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Nonlinear Filtering of Stochastic Navier-Stokes
Equation with It6-Lévy Noise

B. P. W. FERNANDO AND S. S. SRITHARAN

Center for Decision, Risk, Controls and Signals Intelligence (DRCSI),
Naval Postgraduate School, Monterey, California, USA

In this article, we study the existence and uniqueness of the strong pathwise
solution of stochastic Navier-Stokes equation with It6-Lévy noise. Nonlinear filtering
problem is formulated for the recursive estimation of conditional expectation of
the flow field given back measurements of sensor output data. The corresponding
Fujisaki-Kallianpur-Kunita and Zakai equations describing the time evolution of the
nonlinear filter are derived. Existence and uniqueness of measure-valued solutions
are proven for these filtering equations.

Keywords Fujisaki-Kallianpur-Kunita equation; It6-Lévy noise; Nonlinear
filtering; Stochastic Navier-Stokes equation; Zakai equation.

Mathematics Subject Classification 35R60; 93E11; 35Q30.

1. Introduction

Nonlinear filtering for fluid dynamic system has a wide range of applications
in many fields in engineering sciences such as turbulence diagnostics, weather
prediction, and oceanography. This subject was initiated in [38-42] and in [15] a
reacting and diffusing system was studied. In this work, we derive the Fujisaki-
Kallianpur-Kunita (FKK) equation and the Zakai equation for the nonlinear
filtering of stochastic Navier-Stokes equation with Ito6-Lévy noise, and prove
existence and uniqueness of the measure-valued solution in certain class of measures.

We consider stochastic Navier-stokes equation with multiplicative white noise
and jump noise. Existence of strong pathwise solutions are proven by Galerkin
approximation and weak limit with a modification of Minty-Browder technique as
in [9, 26, 37], and [43]. We show the existence and uniqueness of strong pathwise
solutions for the case of o-finite Lévy measure by constructing an approximate
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sequence of stochastic Navier-Stokes equations with 1t6-Lévy measure of finite Lévy
measure type.

In [38], existence and uniqueness of the measure-valued solution of FKK
and Zakai equation for stochastic Navier-stokes equation with white noise was
established for the case of unbounded observation. In this work, we generalize this
result by adding Lévy noise to the signal process.

The structure of this article is as follows. In the next section, we describe some
mathematical properties of Navier-Stokes operators (see [22, 23]), related function
spaces and the coefficients of 1t6-Lévy noise. We note a local monotonicity property
of the Navier-Stokes operators and coefficient functions of It6-Lévy noise. Then we
prove a priori estimates for the stochastic Navier-Stokes equation. In later part of
this section, we show the existence and uniqueness of strong pathwise solutions of
stochastic Navier-Stokes equation for the cases of finite and o-finite Lévy measure.
In Section 3, we derive the FKK and Zakai equations and prove existence and
uniqueness of the measure valued solutions.

2. Stochastic Navier-Stokes Equation with It6-Lévy Noise
2.1. Preliminaries

Let G c R? be an arbitrary, possibly unbounded open domain with a smooth
boundary G if the domain has a boundary. Let us denoted by u and p as the
velocity and pressure fields respectively. The stochastic Navier-Stokes equation with
1t6-Lévy noise is formulated as follows.

du(y, 1) + [=vAu(y, 1) + (u(y, 1) - V)u(y, t) + Vp(y, 1)]dz
=1(y, )dr + y(z, u(y, 1))dW(y, 1)

—|—/ o(u(y, 17), x)ﬁ(dt, dx) in G x (0, 7), (2.1
H
with the conditions

V-u(y,t)=0 inGx(0,7)
u(y, 1) =0 in G x (0, 7)
u(y, 0) = uy(y) in G x {0},
u(y,t) = 0 as |y| = oo if G is unbounded. (2.2)

In the system (2.1)~(2.2), f : G x (0, T) — R? is a possibly random forcing term,
v>0 is the coefficient of kinematic viscosity. W(.,7) is a Hilbert-space valued
Wiener process [8] in time with the trace-class covariance and N(dt, dx) is
the compensated Poisson measure [2]. We assume that W(.,.) and N(.,.) are
independent. ¥(.,.) and ¢(.,.) represent the multiplicative diffusion coefficient
function and the jump noise coefficient function respectively. Assumptions regarding
Y(.,.) and ¢(.,.) are given in this section.

Let us express the Stochastic Navier-Stokes equation (2.1) in the abstract form
using the following function spaces (for definition of these spaces see [44—46] for
bounded domains and [12, 21, 24, 36, 44, 47] for arbitrary domains):

Let ¥ ={ue CP(G)|V-u=0}. The spaces IH and V are defined by the
completion of % with IL2(G) and IH'(G) norms, respectively. The space V is defined
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by the completion of % in the seminorm |Vul;.. In general V and V are different,
but they would coincide when G is a Poincaré domain [44]. In the case of bounded
domains we have

H:={uell’(G):V-u=0,u-n|,; =0}, (2.3)
V= {ue Wy*(G): v -u=0}, (2.4)

where W3?(G) = {u € L*(G) : Vu € IL*(G), u|,; = 0} and n is the outward normal
vector. By taking V' as the dual of ¥V, we will have the dense continuous embedding
Vc,H=H c_ V.

Let us define Stokes operator A and nonlinear operator B as follows.

A:H>(G)NV — H, with Au= —vPyAu, (2.5)
B:DB)CcHxV — H, with B(u,v) = Py(u- Vv). (2.6)

Here Py : L>(G) — H is the Helmholtz-Hodge projection.

The norms in the Hilbert spaces IH, and V¥ are denoted by |[.|, and ||.|| respectively.
The inner product in the Hilbert space IH and the induced duality associate with ¥V
and V' are denoted by (.,.) and (., .) respectively. For u = (u;), v=(v;) and w =
(W;), we have

(Au,w)y =vY", [ du;0,w,dx, 2.7
Bu,v),w) =3, [ u(0v,)W;dx. (2.8)

By applying integration by parts to (2.8), we will get
(B(u,v), w) = —(B(u, w), v), (2.9)
(B(u,v),v) =0, (2.10)

for allu,v,w e V.

Lemma 2.1. The trilinear form (B(u,v),w) =3, [ 0;(0,v;)W,dx is continuous on
H™ (G) x H™"(G) x H™(G) where m; > 0, and

m1+m2+m3zg ifmi;ég, Sfor all i.
n n .
m1+m2+m3>§ zfmizz, for some i.
Furthermore, for allu,v,w € V and n = 2,
1ol 1 1
|(B(u, v), w)| < Kplu|> [[ul|2[|v]|{w]>[|w]|>. (2.11)
Proof. See Lemma 2.1 in [46]. |

Let Q be a symmetric, positive trace class operator on IH. Then there exist a
sequence of eigenvalues {y,} with the corresponding sequence of eigenvectors {e,}
such that Tr(Q) = >°77, y« < co and Qe, = y,¢, for all k € N (see [8]).



Downloaded by [Naval Postgradute School, Dudley Knox Library] at 11:04 18 April 2013

384 Fernando and Sritharan

Definition 2.1. Let (Q,%,%,P) be a complete, filtered probability space. A
stochastic process {W(z) : ¢ > 0} is said to be a H-valued 7,-adapted Wiener process
with covariance operator Q if the following two conditions are satisfied:

1. For each non-zero h € H, |Q"?h|~'(W(¢),h) is a standard one-dimensional
Wiener process.
2. For any h € H, (W(¢), h) is a martingale adapted to 7,.
Let L, denote the space of linear bounded operators S such that SQ'? is
Hilbert-Schmidt from IH to IH. That is for any orthonormal basis {¢,} in H,
Y1 1SQ"e,|?> < oo. The norm of L, obtained as follows.

ISIE, = 2 ISQ"e* = 3 (SQ"%e,. SQ'%¢y)

k=1

k=1
— i (Ql/Zs*SQl/Zek’ ek) — Tr((SQ]/Z)*SQ]/2)
k=1

Tr(SQ"*(SQ"%)*) = Tr(SQS*). (2.12)
In the above, we used the fact that, if A is a Hilbert-Schmidt operator then
Tr(A*A) = Tr(AA").

We shall impose the following hypotheses on multiplicative noise coefficient v :
[0, T] x H — L(IH; H).

1. There exists a positive constant K, such that
Wt W) e < Ky (1+ [u]), forall £ €[0, 7], ueH.
2. There exists a positive constant M, such that
[ (2, @) — ¥t v) |y < M,ju—v|, foralltel0,7], u,veH.

