “Suppression Pattern of Neutral Pions at High Transverse Momentum in Au+Au Collisions at sqrt(s_NN)=200 GeV and Constraints on Medium Transport Coefficients,” Phys. Rev. Lett. 101, 232301 (2008)

[39] A. Adare et al., “Onset of pi0 Suppression Studied in Cu+Cu Collisions at sqrt(s_NN)=22.4, 62.4, and 200 GeV,” Phys. Rev. Lett. 101, 162301 (2008)

[38] A. Adare et al., “Charged hadron multiplicity fluctuations in Au+Au and Cu+Cu collisions from sqrt(s_NN)=22.5 to 200 GeV,” Phys. Rev. C 78, 044902 (2008)

[37] A. Adare et al., "J/psi Production in sqrt (s_NN)= 200 GeV Cu+Cu Collisions," Phys. Rev. Lett. 101, 122301 (2008)

[36] A. Adare et al., “Dihadron Azimuthal Correlations in Au+Au Collisions at sqrt(s_NN) = 200 GeV,” Phys. Rev. C78, 014901 (2008)

[35] A. Adare et al., “Quantitative Constraints on the Transport Properties of Hot Partonic Matter from Semi-Inclusive Transverse Momentum Pion Suppression in Au+Au Collisions at sqrt(s_NN) = 200 GeV,“Phys. Rev. C77, 064907 (2008)

[34] A. Adare et al., “Transverse momentum and centrality dependence of dihadron correlations in Au+Au collisions at sqrt(s_NN)=200 GeV: Jet-quenching and the response of partonic matter,” Phys. Rev. C77, 011901 (2008)

[33] A. Adare et al., "Inclusive Cross Section and Double Helicity Asymmetry for pi^0 Production in p+p Collisions at sqrt(s)=200 GeV: Implications for the Polarized Gluon Distribution in the Proton," Phys. Rev. D 76, 051106 (2007)

[32] A. Adare et al., “Correlated Production of p and anti-p in Au+Au Collisions at s(NN)**(1/2) = 200-GeV,” Phys. Lett. B649, 359 (2007)

[31] A. Bickley for the PHENIX Collaboration, “Heavy Quarkonia Production in p+p Collisions from the PHENIX Experiment,” J. Phys. G34, S779 (2007)

[30] A. Adare et al., ”J/Psi Production vs Transverse Momentum and Rapidity in p+p Collisions at sqrt(s) = 200 GeV,” Phys. Rev. Lett. 98, 232002 (2007)

[29] A. Adare et al., " J/Psi Production vs Centrality, Transverse Momentum, and Rapidity in Au+Au Collisions at sqrt(s_NN) = 200 GeV," Phys. Rev. Lett. 98, 232301 (2007)

[28] A. Adare et al., "System Size and Energy Dependence of Jet-Induced Hadron Pair Correlation Shapes in Relativistic Nuclear Collisions," Phys. Rev. Lett. 98, 232302 (2007)

[27] A. Adare et al., “Correlated Production of p and p^bar in Au+Au Collisions at sqrt(s_NN) = 200 GeV,” Phys. Lett. B649, 359 (2007)

[26] B.B. Back et al., “System Size, Energy, Pseudorapidity, and Centrality Dependence of Elliptic Flow,” Phys. Rev. Lett. 98, 242302 (2007)

[25] A. Adare et al., "Energy Loss and Flow of Heavy Quarks in Au+Au Collisions at sqrt(s_NN) = 200 GeV," Phys. Rev. Lett. 98, 172301 (2007)

[24] A. Adare et al., “Scaling Properties of Azimuthal Anisotropy in Au + Au and Cu+Cu Collisions at 200 GeV,” Phys. Rev. Lett. 98, 162301 (2007)

[23] B.B. Back et al., “Identified Hadron Transverse Momentum Spectra in Au+Au Collisions at sqrt(s_NN)=62.4 GeV,” Phys. Rev. C75, 024910 (2007)

[22] A. Bickley for the PHENIX Collaboration, “Quarkonium Production in PHENIX,” Nucl. Phys. A783, 285 (2007)

[21] A. Adare et al., "Measurement of High pT Single Electrons from Heavy-Flavor Decays in p+p Collisions at 200 GeV," Phys. Rev. Lett.. 97, 252002 (2006)

[20] B.B. Back et al., “Energy Dependence of Directed Flow Over a Wide Range of Pseudorapidity in Au+Au Collisions at RHIC,” Phys. Rev. Lett. 97, 012301 (2006)

