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Abstract. It has been realized recently that in order to have a high level of maneuverabil-
ity, supersonic delta wings should have a cross flow that is free of embedded shock waves.
The conical cross flow sonic surface differs from that of plane transonic flow in many
aspects. Well-known properties such as the monotone law are not true for conical cross
flow sonic surfaces. Using a local analysis of the cross flow sonic line. relevant conditions
for smooth cross flow are obtained. Using a technique to construct artificially a smooth
sonic surface and an efficient numerical method to calculate the flow field. one obtains
cones with smooth cross flow.

Introduction. It is well known that the most suitable structure for a slender wing
airplane has leading edge separation [1]. The resulting vortices are highly stable, and while
contributing to the induced drag, also increase the lift because of the low pressure they
induce. These vortices usually increase the lift-to-drag ratio for a delta wing. However. the
modern supercruiser concept demands efficient supersonic cruise and high-level super-
sonic, as well as transonic, maneuverability [2]. In order to obtain this level of perfor-
mance, the wings have to be relatively thick and should have transonic leading edges and
attached flow [3]. A delta wing with transonic leading edge will, in general, have
embedded cross flow shocks. To obtain attached flow, this configuration should have a
cross flow that is free of embedded shocks or should contain only weak shock waves.
Present study is tailored to find such configurations but is limited to conical wings and
irrotational flow. Using a novel technique to construct smooth embedded sonic surfaces.
shock-free cross flow is constructed for the first time for conical wings. We have also
provided, based on a local analysis, the necessary geometric condition that should be
satisfied by a configuration in order for a shock-free cross flow to exist.

Irrotational conical flows. Let { £} be the surface coordinates of a unit sphere centered
at the apex of the cone and g4z e the corresponding metric tensor. Let }* be the tangent
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velocity field (Fig. 1) generated on the sphere by the mainstream flow. Irrotational
assumption implies

e At Y AR T a = 1.2,
where Fis the conical potential. The total velocity ¢ 1s given by

g =1+ PR
The continuity equation is [4],
(™) + 2pF = 0, (1)

where || denotes surface covariant differentiation and pis the gas density and is given by
the Bernoulli equation,
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Here M_ is the free stream Mach number and v is the ratio of specific heats. Combining
Eq. (1) and (2), we obtain the quasilinear form of the governing equation,
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F1G. 1. The classical tangent field representation of conical flows on unjt sphere.
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where a 1s the speed of sound and M 1s the cross flow Mach number (M = ¢ «). The
Eq. (3) changes from clhiptic to hyperbolic type when M increases through unttv. The
above behavior is simitar to plane transonic flows and therefore can be utilized to devetop
an extremely efficient numerical method to calculate supersonic flows past arbitrary
conical shapes at incidence [5].

Cross flow sonic surfaces. Sonic bubbles that appear in conical cross flows differ from
those of transonic flows in many aspects. In transonic flow the {low properties attain
uniform state on the sonic line, whereas in conical flows the appearance of the radial
velocity term in the Bernoulli equation causes the {low properties to vary along the sonic
line. Plane transonic flow is governed by a homogeneous set of partial differential
equations, and therefore. it is possible to obtain a linear problem through a Legendre
transformation. This property also gives us the well-known Nikolskii-Taganov monotone
rule [6]: if an observer moves along the sonic line. keeping the subsonic zone always to his
left, then the stream vector will rotate in the clockwise direction. However. in conical
flows, due to the inhomogeneous terms in the governing equations. it 1s not possible to
obtain linear equations using a hodograph transformation. and also it is difficult to say
anything definite about the streamline slope. Some properties of conical sonic surfaces
have been worked out by Salas [7], and with the aid of some of his results, we will studv
some relevant aspects for shock-free flows.

First we note an interesting behavior of the pressure at the point where a cross flow
streamline exists the hyperbolic zone. Consider the Bernoulli equation

1 2 z Y P
~{gq:+ F")+-—— "= stant;
2([1( ) S constan
taking the derivative in the s direction and substituting the adiabatic relation
1
p=—p
M

We get
p _ (% ‘
as P4 gy +F)'