Now we can obtain the main assumptions (Al and A2) regarding v : [0, T] x H —
L(IH; H) from the above two hypothesis. Consider

W wE, = QW wp(, wQ e ¢,)
k=1

= > nly(@, u)e, |’ < ol u)lzL(]H;]H)|ek|2 = MN/(L “)|2L(1H;JH)
k=1 k=1
< K,(1+ |u?), (2.13)
where v,,7,,... are the eigenvalues of the trace class operator Q. Similarly we

can obtain assumption A2 from Hypothesis 2. Now we have main assumptions
regarding i : [0, 7] x IH — L(IH; H) (see Section 2 [34]).

(A1) There exists a positive constant K, such that

Wt wl, <K (1+uf), forallre[0,7], ueH.
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(A2) There exists a positive constant M; such that
(e, w) =y, Vi, <MjJu—v], forallze[0,7], u,veH.

Poisson random measure is defined as follows: Let {L(z), ¢t > 0} be a H-valued
Lévy process with jump AL(¢r) := L(¢) — L(+7) at + > 0. Then N([O0, 7], B) =#{s €
[0, 7] : AL(s) € B} is the Poisson random measure associated with the Lévy process
{L(#), t = 0}, (see Section 2.3, [2]), where B € B(HH\{0}).

Let i(dx) be the o-finite Lévy measure on H associated with the Poisson
measure N(dt, dx). The compensated Poisson measure is defined as N(dt, dx) :=
N(dt, dx) — 2(dx)dt, that is E[N(dt, dx)] = A(dx)dt (see Section 1 [28]). Let %B(IH)
be the Borel g-algebra on H. Then %(IH\{0}) is the trace o-algebra on IH\{0}. There
exists a sequence of Borel measurable sets {Z, }*_, € %(IH\{0}) such that 0 € (Z,)",

m=1

MZ,) <ocoforallme Nand Z,, 4 H as m — oo.

Note 2.1. For the simplest case, the above limit can be viewed as follows. Let
A(.) be a Lévy measure on R"\{0}. Define a sequence (¢,,, m € IN) that decreases
monotonically to zero by (see Section 2.6.2,[2])

m?

€, = sup {y>0:/ |x|2)»(dx)§$,xe]R”}.
0<|x|<y
Then the sequence of Borel sets (G,,, m € N) defined by
G,={xeR":|x| >¢€,},
such that A(G,,) < oo for all m € N satisfy G,, 1+ R"\{0} when m — oc.

Let us assume (similar to [49]) that the following conditions hold on jump
coefficient function ¢ : H x H — H.

(B1) There exists a positive constant K, such that
/JH b, x)|72(dx) < Ky(1 + [u]), forallueH, q=1,2,4.
(B2) There exists a positive constant M, such that
/]H lp(u, x) — d(v, x)|*2(dx) < M,|lu—v[*, forallu,veH.
(B3)

sup | |p(u, x)[>A(dx) - 0 as n — oo, forueH, k> 0.
o/, |

lu|<k “Z5
Now we can express the system (2.1) in abstract form as follows.
du(?) + [vAu(r) + B(u(2))]ds = f(£)de + y(z, u(z))dW(z)
+ [ ¢ oN@dy. @14
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Note 2.2. Here we note that the last integral make sense as Poisson integral with
respect to the compensated Poisson measure N(., .), (see [2, Section 4.3.2]). Besides,
this Poisson integral is finite due to the quadratic growth rate assumption on the
jump noise coefficient ¢ (., .) and the energy estimates and stopping time arguments
established in Theorem 2.3 in subsequent section. We use the same notation for
noise coefficients and right hand side forcing in (2.1) and their Hodge projection
in (2.14).

2.2. Local Monotonicity Property and A Priori Estimates

Theorem 2.2 (Local Monotonicity of (F(u), ¥, ¢) when A(.) is a finite Lévy measure).
For a given r > 0, we consider the following (closed) ILP(G) — ball B, with p > 2 in
the space V: B, :={v e V : |||, < r}. Define the nonlinear operator ¥ on V by
F(u) := vAu + B(u). Then the (F(u), {, ¢) is monotone in B, in the following sense:

(F(w) = F(4).w) = (. w) = (IR,
+ [ (. x) = by, x). Wild)
+ (Copr™ + My + VA ) WP = S w 2.15)
foranyueV,veB, andw=u—v.

Proof. Let v and w be in the spaces IL?(G) and V, respectively. Then the following
estimate holds for p > 2.

P2 p2
[BW), V)| = C,lIwll > (w7 [Vl q)- (2.16)

(See Section 2, Lemma 3.1, [9]).
From (2.9) and based on the trilinearity of the operator B, we have

(B(u) — B(v), w) = —(B(w), v). (2.17)
Now combine (2.16) and (2.17), then apply Young’s inequality to get

-2
[(B(u) — B(v), w)| < C,wl|"" W] [V]|pr)

v =
= SIWlP + Co WP IVl c)- (2.18)

Applying the Cauchy-Schwartz inequality and B2,
[ 16 x) = (v, x), w)li(dx)

< VA o] | [ 1660, = g0 20 |
< JAH)M,|w]. (2.19)

By using the definition of operator F, estimates (2.18), (2.19), (Aw,w) = v||w|?,
[¥llwrG) < 7, condition A2, and B2, one can complete the proof. d
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Let us consider a finite-dimensional Galerkin approximation of the stochastic
Navier-Stokes equation with Itd-Lévy noise. Let {e¢|,e;,e5,...,¢;,...} be an
orthonormal basis for H with each ¢; € D(A). Let IH, be a finite-dimensional
subspace of IH spanned by {e;,e,,e5,...,¢,}. Let P, denote the orthonormal
projection from IH — H,. Let us define W, =P,W, ¥, =P, and ¢, =P,¢. We
consider the finite-dimensional stochastic Navier-Stokes equation in variational
form for u,(z):

(@09 = ©,0),9) = [ Au, (), ds = [ B, w, (), ds
[ 00+ [ 0,60, 6)AW, 0,9
[ [ @) 0.9F @ ). 2.20)
with u = P,u, for each v € H,.

Note 2.3. In the finite-dimensional system (2.20), we take compensated Poisson
integral with the Lévy measure A(Z,) < o0 and Z, + H.

We follow the techniques in [37] (see also [1]) to obtain the following a priori
estimate results.

Theorem 2.3. Let u,(t) be a adapted process in D(0, T, H,) that satisfies (2.20).
Under the assumptions Y(., .) and ¢(.,.) (i.e., A2 and B1), we have following estimates.

1. Let f € IL2(Q; IL%(0, T; V")) and E|uy|* < oo, then for all 0 <t < T,
t
B sup lu, )+ v [T 0)Fds)
0<s<t 0
T
< C<E|uo|2,/ E[f(s)[3.ds. v. T, KI,K2>. 221)
0
2. Let f € IL*(Q; IL4(0, T, V') and E|uy|* < oo, then for all 0 <t < T,
t
E( sop I, + 20 [ 0,9l 9105 )
0=<s<t 0

T
< C{E|u0|4,/0 E|f(s)[4.ds, v, T, K,,Kz}. (2.22)

Proof. We start with the finite-dimensional system of IH, valued stochastic
ordinary differential equation (2.20):
dun(t) = _[Aun(t) + Bn(un(t))]dt + fn(t)dt

+ ¥, (1, u,(0))dW, (1) + fz (. (u, (1), )N (dr, dx) (2.23)

For any fixed N > 1 and n > 1, define 7}, := inf{z : |u,()|> + J; |lu,(s)[>ds > N}.
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By means of 1t6’s Lemma (Theorem 4.4.10 of [2] or Section 4 of [33] and also
find It6 formula in [6, 14, 16, 31]) and (2.23), we obtain

tATR

A = OF =2 [ @ Rds+2 [ 6,60, u,(9)ds
0 0

£2 [ 0,6 0, 0)AW, 650, w,(9)
#2770 [ (@60 9., )F s 0

7 005w 6DAW, (), 91 0,(6)AW, 5)
+ 2w —u, ()P (2.24)

n
O0<s<tAty

where the jumps |u,(s) —u,(s7)| are in Z,. By noting 2{f (¢), u,(?)) < v|u,(?)]* +
L, (0} and taking the supremum of both sides of (2.24) before applying
expectation

AT
B s OF) +v [ Bl OlFds < B, 0)F

n
O0<s<tAty

1 TATH
+ —/ VE|L, ()13 ds + 2E< sup
v Jo

n
0<s<tAty

/0 (a5, 0,(5)) AW, (5), un(ﬁ))‘ )

FE [ 0,65 0,60 QU3 . 0, (1) ds
+E Y 4,(u,(s7), A, ()] (2.25)

n
0<s<tAty,

+ 2E< sup

n
O<s<tAty

[ [ @@,G-).0.u0,G-)Ns dy

Applying the Burkholder-Davis-Gundy inequality, Cauchy-Schwartz inequality, and
condition (Al) for first martingale term in the right-hand side of (2.25):