[19] B.B. Back et al., “Centrality and Energy Dependence of Charged-Particle Multiplicities in Heavy Ion Collisions in the Context of Elementary Reactions,” Phys. Rev. C74, 021902(R) (2006)

[18] B.B. Back et al., “Forward-Backward Multiplicity Correlations in sqrt(s_NN)=200 GeV Au+Au Collisions,” Phys. Rev. C74, 011901(R) (2006)

[17] B.B. Back et al., “Charged Particle Pseudorapidity Distributions in Au+Au Collisions at sqrt(s_NN) = 62.4 GeV,” Phys. Rev. C 74, 021901(R) (2006)

[16] B.B. Back et al., “Transverse Momentum and Rapidity Dependence of HBT Correlations in Au+Au Collisions at sqrt(s_NN) = 62.4 and 200 GeV,” Phys. Rev. C73, 031901(R) (2006)

[15] B.B. Back et al., “The Phobos Perspective on Discoveries at RHIC,” Nucl. Phys. A 757, 28, BNL 73847-2005 Formal Report

[14] B.B. Back et al., “Scaling of Charged Particle Production in d+Au Collisions at sqrt(s_NN)=200 GeV,” Phys. Rev. C72, 031901(R) (2005)

[13] B.B. Back et al., “Centrality and Pseudorapidity Dependence of Elliptic Flow for Charged Hadrons in Au+Au Collisions at sqrt(s_NN)= 200 GeV,” Phys. Rev. C72, 051901(R) (2005)

[12] B.B. Back et al., “Energy Dependence of Elliptic Flow Over a Large Pseudorapidity Range in Au+Au Collisions at RHIC,” Phys. Rev. Lett. 94, 122303 (2005)

[11] B.B. Back et al., “Charged Antiparticle to Particle Ratios Near Midrapidity in p+p Collisions at sqrt(s_NN) = 200 GeV,” Phys. Rev. C71, 021901(R) (2005)

[10] B.B. Back et al., “Pseudorapidity Dependence of Charged Hadron Transverse Momentum Spectra in d+Au Collisions at sqrt(s_NN) = 200 GeV,” Phys. Rev. C70, 061901(R) (2004)

[9] B.B. Back et al., “Centrality Dependence of Charged Hadron Transverse Momentum Spectra in Au+Au Collisions from sqrt(s_NN) = 62.4 to 200 GeV,” Phys. Rev. Lett. 94, 082304 (2005)

[8] B.B. Back et al., “Particle Production at Very Low Transverse Momenta in Au+Au Collisions at sqrt(s_NN) = 200 GeV,” Phys. Rev. C70, 051901(R) (2004)

[7] B.B. Back et al., “Collision Geometry Scaling of Au+Au Pseudorapidity Density from sqrt(s_NN) = 19.6 to 200 GeV,” Phys. Rev. C70, 021902(R) (2004)

[6] B.B. Back et al., “Pseudorapidity Distribution of Charged Particles in d+Au Collisions at sqrt(s_NN) = 200 GeV,” Phys. Rev. Lett. 93, 082301 (2004)

[5] B.B. Back et al., “Centrality Dependence of Charged Antiparticle to Particle Ratios Near Mid-Rapidity in d+Au Collisions at sqrt(s_NN) = 200 GeV,” Phys. Rev. C70, 011901(R) (2004).

[4] B.B. Back et al., “Charged Hadron Transverse Momentum Distributions in Au+Au Collisions at sqrt(s_NN) = 200 GeV,” Phys. Lett. B578, 297 (2004)

[3] B.B. Back et al., “Centrality Dependence of Charged Hadron Transverse Momentum Spectra in d+Au Collisions at sqrt(s_NN) = 200 GeV,” Phys. Rev. Lett. 91, 072302 (2003)

[2] B.B. Back et al., “The Significance of the Fragmentation Region in Ultrarelativistic Heavy Ion Collisions,” Phys. Rev. Lett. 91, 052303 (2003)

[1] B.B. Back et al., “Ratios of Charged Antiparticles to Particles Near Mid-Rapidity in Au+Au Collisions at sqrt(s_NN) = 200 GeV,” Phys. Rev. C67, 021901(R) (2003)

Return to the top of the page

Air Force Institute of Technology
2950 Hobson Way
Wright-Patterson Air Force Base, OH 45433-7765
Commercial: 937-255-6565 | DSN: 785-6565