Now, from the definition of the cross flow Mach number
oM, 1[dgq, da
ds al 3s  Tos |
Using this and the energy equations, we obtain the relations at the sonic surface for the
streamwise pressure gradient, namely
e e g ——=+ F|.
'dS ‘.,/ +1)pq< qA aS
From this we see that since F is always positive, the pressure always decreases when the
streamline enters the hvperbolic zone, which is similar to transonic flows. However, when
it exists the hyerbolic zone, the pressure could either increase or decrease. This is in
contrast to what happens in transonic flows, where the pressure always increases as the
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streamline exits the sonic surface because the radial velocity term F does not appear in the
equation for dp /ds. This possibility leads us to believe that a shock-free situation is more
likely in conical flows. We recall here that in transonic flows the shock-free situation has
been proved to he mathematically isolated [8]. (It has been established experimentally [9].
[10] that the neighboring flows have only weak shock waves.) A similar perturbation
theory for shock-free conical flows does not vet exist and shock-free solutions have not
previously been shown to exist.

Next. we will observe a unique feature of the cross flow sonic line. We will first obtain a
description for the sonic line by expanding the cross flow velocity and the speed of sound
and equating them. Thus we write

a = g* +(f%\)*ds +(//%§)*dn + .
q.=a* +( aas")*ds +(%)*dn + ...

and also, from the energy equation,

b= -

Thus, the equation of the line q. = ais

). e
\ ds sone line Y + ] (Bq(/an)* '

This relation indicates that the angle at which the cross flow sonic line meets the body is
determined by the sign of (dq./0n)*.

This means that if this quantity is negative, the sonic line could meet the body at an
obtuse angle. Salas incorrectly predicts this possibility for a circular cone and then uses an
argument based on pressure to speculate on the possibility of a shock wave. However, one
could rule out the existence of smooth flow with this kind of a bubble, using the following
argument.

At the sonic line, the characteristics are normal to the streamlines, and therefore, from
Fig. 2, it is clear that for a sonic line of this kind, characteristics of the same family will
intersect. Thus, if through the above analysis, we arrive at a sonic line of this type, then
for this cone a shock-free cross flow is impossible. In fact, one may work out rules to
identify conical shapes for which shock-free cross flow is impossible. For convenience, we
will work in the stereographically projected plane. If one chooses a Cartesian system
(x, ) in this plane, then the metric tensor will be

. :[F 0}
Sap O sz

where




DELTA WINGS WITH SHOCK-I'REL CROSS FLOW 279

If & denotes the inclination of the streamline with
' dv/dx = tana.
then the irrotationality condition becomes
dq, da 1 aJ
-

ds J dn
We have already noted that when

dq. /on <0
at the body. shock-free cross flow on a general cone is impossible, and hence cones with
1 o
R on
shock-free cross flow is impossible.
We note that
d 1 ) 1 . 0
g e 7 COSC{& + 7 smaé;
0 1 . .9 1 .0
E‘l_ = ~7 smaa + 7 COSLXT()—;

ds? =J>(dx* + dv°).
and R is the radius of curvature of the image of the cone in the stereographically projected
plane. Thus. cones that satisfy the above rule will not have a shock-free cross flow.
We will now show that this condition is not satisfied on a circular cone. Consider a
circular cone of half angle ¢,. Then the radius of the circle on the stereographically
projected plane is

a = tan —,
2
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SHOCK FREE CROSSFLOW SONIC LINE MEETING THE BODY
AT AN OBTUSE ANGLE

FiG. 2. Types of sonic lines that terminate in the body.
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A design miethod to obizin conical wings with shock-free cross flow. It is possible to
devise a direct approach o search for shock-free configurations. Suppose we consider a
test case with shocked cross flow and change the expression for the density (equations)
instde the cross flow bubble in such a way that the resulting partial differential equation is
cliiptic: then the elliptic-to-elliptic transition will result in a smooth sonic surface.

We mayv accept the solution outside this surface (which includes the bow shock wave
and part of the cone) and use the flow properties on this surface to solve the Cauchy
problem for the actual gas law (for the actual gas law, the governing equation is
hyvperbolic) to obtain the new body shape inside this surface. However. one should note
that in this method there is no guarantee that a certain gas law will provide Cauchy data
that will provide a smooth flow up to the body. This method is still preferable because it is
direct and only part of the configuration is being modified. This method has been
successfully introduced to transonic flows by Sobieczky [11]. The application of this
fictitious gas method is not straightforward for conical flows for the following reasons.