2E< sup

n
O<s<tAty

52«/§K1E</0

[ 0G0, 0,

n
ATl

1+ |un<s>|2>|un<s>|2ds)2

4K,* 4K,
<5E< sup |u,l(s)|2>+ ‘E/ “lu,(s)Pds + LT (2.26)
0

-2 O<s<taty € €

Similarly, we can estimate the martingale term involved with the compensated
Poisson process as follows:

ZE( sup

n
O<s<tAty

/ s / (¢,(u,(3-), x), u,(5-))N(dS, dx)
0 Jz,
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1

) zﬁE( [ (60,5700, DENGSS dx>)2

o=

<2038 sup |u,,<s>|2)£( [ ] 0PN an)

n
O<s<tAty

IA

sE(sop P )+ 2 [ [ B 0RA@nds

n
0<s<tAty

IA
N m

4K, o 4K
E( sup |un(s)|2>+TzE/0 N|u,l(s)|2ds+TZT. (2.27)

n
O<s<tAty

Let us estimate the last term in the right-hand side of (2.25);

E Y 1o,(u,(s7), Au, ()

n
O<s<tAty

=B [ [ 190,60, 0PN, d)
_E /0 /Z (6, (u, (s, x)[2A(dx)ds. (2.28)

Replacing (2.26), (2.27), (2.28) in (2.25) and applying conditions Al and B1,

ATy
B s [0OF)+E [ I 0)lds < Elu,0)F
0

‘ n
0<s<tAty,

1 Tty ) )
+LE [ T IROIds + B sup [u,(9)
0

O=<s<tAty,
4K’
€

2 ATy
MR e [T T, 5, 6)QU 5w, (1) ds

+

tATh 4K tATR
E[ "o oPds+=—E [ [u,(9)ds
0 € 0

FE[T [ 16,0067, 0P < Elu, 0)F

1 Tty ) 5
+ B[ IR ds +eE( sup fu,(s)

n
0<s<tAty

ATy
+CE /0 <sup |u,,(§)|2> ds + C,T. (2.29)

§<s

Thus, we have

(1= 0E(sup I, F) +9E [ fu6)Fds < Eluf
0

n
O<s<tAty

1 T ATy B}
n -E/ I, (s) |2, ds + CIE/ <sup |un(s)|2> ds+C,T. (230
v 0 0 §

S<s
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Applying Gronwall’s inequality to (2.30) with € = % we get

IATY,
B, s wOF)+E [ a0l
0

0<s<tAty
2 1 g 2
< 2(Eju,|* + ;E/ I£, ()] ds + C,T ) exp {2C, T} . (2.31)
0
Now define

t

Q= {w € Q:u, () +/ lu, (s)[%ds < N} : (2.32)

0

Then we have

fQN (Iun(t)l2 + /0 ||ll,,(s)||2ds> P(dw)
+ /Q " <Iu,l(t)|2 + fo t ||un(s)||2ds) P(dw) < C,. (2.33)

Then by dropping the first integral and using the fact that |u, (£)|*+ fot [lu,(s)]?ds > N
in Q\Q,,

P{O\Q,} < % (2.34)
Note also that
G,
Ploe Q:1y <t} =P{Q\Q,} < v for any r < T. (2.35)

Hence, limsupy_, . P{we Q: 1}, <1} =0. Therefore, t, -t as N — oco. Then
taking the limit of (2.31) as N — oo, we get (2.21).
Now we will prove the second estimate.
Define 0% := inf{ : [u,(1)|* + J; |u,(s)|*||u,(s)[|’ds > N}, then apply It0’s Lemma
(Theorem 4.4.10 of [2] or Section 4 of [33]) to the function u — |ul* to get,
Oy,
u, (r A OR)[* = [u, (0)* — 4\’/0 [, ()[[|w, (s) I *ds

A0y,
T4 [ I OP©). u,(3)ds
A0y
T4 [ I OP 0 u,)AW, (). 1,()
A0y, ~
T4 m@P [ (@), 0. ,67)N (s, do)

N
+6 fo lu, ()P Tr (i, (s, w,(5))Qyr; (5, w, (5)))ds
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+ 2 [Iun(S) —u,(s)* + 4w, ()] (w, (s), w,(s7))

0<s<tAOy
= 2Ju, (5)*u, ()P — 4(u, (), u,(s7))* + 2|un(S)I4} (2.36)

where the jumps |u,(s) —u,(s7)| are in Z,. Now apply Young’s inequality to the
term (f,(7), u, (7)), condition Al to the sixth term in right-hand side of (2.36), and
taking supremum of both sides before applying expectation, we get

B sup @)+ 2 [ 0,61, 61 ds < B, O

n
0<s<tAO}

2 NG
B[ W OPILORds
v 0

+ap( sup | [ 0GR 6. 0,6)dW,6.0,6)]

0<s<tAly

+4E< sup L(5=), x), u,(5—)N(d5, dx))
0<s<tAOy

A0y
+OKE [ fu, () (1 + fu, (9))ds
0

+E X [IAUH(S)I“+4|un(S)|2|un(S‘)|IAun(S)I

0<s<tAOy
+2Ju, (s7) | Aw, ()] + 2|un(S‘)|2|un(S)|IAun(S)I} (2.37)

where |Au,(s)| = |u,(s) —u,(s7)|. The Cauchy-Schwartz inequality, and triangle
inequality have been applied for the terms associated with jumps in (2.36).

The second term in the right-hand side of (2.37) is estimated by means of
Young’s inequality as follows.

2 A0y, €
—Ef Ju, ()£, () I-ds = —E< sup Iu,,(s)l“)
v Jo 4

0<s<tAOy

TAOY

4
+—E [ IO+ 5T 239)

By using Burkholder-Davis-Gundy inequality, Cauchy-Schwartz inequality, and
condition Al,

4E< sup

n
0<s<tAOy

[ 10 OF 0,6 0,6, (). w,6)| )

<56( sw o)

n
0<s<tAOy

Al m

2w ([ w50 @aW, 60,6 )

0<s<tAly



Downloaded by [Naval Postgradute School, Dudley Knox Library] at 11:04 18 April 2013

392 Fernando and Sritharan

()1 + [u, () P)ds

=<

IAOR,
E< sup |un(s)|4)> + 16ﬁK1E/
€ 0

; n
0<s<tA0Y

1 m

B m

0<s<tAOy

242K Ay 164/2K
< E< sup |un(s)|4)>+TlE/0 |un(s)|4ds+TlT.

(2.39)

We can estimate the martingale term associated with compensated Poisson process

by similar procedure using Condition BI;

[

€ 4
<%e( s o)+

n
0<s<tAOy

244/2K U 164/2K
5215( sup |u,,(s)|4)>~l—%Ev/(; ”|un(s)|4ds+%r.

n
0<s<tAly

4E( sup

n
0<s<tAOy

2 [ (9,@,6-), ), u,G-) N5, dx)
z,

16x/§K2E/M% Ju, () (1 + [, () P)ds
€ 0

Let us estimate the term involving jumps in (2.37).

E X [IAun(S)I4+4lun(S)|2|un(s)IIAun(S)I

n
0<s<tAOy

+ 2[u, ()| A, ()] + 2Iun(S‘)Izllln(S)IIAun(S)l}

<E Y |Aus
0<s<tAOy
+8E( sup |un(s>|2)( sup |u,1<s->|) S [Au,(9)
0<s<tAly 0<s<tAOy 0<s<In0

<E Y |<¢>,l<un<s->,Aun<s>>|“+8E( sup |u,1(s>|2)

"
0<s<tA0} 0=s=<tn0

x( sup |un<s)|) T (). Auy(s))]

<tng!
O=s=<tnby 0<s<tA0},

1

A0y, 295
B[ [ 16,0000 Mds. 0+ 8| E( s in,F) |
0 z,

; n
0<s<tn0}

(2.40)

B e wol) T [( [ 1w o1 ns a0) |

N
SEfO /Zn|¢n(ll,,(s_),x)|4N(ds,dx)+EE( sup Iun(s)l“)

0<s<tAO}

+8 (ﬁ)S E</0M67V /Z 16, (u, (s7), x)| N(ds, dx)

€
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tAOR,

e[ 001 a00s)

A0y
e[ [ 100l s+ SE( | sup o)

"
0<s<tAOy

+8C (%)3 E(/OM” /Z ¢, (u,(s7), x)| )L(dx)ds)z

. 24\ 3 A0 2
+ 8CK,? (-) E(/ 1+ |un(s)|2)ds>
€ 0

(24 3 A0 4
+8CKA(Z) E / (1 + |u,(s)))ds
€ 0

24\° . .
§EE< sup |un(s)|4>+|:16TK22 (?) (C+2T2K22C)~|—K2:|

4 0<s<tAly

€

0%, 24\° . .
fo lu, (s)|*ds + 16K22< ) (C+2T°K20) + K, | T
0

(2.41) holds due to Cauchy-Schwartz inequality, Young’s inequality, and condition
B1. Combining (2.37), (2.38), (2.39), (2.40), and (2.41), reorganizing terms,

A0y,
(1= 0(sup fu, o)+ 205 [ OFlu,(0)ds < Eluf

n
0<s<tAly

4 T 4 tAOY, i
B[ @R+ CGE [ (suplu, () ) ds + O (241)

S<s

By means of Gronwall’s Lemma with € = 5, we get

1
2

A0y,
E( sup |un(s>|2)+2vE [ Pl )Pds

0<s<tAly
2, 8o 7 4
< 2(Efuy* + —ZE/ IE,(5)[14,ds + CsT ) exp {2C, T} . (2.42)
v Jo
Define
f)N = {a) e Q:|u, () +/ lu,(s)]*||u,(s)]>ds < N} , (2.43)
0

then

[, (0 + [ PP ) P

[ (mOF [P O Ps) Pao) <€ a0
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Then by dropping the first integral and using the fact that, lu, (6)|* +
Jo 1w, ()P [lu,(s)>ds = N in Q\Q,. We obtain,

. ¢
P {Q\QN} <+ (2.45)
Note also that

) C
PloeQ: 1, <t}=P{Q\QN} <<t foranyr=<T. (2.46)

Hence, limsup,_, ., P{w € Q : 03 < t} = 0. Therefore, 03, — ¢t as N — oo. Therefore,
by taking N — oo, we will get the estimate (2.22). O

2.3. Existence and Uniqueness

Definition 2.2. Let (Q, #, 7,, P) be a complete probability space equipped with a
filtration Z,. Let u(r) be a IL2(Q; IL=(0, T; H)) N IL2(Q x [0, T]; V)-valued cadlig
(with respect to ID(0, T; IH)) adapted process. Suppose that u(z) satisfies stochastic
Navier-Stokes equation in weak sense almost surely:

@), ¥) = @O, — [ (Au(s),v)ds = [ B, v} ds
[ @@ Vs + [ @isu)dW ). v)
+ /t/ (p(u(s7), x),V)N(ds,dx)as., forallveV, (2.47)
0 JH

and also the energy inequalities in Theorem 2.3. Then u(¢) is called a strong pathwise
solution of (2.14).

2.3.1. Lévy Measure A(.) is Finite. In this section, we first prove existence and
uniqueness of solution of (2.14) associated with the finite Lévy measure (i.e. A(IH) <
oo) using local monotonicity method and generalization of the Minty-Browder
technique. The major advantage of this technique is the complete elimination of
compact embedding theorem that is only available for bounded domains.

Some of the ecarlier works on monotonicity method for stochastic partial
differential equations are [19, 25, 27, 29], and [43], who proved the existence
and uniqueness of strong and martingale solutions for a wide class of stochastic
evolution equations. Menaldi and Sritharan [26] generalized this method for local
monotonicity so that it is applicable for stochastic Navier-Stokes equations.

Since A(IH) < oo, we can organize the jump times of N(ds, dx) as follows (see
[49]):

() < (w) < pz(@) <.

Since [, fi; #(u(t7), x)N(dt,dx) =0 on time interval [0, y;(w)), the stochastic
Navier-Stokes equation (2.14) reduces to following form.

du(?) 4+ [vAu(z) + B(u(r))]d¢
=f(0)dt + y(t, u(r))dW(r) — /111 ¢ (u(r), x)A(dx)dz. (2.48)
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The finite-dimensional stochastic Navier-Stokes equation in variational formulation
on the interval [0, u, (w)) can be represented as follows:

(0. ) = (,0).7) + [ (£,(5). v)ds
- / (Au, (5) + B, (u,(s)). v)ds — f (¢, (u,(5), )A(dx), v)ds

t
[ W5, (9)AW, (). ). (249)
with uj = P,u, for each ve H,.

Theorem 2.4. Let f € IL*(Q; IL*(0, T; V')) and the initial value u, satisfies E|uy|* < co.
Suppose that the conditions associated with (., .) and ¢(.,.) (i.e., A1-A2 and B1-B3)

hold. Then the model (2.48) has a unique adapted solution u(t, w, x) on [0, yu,(w)) in
L2(Q; IL=(0, T; IH) N C(0, T; H)) N L>(Q x [0, T); V).

Proof. Firstly, we prove existence results.

1. Weak convergent sub-sequences.

According to Banach-Alaoglu theorem and Theorem 2.3, we can extract
sub-sequences from Galerkin approximation {u,(f)} and each sub-sequence have
following limits.

* u,(.) — u(.) weak star in IL*(Q; IL=(0, 7; H)) N IL*(Q x [0, T]; V),

° F(u () —> FO() weakly in IL2(Q x [0, T]; V'), where the operator F() =
F()—f,
The following two statements hold since (.,.) and ¢(.,.) satisfy
condition Al and B1, respectively, and first part of the a priori estimates.

e, (t,u,(.)) — S(.) weakly in IL2(Q x [0, T); Ly) and

o [ ®.(u,(s), x)A(dx) — J(.) weakly in IL*(Q2 x [0, T]; V).

Then u(7) has the Itd differential
du(?) + Fy(H)dr + J(1)dt = S(r)dW (1) (2.50)
in IL2(Q x [0, T]; V).

2. Local Minty-Browder technique.
Define

16
R(1) == / IVl ds + (M1 + \//I(IH)M2> ‘ (2.51)

where v(¢, w, x) is an any adapted process in L*(0, T; H,,) with m < n.
By applying It6’s Lemma (Theorem 4.4.10 of [2] or Section 4 of [33]) to
e O, (1),

d|:e_R(’)|u,,(t)|2] _ e‘R(’)d|u,,(t)|2 _ R(t)e—R(r)|u,,(t)|2

= O [( = 2F(w,(0). ,(0)dr =2 [ (6,(w,(5), 9. u,(5)) (dx)dr
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+ 20,1, u,(0)dW (1), u, (1)) + |9, (2, un(t))lith}
— R(t)e *O|u, (1) P dt. (2.52)
Integrating (2.52) from 0 to 7,

e Dlu, (D - [u,(0)]
- / ! e RO (= 2F(u, (1)), u, (1))dr

0
=2 [T [ (@, 0., ()0
#2 [ RO 1, 0,0)AW, (), 8,0)
[ e )R A - [ RO, 0P (@2.53)
0 0

Taking expectation on both sides and using the fact that the third term is
martingale,

E(eR(T)|un(T)|2) — Elu, )
—E /0 ' e RO (= 2F(u, (1)) — R(1)u, (1), u,(1))dr
_ r —R(1) )
F /0 e f]H(qS,,(u,,(t), x),u,(1))A(dx)dr

T
+E [ e Oy, (1 u,(0)f dr. (2.54)
0

Taking liminf on both sides of (2.54) and by means of lower semi-continuity of IL2-
norm and strong convergence of the initial data u,(0),

liminfE [ R0 (= 2F(u, (1)) — R(D)u, (1), u,(1))dr
0

n—oo

~timinf 28 [ e 0 [ (6,0, 0w, ()01
+lim inf E OT RO, (e u, () di

_ liminf [E(e-wun(w) - E|un<0>|2}

> E(e'“%(mz) ~ Eu(0)P

—E / ' e RO (= 2Fy(1) — R(1)u(r), u(r))dr.

_ ZE/OT e ROI(1), u(r))dr + E/OT e_R(t)|s(t)|ith (2.55)
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By Theorem 2.2 with p = 4, we have

2E / " 0 (F(u,(r)) — F(v(1)), u, (1) — v(r))ds
0
F2E [0 [ (4,0, 3) — (1), 1), u, (1) — V(1) Adx)dr

0 H
B[O (00, 0) ~ O 41
+E / ' e ROR(N)u, (1) — v(1)|*dt > 0. (2.56)
0

Now, rearrange the terms of (2.56) to get

E[ /0 ' e RO (= 2F(u, (1)) — R(1)u, (1), u,(1))ds
=2 e O [ (4,00, 0)., (0)A(dx)dr
s [ On0) a
< E[ /0 ! e RO(—2F(u,(1)) — R(1)u, (1), v(1))dr
+ /OT e RO(—2F(v(1)) — R(1)v(1), u, (1) — v(1))dt
2 /0 e RO /H(qsn(un(t), x), v(1))A(dx)dr
2 /0 " o fH(d)n(v(t), ), u, (1) — v(1)A(dx)drs
[ 0) = ) )]s

Taking liminf on both sides and applying (2.55)

[ [0~ 2R = kouo), w)ar
2 [T e a, uma+ [ e-R<f>|S(t>|ith]
<] [0~ 2Fs0) - Rt v)ar
2 [T e, var
2 [T [ (90, 0. u() ~ ¥
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+ [0 2F (6 0) ~ kOVD, u() ~v(0)ds
2 [T - [0k sy
By reorganizing terms, one can deduce
E[ [ (= 2(F0 — Fo) = k@) —v). u() — vo)ds
=2 [T R0 ~ [ ). 0@, ) V()
[T emIs - v(t>>|ier} <0, (2.59)

(2.59) holds for any v € IL*(Q; IL*(0, T: H,,)) and any m € N. By using density
argument (see [26], [9]) we can verify that above inequality remains true for any
v e IL2(Q; IL=(0, T; H) N 1L2(0, T; V)).