In plane transonic flow, a sonic bubble is defined by the statement ¢ » a*. where * is
the speed of sound at the sonic condition and is a known constant. In conical flows,
however, a* varies and thus is an unknown. This difficulty can be eliminated by first
computing the actual speed of sound and. whenever it is less than the cross flow velocity,
replacing it by the fictitious speed of sound. When we change the gas law, we must take
care to preserve mass conservation at the sonic line. In conical flows, because the density
varies along the sonic line, the gas law should be chosen to give continuous density across
the sonic line. Let us look at the simplest way to meet these requirements. The energy
equation is

Miat gt Lo a2 g2 ey,

~e

and at the sonic conditions

. o Py -2y M2 - FY
;L{;a; = py* I P s S TS
- ({y +1]2)

Thus. if we use the gas law of the form

M2lag? = prl = | [l:_]LQEELE ;jll
” ([y +1]2) )
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then the flow properties would be continuous across the sonic line and the resulting partial
differential equation will have the form

s VE L,

o
ageags

and be elliptic. This could be called the incompressible analogue for conical flows. In
changing the gas law inside the sonic surface. one needs to make sure that the gas law near
the bow shock wave is correct.

This was done by first solving the real problem to convergence. so that the bow shock
and the cross flow sonic bubble were well developed. and then using this as the mitial
condition to solve the problem with the fictitious gas law inside the sonic surface. Inside
the bubble the artificial viscosity [3] should be switched off and the iteration scheme
should be specialized to the case of ¢ — oc. We will now consider the Cauchy problem for
the cross flow bubble. The domain 2, is first mapped to a rectangle, using an “onion peel”
transformation as shown in Fig. 3. Since this transformation is singular at the end points,
it is decided to use the covariant velocities in the spherical polar coordinate system (8, )
as dependent variables.

Let

U= Fyand V' = F..

MODIFIED ~ CONE~
CONE A

A i B
|
! ! !
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then the governing equation is
AUy + B(U; + 1) + CV, + D = 0

and the irrotationality gives

Uy — Vy=
where
1
sin“y  a’sin*y
Bt
a“ sy
2
car- 2
)
and
UZ
D=(2-M)F+ Vcot¢(1+~r_-:— :
a~sm‘ y

i

The derivatives of covariant velocities are now transformed from (6, ¥) to (¢, 1) plane.
Thus we get

i

Un=P y+ 0.
Here
. (R
o (5]
£y

The Cauchy problem is then solved by a predictor-corrector method. We write
F*=F°+ An(U8, + 1y,)",
U = U° + an( PO(8; U°) + §°),

Fr=3[F*+ F°+ an(Ub, + vy, )],

B = b

U+ [U*+UO+A7;(P*(8§U*)+Q'*)J.

On the well-posedness of the marching problem. The marching problem would be well
posed in the absence of any kind of singular points or limit lines. Conical equations do
allow the cross flow streamline to meet the sonic line at right angle. However, at this
point, the characteristics are tangent to the sonic line and the marching is not well posed.
This situation occurs for two kinds of sonic lines, as shown in Fig. 4. Only type (B) is
relevant for our design. From the earlier arguments we see that for this kind of bubble, the
same family of characteristics will intersect, and therefore if the fictitious gas chosen leads
to a bubble of this shape, it should be discarded.
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A sonic line that does not have such a singular point on it could still lead to a limit line
(as shown in Fig. 5) in the subsequent marching. If this limit line occurs above the body.
then this sonic line should again be discarded. '

The Jacobian’s

Jo = 0£4Jn - 071‘/“5

ELLIPTIC

ELLIPTIC ¢ HYPERBOLIC

- +

C C

Fic. 4

I (SONIC LINE)

F1G. 5. Limit line.
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Jpo= Ay = 2Bngn, ~ O
respectively, signal grid singularities and limit lines by changing their signs.

Results. A simple test case is given to validate the method. A circular cone of 10° half
angle at an angle of attack of 20° at Mach 2 is considered. Fig. 6 and 7. respectivelv. show
the sonic surfaces and pressure distributions for the original as well as the modified cone.
Fig. 8 shows the required surface modification of the cone. In the actual design process the
fictitious gas method should be combined with a change in camber to produce the
required performance.

-

!
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F1G. 6. Bow shock position and the cross flow sonic line for a 10° circular cone at 20° angle of attack at M, = 2.
original cone, - modified cone.
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F1G. 7. Surface pressure distribution on the circular cone. O original cone. & modified cone.
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Fi1G. 8. Surface modification of the 10° cone. Cone surface is described in the spherical polar coordinate system

with theta = latitude and psi = longitude.
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