It is clear that for u(r) = v(r) we have S(¢) = (¢, v(r)). Let v =u + ow, where
6> 0and we IL>(Q; IL=(0, T; H) N IL2(0, T; V)). By substituting this v into (2.59),

Ef e R<t>[ 2(Fy(1) = F(u(t) + ow(1))) — R(1)ow(1), ow())
—200(r) — /[H d(u() + ow(r), x)A(dx), 5w(t))]dt <0. (2.60)

Definition of F(u) := vAu + B(u) and the first term appearing in left-hand side of
(2.60) give

Ef " e RO(Z 2F, (1) + 2vA(u(r) + Sw(1)) + 2B(u(r) + Sw(1)), ow(D))d
0
— 52E[T e ROR(r)|w(r)|dr
0
=E /()T e RO |:( — 2F,(t) + 2vAu(r) + 2v5Aw(7) + 2B(u(2)), dw(t))
+ (6(B(u(z), w(r)) + B(w(2), u(1))) + °B(u(r)), 5W(¢))}df
_OE / " RO () (o). (2.61)
0
Consider
l_in%/ (¢(u(r) + ow(1), x) — Pp(u(t), x), w(z))A(dx)
5—~0J
< |w(n)|vA(H) [y_{% (/]H |p(u(r) + ow(r), x) — (u(?), x)|2/1(dx)) 2}
< lim M |w()> = 0. (2.62)

(2.62) holds due to Cauchy-Schwartz inequality and condition B2.
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Apply (2.61) and (2.62) for inequality (2.60), divide by ¢ and letting 5 — 0,
T
E / e RO (= Fy(t) — 23(2) + vAu(?) + B(u(1))
0
+2 [ pu(r), 1A(dx), w(o))dr < 0. (2.63)
H
Since this inequality holds for any w(¢) € IL*>(Q; IL*(0, T; H) N IL2(0, T} V)), we

have F(t) 4+ 2J(1) = F(u(r)) + 2 [, ¢(u(), x)A(dx).
Therefore existence of the strong pathwise solution of (2.48) has been proved.

Now let us prove the uniqueness of the solution of (2.48).

Suppose v(7) € IL2(Q; IL=(0, T; H) N C(0, T; H)) NIL*(Q x [0, T]; V) be another
solution of (2.48) on the interval [0, p;(w)). Then w(r) = u(¢) — v(¢) satisfies the
stochastic differential equation on [0, u,(w)) in IL2(Q; IL3(0, T; V)):

dw(r) = —(F(u(r)) — F(v()))dr
- /}H (p(u(t), x) — p(v(1), x))A(dx)dt + (Y (2, u(?)) — Y (t, v(£)))dW(?)

(2.64)

By applying It6’s Lemma (Theorem 4.4.10 of [2] or Section 4 of [33]) to e~ |w(r)[%,
d(e*Nw(D)]*) = —e *OR(D)|w(D)[*dt — 27 (F(u(r)) — F(v(1)), w(1))dz
2RO fH (dg> W(£))A(dx)d + 2¢7FO (Yo dW (1), w(1))

+ e *OTr (4 Qyr)dt, (2.65)

where W, = (¢, u(t)) — y(r. v(1)) and ¢, = p(u(r), x) — $(v(r), x). Integrating up to

t < T, taking the expectation, and using the fact that third term is a martingale
in (2.65),

E(e *|w(1)*) < Elw(0)* - 2E fo [ e *OR(s)|w(s)[*ds
_2E /0 " RO (F(u(s)) — F(v(s)), w(s))ds
'
_2E /0 e RO /]H ($a> W(s))A(dx)ds
+E fo [ RO Y2 ds (2.66)
By local monotonicity argument (Theorem 2.2) with (p = 4), we have
E(e ®|w(1)*) < Elw(0)]* for 0 <t < p,. (2.67)

(2.67) immediately gives us the uniqueness of the solution of (2.48). |

Theorem 2.5. Let f € IL*(Q; IL*(0, T; V') and initial value wu, satisfies E|uy|* < oo.
Suppose that A(IH) < oo and the conditions associated with Y(.,.) and ¢(.,.) (ie.,
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A1-A2 and B1-B3) hold. Then the model (2.14) has a unique adapted cddldg process
u(t, , x) on [0, T] belonging to IL*(Q; IL=(0, T; H) N IL%(0, T; V)) for any fixed T > 0.

Proof. Let {u;,i=1,...,n} be the jump times associated with compound Poisson
process {P(t), t > 0}, where P(r) = [, xN(ds, dx).

From Theorem 2.4, there exists a unique strong adapted process u(z) in
IL2(Q; L=, T; H) N C(0, T; H)) NIL>(Q x [0, T]; V) on the interval [0, u,(w)).
Now we recursively construct the solution u(z) of (2.14) as follows.

Define on [0, p ]

u(r) for t < 1

[y —
o u(uy) + ¢u(uy), AP(wy)) fort =y

(2.68)

Now suppose that P{w € Q : y; < oo} = 1. Define 4(0) = ul'l(,), and F/ =7, ,,.
Let P(r) be the compound Poisson process which starts from time y;.

Since we don’t have jumps during the time interval (y,, t,), the stochastic
differential equation (2.48) has an unique strong pathwise solution a(r — p,) €
IL2(Q; IL=(0, T; H) N €(0, T; H)) N IL2(Q x [0, T]; V) with initial value a(0) on
[0, u; — py). Then,

ulll(s) for t <
uPl(r) = Ja( — ) for yy <1<, (2.69)
a((t — w)7) + dW@((1, — 1) 7). AP(1y)) for t = p,

Since we have a finite number of jumps on [0.7], by repeating the above process n
times, we can obtain ul(z).

ul’l(¢) is clearly a adapted cddldg process which solves (2.14). Uniqueness of
ull(f) follows from the second part of the Theorem 2.4 and the interlacing structure
of the solution. O

2.3.2. Lévy Measure A(.) is o-Finite. In this subsection, we use the approach
method in [37] to prove existence and uniqueness of strong pathwise solution of
(2.14) with o-finite Lévy measure. This method of deriving strong convergence is
also used in [49].

Note 2.4. In [49] solvability of the stochastic Navier-Stokes equation with additive
Wiener noise and multiplicative Lévy noise for the case of o-finite Lévy measure
was discussed in the domain T? = R?/Z2. We extend these results by adding
multiplicative Wiener noise and Lévy noise to stochastic Navier-Stokes equation in
bounded or unbounded domain G C R

Theorem 2.6. Let f € IL*(Q; IL*(0, T; V) and initial value u, satisfies E|ug|* < oo.
Suppose that /(.) is g-finite and the conditions associated with (., .) and ¢(.,.) (i.e.,
A1-A2 and B1-B3) hold. Then the model (2.14) has a unique adapted cddldg strong
pathwise solution u(t, w, x) on [0, T] in IL*(Q; IL=(0, T; H) N1IL*(0, T; V)) for any
fixed T > 0.
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Proof. Now consider the following stochastic Navier-Stokes equation with It6-
Lévy noise

du,(¢) + Au, (£)dt + B(u, (¢))d¢
= f(r)dr + Y (7, u,())dW(r) + / $(u, (), x)N(dz, dx), (2.70)
z,
with u,(0) = u, and for all n > 1.
Theorem 2.5 implies that Equation (2.70) has a unique adapted cddldg process
u, (1) belonging in IL2(Q; IL=(0, T; H)) N 1L*(0, T; V) for any n > 1.
We define t, := inf{z: |u,(t)|* v [y |u,(s)|[’ds > N}, for any fixed N > 1 and

n>1.
Consider the following stochastic differential equation with n > m:

d(u,(r) —u, (1) + A(u,(?) — v, (2))ds + [B(u,(r)) — B(u,(1)]dz
= [(, u,(1)) = (2, u, ()] dW (1)

+ [ /Z n o, (1), x)N(dr, dx) — [Z m o, (1), »)N(dt, dx)] .71)
Applying It6’s Lemma (Theorem 4.4.10 of [2] or Section 4 of [33]) to |u, (£) — u,, ()],
.1 )~ AP+ 20 [ ) — ()P
= [ 8,59~ Bl () 1,0~ m, () ds
#2769 s, DIV, 1,6) ~ 0, ()
7 0D~ v, ()
w2 [ [, @67 = 9, (7). 0 u,(9) =, () N(ds. d)
+2(" / (B, 0, 0,() —u,(5) N(ds, dv)
[ 16060 = Blans ) 0RNs. )
[ ] 1ot 0PN, 4 )

Applying (2.11) to the first term of the right-hand side of (2.72) with Young’s
inequality,

INTY
o, AT =, AT+ [ () = w, () ds
0

2

< ’j—/ ,(5) — 1, (5) 1w, (5) s
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277 06,0, ~ Y DIV, 1,6) — ,(5)

[ W ) s 0, )R,

22 [ 0,60 = B0 00 — 0, () N, )
w27 / (1,670, 0,9 ~ w, () N(ds, dv)

[ 1606 = Bl 0P s

+ [ 16,67, 0P, (2.73)

Let T(z A 74, is the summation of last six terms of (2.73). Now applying Gronwall’s
inequality to (2.73),

AT
lu, (£ ATh) =, (1 AT+ Vfo I, (s) — w,(s)|*ds
2

K ATy
T n B 2
<imenslen (52 [ I olkas)

KZ
<|T(t A Th)|exp (4—th) ) (2.74)

Then apply Burkholder-Gundy-Davis inequality, Cauchy-Schwartz inequality,
and Young’s inequality with conditions A2, B2 to E[sup,, | T(s A t})[]:

2 3
ds)

nm nm

u

E |:sup | T(s A T;’V)|:| < 2V2E (/Ot

i<t SATY L SATY
2 2 3
+E/ AAI" dS + 2«/_E </ / .SAT u;lZLTX/ }“(d'x)ds)
1
t 2 2
+2V2E ( / f lp(u, (s A =), x)] ur, i(dx)ds)
0 Jz,\z, N
t 2
+E /0 /Z o | Adnds
t
+E [ [ 1o, Ath=) 0P Adx)ds
0 7z,
3 nm nm 2
< C_sE AE}JAI;T) [u] I +(Cs+ I)E/ S ds

/I(dx)ds

Y/\‘E

+(Cs+ 1)E//

+CE fo fz 196 ATo), X7 A(dx)ds
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t 2
+ E/ / P, (s A Ty =), )" A(dx)ds
0o Jz,

3

< —E ( sup |unm| ) + (C5 + l)MlE/ |uw\r | dS
C5 s<t/\‘E

nm 2
SATY ds

+(Cs + 1)M2E/0 u

+(Cs+ 1)E/0t/2(_ |, (s A Ty—), x)[* A(dx)ds,

403

(2.75)

where " = W(l (D) = ¥(t,u,(0), o1 = $(u, (1), x) — ¢(u, (1), x), uf" =u,(z) —

u,(f) and C5 = = exp( 4f Nt). Then,

E sup fu,() —u, )P+ [ Elu, ) u,()Pds

SSIATY

< 3V2€E sup [u,(s) —u,,(s)]’

n
SSINTN

+c6/ E sup |u,(5) — u, () ds

A<3AT

+CE / / b (u, (s A T —), x)|7 A(dx)ds.
0 JzZg,
and

E sup |u,(s) —u, (s)|2+v/m E|lu,(s) — u,,(s)[°ds

S<IAT

= w/ ESE&I‘:[)N |u,(5) — u,,(5)|*ds

7 n 2
+T\/§€E/0 /an|¢(un(s/\r,\,—),x)| J(dx)ds.

Now apply Gronwall’s lemma and condition B2 to (2.78):

ATy
E sup fu,(9) = u, ()P +v [ Ellu,(9) — w,(s)|ds

SSIATY
exp {ﬁt}
N 1 —342€

« Efo /Z I, (s A =), ) A(dx)ds

Co + G } 2
<exp{———+f¢ su u, x)|” A(dx).
<op{ T s [ 190.9F 0

(2.76)

(2.77)

(2.78)
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Then we have

lim (E |: sup |u,(s) — um(s)|2:| + V[WI;V Ellu,(s) — um(s)||2ds) =0.
0

m=—00 s<IATR

From Theorem 2.3,

/ (sup Py [ ||un(s)||2ds)P(dco) <y
Q 0

0<s<t

This implies

: C
P(t>1)) = P< sup |u, (s)|? v/ lu, (s)[ds > N) <. (2.79)
0

O<s<t

Consider the following two estimates:

E |:Sup |u, (s) — “m(s)|]
=E [SSEI? lu,(s) — llm(S)|X{;<f,"v}:|
+E I:Slil? |lln(S) - um(s)|X{f>‘c’1(,}:|

sE[mwwm—%@q+@wmm9ﬂwmﬁh%>mﬁ

S<IATY
1
J2c
<(E| sup |u,(s) —u,(s)*|] + L 2.80
( [SSMQHNI (s) (s)] ]) IN (2.80)

Last two inequalities of (2.80) is due to Cauchy-Schwartz inequality and (2.79).
Similarly, we can get

E [ () — u, (o) s
=B [ 0,(9) — () sy

+ E/O’ [u,(s) — um(s)||dSX{1>ryv} < E[OMTN 1 (s) — u (5)]lds

+ <IE/OZ u,(s) — “m(S)||2ds> P(; > T;’V)]%

V21C,
N

¥

E(EAWWN%%NW®Y+ (2.81)
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The first term of (2.80) and (2.81) approaches zero as m — oo for fixed N. As N —
oo, the second term of (2.80) and (2.81) approaches zero. Then,

Tim (E <sgo lu,(s) — um(s)|> +y /0 "Elfu, (s) — um(s)||ds> — 0. (2.82)

(2.82) shows that {u,(#)} is a Cauchy sequence in the space IL!(Q; IL*(0, T; H) N
IL'(0, T; V)). Accordingly, there exists a adapted cddldg process u(z) €
IL'(Q; IL=(0, T; H) N IL'(0, T; V)) such that

tim (& (supiu, ) — w1 ) + v [ "Bl 9 — (9 1as ) =o.

Now let us prove that u(¢) is the strong pathwise solution of (2.14). Let v € D(A).
Then we have,

/ (u,(5), Av)ds — / (u(s), Av)ds
0 0

Esup < T|Av|E <sup [u,, () — u(t)|> . (2.83)
t<T t<T

Define 0, = inf{z: |u(¢)| > N}. Since (2.82) holds, we can extract a subsequence
u,(¢) with relabeling such that lim,_,  sup,, [u,(s) —u(s)| =0 as.
There exist 2(w, N) such that sup,_, [u,(s) —u(s)| < N for all n > a(w, N).

Then we have sup,_,,.,, lu(s)|?|u,(s) —u(s)|2 <N for all n > i(w, N) since
lu(r A 0y)] < N. Now let

Si(N) = {w: sup [u(s)|*|u,(s) —u(s)|* < N and
S<tAOy
sup |u,(s) —u(s)| < Nfor n > 71}
S<tAOy
{S;(N)}22, is an increasing sequence of sets and U, S;(N) = Q. Now,
E [sup
t<T

TAOy
<E |:/0 |(B(u,,(s) — u(s), u,(s)), v)| dSXSa(N)j|

tAOy tAOy
[ B, @)vds— [ (B@(s), v)ds
0 0

Xsm}

TAOy
LE [ [ 1B, 1,6 - ue). ) dsxw}
TAOy | 1 ) )
< KE{{ [ 10,69~ 06 o, 6) w1 vl 91, (9 s
TAOy 1 1 1 1
7 OO 1 Vi, )~ uG6) 1 o, )~ u<s>||zds}x5ﬁ<m}
5K3||v||E{{ sup Ju,(s) — ()] fuy(5)|*
t<TAOy

TAOy ) .
X fo [[u,(s) —u(s) ][> |[u,(s)]|>ds
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1 1 TAOn 1 1
+ sup 0, =@ [ )~ a1 )]s s 0 |

t<TAOy

< K] { sup [l0,6) — w1 + o, 6) ~ w1

t<TAOy
TAOy . .
< [ () = w1, 1 + 1w, (s) — w9 | ds

1 1 TAOy 1 1
+ sup ) = w0 [ (0 - w1 ol s} 0

t<TAOy

< Ky IVIE] sup [20,6) — w9 o) + (9~ uis)]

t<TAOy
X /
0

. | TAOy
K IVIE] sup 0, = w1 [ 0 - w5 |

t<TAOy

TAOy

lu, (s) — u(s))| 2 [u, ()] %dsxsﬁ(m}

TAOy

< IVKGIVIE [ u,(5) ()] u, () 2ds

TAON
VK IVIE [ () — () lds
1

TAOy % TAOy 2
<3l (B ) = ulds) (B fuolas)

TAOy

+ 2NKBIIVIIE/0 [[u, (s) —u(s)llds

s (s) — u<s>||ds) '

TAOy

< 3NK,C||v| <E/
0

TAOy
+ 2NKB||V||E/0 lu,(s) —u(s)||ds. (2.84)

Then we have,

tAOy Ay
[ B e)vds— [ (Bu), v)ds
0 0

Iim E | su Xs.-
v [K? /Csm}
1

2

, TAOy
< tim {3, vl (B[ o9~ uolas)

TAOy

+ 2NK,|IV||E /0 lu, (s) — u(s)||ds} = 0. (2.85)

Now consider,

IAOy (A0
E[supfo (W (s, u, () dW(s), v) — /0 (W (s, u(s))dW(s), v)

t<T

Xsm}
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1
2

< V2 [ [ a0 ) s |

TAOy 2
< AN E[ [ 0 0) — w0 P

1

TAOy
< VN[ [ o0 = Pz o |

TAOy 2
< VIV B [ o0 = w0z o |

1
TAOy

< /2M,N|v| [E[ [, (1) — u(t)||dti|u — 0, asn— . (2.86)
0
and, similarly,
E[sup
t<T

_ fomaN /]H (p(u(s7), x), V)N(ds, dx)

/0 " /Z (9,7, V)N(ds, dx)

Xsam)}
TAOy %
< VAE ([ [ 1000 - dtus). 0 PAas)

1

+2|VE (/0 o /Z lb(u(s™), x)|2/1(dx)ds)2

1
2

<V [E [ lu,) - utofar

+ V2[V|E </OTAUN /z; [p(u(s™), x)|2/1(dx)ds)é

< /2M,N|v| [E /0 " () — u(t)||dt}2

1

+ NVTV|E <supf [ (u, x)|2)u(dx)> — 0, asn— oo. (2.87)
lu|<N VZ;
From (2.83), (2.85), (2.86), and (2.87) we have,
(®),v) = (u(0), v) — v fo (Au(s), v)ds — /0 "(B(u(s)), v)ds

+ /0 (u(s)dW(s), v) + /0 ' /H(q’)(u(s’),x),v)ﬁ(ds, dx),  (2.89)

for w € S;(N) and ¢ € [0, 0). Since 0, — 00 as N — oo and UZ,S;(N) = Q, u(7) is
a strong pathwise solution of (2.14).
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Let us now prove the uniqueness of the strong pathwise solution of (2.14).
Suppose that u(7) and w(r) are two strong pathwise solutions of (2.14). Now define
Oy =inf{t > 0: [; [lu(s)[|ds v [; [[w(s)||ds > N}. Following a similar procedure as in
the existence part,

ANy
E |: sup |u(s) — w(s)|* + v/ [la(s) — w(s)||2dsi|

t
s<tADy 0

< C(N, t)E{ /0 (s A Qo u(s A Dy)) — (s A Ty, wis A Fy))2ds

+ // |(u(s A Dy—). x) — G(W(s A Fy—), x)|2)v(dx)ds}
0 YH

< C(N, )(M, + M,)E / " sup [u() — w(s)[Ads. (2.89)
-

S<sAUy

Apply Gronwall’s inequality for (2.89):

E [ sup [u(s) — w(s)|* + v /O " ) — w(s)||2ds:| - 0. (2.90)

S<tAOy

From (2.90), we have uniqueness of the strong pathwise solution of (2.14) since
Uy = 0 as N — oo. d

3. FKK and Zakai Equations
3.1. Derivation of FKK and Zakai Equations

In this section, we estimate the signal process {u(#), 0 < < T} (2.14) using partial
(sensor) measurements (see [15, 38, 48] and also [4]). The observation process
{Z(r),0 < r < T} is associated with u(z) as follows:

dZ(7) = h(u(r))ds + dB() (3.1)

where,

(C1) B(?) is a R™-valued Brownian motion;

(C2) h: H — R™, has atmost quadratic growth rate |h(u)| < c,(1 + |u|*) for all
u € H. For example, i(u) = ((u, ¢y), ..., (u,¢,)), where {e,, e,, ..., ¢,} be an
orthonormal basis for IH, (finite-dimensional subspace of H);

(C3) W(.), N(.,.) and B(.) are independent.

Note 3.1. In [38], two assumptions are made regarding the observation vector
h(.). First assumption is that A(.) is unbounded with quadratic growth. Second
assumption is almost similar to C2 except that we have quadratic growth of A(.)
involved with H-norm and in [38] the quadratic growth of &(.) is associated with
V-norm. In this work, we assume that signal process and observation process are
independent. On the other hand, signal and observation processes are correlated
in [38].
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Let us introduce the notations for a family of o-fields associated with u(z), Z(¢)
and B(#),0 <t <T:

F! =o{Z(s);s <t} and G, = a{u(s), B(s);s < t}.
Definition 3.1. Letu(r) € IH, r > 0 be the jump diffusion associated with (2.14) with

transition semigroup S,. Then the infinitesimal generator s of f(u(¢)) with f: H —
R is defined as follows:

S —
4 = lim # V f e D(st), (3.2)
t +
where
S —
D(st) = { f:H — R such that lim # exists } (3.3)
t +

Proposition 3.1. Let u(t) be a solution of (2.14). Then for f € D(s), the formal
infinitesimal generator Af(v) is given by

SAf(v) = =(vAv + B(v) —f, D, f) + %Tr(lﬂ(V)Qlﬂ*(V)fo)
+ /H{f(v + ¢(v, 1)) = f(V) = (V. D)ty DS PA(AR), (3.4)
where v € D(A).

Proof. Proof of the finite-dimensional counterpart can be found in [35] and
Theorem 3.3.3 in [2]. O

Definition 3.2. The class of cylindrical test functions €y, is defined by

Coi ={f*H—R; f(u) = ¢((u, ¢,), (0, &), ..., (, ¢,)),

e, € D), i=1,...,n¢ € Cy(R")}. (3.5)
Note that D, f € D(A) for f € C,. Rest of the article, we will often work with
f € (Ecyl g D(‘%)
The least square best estimate for f(u(z)) given back measurements Z(s), 0 <
s <1, is given by conditional expectation E[f(u(7))|F7]. This best estimate is
the solution of Fujisaki-Kallianpur-Kunita [11] equation (i.e., nonlinear filtering
equation). Now we present some results from Fujisaki et al. [11] that are needed for
the derivation of FKK and Zakai equations.

cyl*

Lemma 3.2. Let v(1)=Z(1) — [, h(u(s))ds, (where h(u(s)) = E[h(u(s)) | FZ]) be
the innovation process associated with observation process Z(t). Under the
assumptions C1-C3 and Theorem 2.3, (v(t), 77, P) is an R™-valued standard Wiener
process. Furthermore, the sigma algebras F7 and o{v(t) —v(z);s <t <1t < T} are
independent.

Proof. See Lemma 2.2 in [11]. a
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Theorem 3.3. Under assumptions C1-C3 and Theorem 2.3, every separable square

integrable martingale (Y (1), 77, P) (see [20]) is sample continuous and has the
representation

Y (1) — E[Y(0)] = /0 "0(s) - dv(s), (3.6)

where fOT E|0(s)]*ds < 0o and 0(s) = (0,(s), ..., 0,,(s)) is jointly measurable and
adapted to {F7}.

Proof. See Theorem 3.1 in [11]. a

Lemma 3.4. Let f € Cyy S D(s4) and let M, (f) = E[f(u(?)) | F7] — E[f(u(0)) | F7] —
Jy Elstf | FZ]ds. Then (M, (f), FZ., P) is a locally square integrable martingale.

Proof. See Lemma 4.1 in [11]. a

Theorem 3.5. Suppose that (2.14), (3.1) and conditions C1-C3 hold. If f € C,, €
D(st) then E(f(u(z)) | F7) satisfy the following stochastic differential equation

B(/|57) = B 150) + [ BGif |59)ds
+ [ [Bun 575 - BG17DBG150] - dv). GT)
where v(t),0 <t < T is the innovation process.
Proof. First we show that FKK equation (3.7) is well defined.

By applying Jensen’s inequality, Cauchy-Schwartz inequality, growth rate of 4,
boundedness of f, and Theorem 2.3,

E [ E(/R|F/)Pds < E [ EllfP(F71ds
0 S (] N

t t
=/ E|fh|2ds < c,,cf/ E(1 + [u(s)]?)2ds
0 0
t
< 2¢,¢s {/ Elu(s)|*ds + t} <oo, forO0<t<T. (3.8)
0
Using Jensen’s inequality, growth rate of 4, boundedness of f, we obtain that
! z Zy |2 ' Zy 12
E [ [B(ITHEMF)[ ds < ¢, [ EIEGR|F?)Pds. (39)
0 0

We can show that estimate (3.9) is finite for all 0 < ¢ < T by a similar procedure as
in (3.8) with quadratic growth rate of 4. Hence, we have

E/ [E(fhIF7) — E(FIFAET)] - dv(s) =0, for0<i<T. (3.10)
0
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Now let us show that
t t
/ E|E(s0£|F7)|ds < / E|stf|ds < oo. (3.11)
0 0
From Proposition 3.1,
t t
[ Elstfm@)lds < [ E| (vAu(s) + B(u(s) = £(). D) ds
1 t
+ 5 [ EITrO () Qi (a() D)l ds

B [ 1) + 9, ) - ()
— (p(s™), X)2(jx<1y> Duf) 14(dx)ds (3.12)

Using the fact that A is a self-adjoint operator, AD,f € H and Theorem 2.3,

E/O | (vAu(s), D, f) |ds = vE/Ot | (u(s), AD, f) |ds

1

1 t 2\ ?
< v(EJAD,fP)’ (E (/O |u(s)|ds) )
<v (tE|ADuf|2)% E/Or lu(s)|*ds < . (3.13)

By using the estimation for nonlinear operator in Section 2.3, [46] and Theorem 2.3,

E [ (Bu(s)). D,/ Ids
0

1

t . . 1 t 2\ 2
<E [ @Il D, 1HAD,f'ds < (E|AD,fP)’ (E ( | |u<s>|||u<s>||ds) )
< (EIAD,P) ' E [ WP fu@)ds < o (3.14)
Since f € IL*(Q; IL(0, T; V')) and D,f € D(A),
E 16060, 0,1y s = B (10,11 [ 1669 )
0 0
< (EIDJIP) E [ If@Rds <o (319

Consider the integrand of the second term that appears in right-hand side of (3.12).

E [ [T )Qp )i nlds

= & [ | @)y we)pise, o
—E /0

ds

> <w(u(s>>Qw*<u(s>> (Z > gl e, (0 €,)e, @ ) >

k=11=1
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:E/Ot
1

t 1 t 2\ ?
<E (nDifu I ||w<u<s>>||Lst) < (EIDZFIP)} (E ( | ||w<u(s>>||Lst) )

< (EIDfIF) E [ W), ds

<K, (tE||D§f||2)% E/Ot(l + Ju(s)|*ds) < oo, (3.16)

> due((ue)), ... (. e,) (Y(u(s)QY (u(s))e,. e,)| ds

k,l=1

where the complete orthonormal system {e,, e,, ..., ¢,,...} € D(A); condition Al,
Theorem 2.3 and D2f € D(A) are used in deriving (3.16).

Applying Taylor’s theorem for f with integral remainder term (see
Theorem 4.4.7 in [2]), we find that

[E [ 10+ 9u(s7). ) = Fu) = (9(u(s7). 0. D) 1A(d)ds

1 1 n
2/0 E/M(lfo k,,Zzl due((U+ 06, ), ..., (u+0¢,e))(1 —0)do
x (p(u(s™), x), ) (p(u(s™), x), ¢;) A(dx)ds. (3.17)

Foreachr>0,0 < |x| <1 and 1 <k, < n, define

8eu(t, x) = SUp Oup((u+0¢, 1), ... (W09, e,)).

Since f is a cylindrical test function, we get,

sup sup |gf,(t, x)| < oo ass. (3.18)

0<s=<t0<|x|<1

Applying the Cauchy-Schwartz inequality for (3.17), we obtain
[® [, ) + 9us). 20) = FGs) = (9us). 2). D) 1A(d)ds

1 n
<E(5 3 sup sup Jef ()

k,i=1 0<s<t 0<|x|<1

X /0’ A\J [ {(p(u(sT), x), e,) (p(u(sT), x), ¢,) I/l(dx)ds>

1

E(Z sup sup [gf (i x>|2) (B[ [ 10t 0pands)

k=1 0<s<r0<|x|<I

=<

NI —

< %E (: Z sup sup [g,(t, x)|2>_ (E/Ot(l + |u(s)|2)2ds)2 < 0. (3.19)

k,i=1 0<s<r 0<|x|<1

The last inequality holds due to (3.18) , condition B1, and Theorem 2.3.
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By combining (3.13), (3.14), (3.16), (3.19) with the inequality [, E|E(sif|F7)|ds<
J, Elsif|ds, we obtain (3.11).

Then (3.10) and (3.11) immediately give us E[E(f|F/7)] < oo.

Let us now derive the FKK equation (3.7). Let

M; () = [ [BGHIT?) — EGIFAEGIT] - dv(o) (320
Then (3.7) reduce to
M;(f) = M, (1), (3.21)
where M, () = E(f|F%) — E(f|%Z) — [ E(s4f|F#)ds. Then (3.7) is proven if
E[(M; () - M,(H)Y(n] =0, (3.22)
for all Y, such that Y () = f; 0(s) - dv(s) and dense in L*(F7Z, P).
To prove (3.22), we determine E[(M,(f) — M,(/)Y(r)] and E[M,()HY(1)]

separately, where M, (f) = f(u(¢)) — f(u(0)) — fo[ A fds is a (6,, P) martingale.
Using the fact that Y(7) is a square integrable martingale adapted to 7,

E[M,() - M,(0)Y ()]
_E {Y(t) /O [s0f — E(s1f|77)] ds}
=B [ YOS — (Y() = YODEGIT) — YRGS ds
= [T {BIOV®) = Y()etf] — ECY() = YGDEGLN) ds
=B [ (Y0 - Y inds (3.23)

Last, equality holds since Y (r) — Y(s) and E(s0f|%7) are independent and E(Y (¢) —
Y(s)) = 0.

Substituting Y (¢) = [; 0(s) - dB(s) + [, 0(s) - (h, — h,)ds into right hand side of
(3.23),

B[00 - MY @] =E [ an) [ 000 - ane) |
+E /O [(&4 ) / 0(<) - (h, — hf)dr] ds.  (3.24)
First term of right-hand side of (3.24) coincide with

E/O ((&df)E [/ 0(z) - dB(7)

@]) ds =0, (3.25)

since s{f is G-measurable and E[ [ "0(t) - dB(1)|%,] = 0.
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Integration by parts applied to the second term of the right-hand side of (3.24)
gives

E [(M,(f) — M,(ﬂ)Y(t)] — E/O[ |:/()S(&4f)d‘ci| 0(s) - (h, — ils)ds. (3.26)
By contrast, one can easily see that
EM,(0Y (] = E[M,(1 [ 06)-0B(5) |+ E | ) [ 069 -1, s
~E[BG1) [ 06)- (0, s
~E [ /0 (s4f)ds /0 "0(s) - (h, — izs)dsi| . (3.27)

The first term that appears in the right-hand side of (3.27) is zero due to condition
C3 and the fact that fof 0(s) - dB(s) is a martingale. We can easily show that the third
term of the right hand side of (3.27) is zero by taking to account that IE(f | %3) and
0(s) are FZ-measurable and 0(s) - E[h, — h, | F%] = 0. Then (3.27) reduces to

EIM, (DY 0] = E | o) [ 06~ )as]
—E [/()'(&qf)ds/ot 0Gs) - (h, — /ZS)ds]

— k| [ )00 - b, s

_E [ /0 t ( /0 S(&df)dr) 0(s) - (h, — izs)dsi| . (3.28)

Since (f(u(r)) — f(u(s))) and [, (s¢f)dz are independent of FZ, 0(s) is F7-measurable
and 0(s) - E[h, — h,| FZ] = 0.
Applying properties of stochastic integrals with Equations (3.26)—(3.28) gives

EIM ()Y (0] = E| [ 06) - EGe)(h, ~ )| %ds]
FE[M,() - MUY ()]
= &[0 [ EGE6)h, - 5157 dv(s>]

+E[M,(H -M,(NY(©®)]. (3.29)

Then (3.20) and (3.29) immediately give us (3.21). |

Now we are interested in deriving Zakai equation by using Girsanov
transformation and Kallianpur-Striebel’s formula.
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Lemma 3.6 (Girsanov transformation). Assume that the conditions C2, C3, and
Theorem 2.3 hold. Then,

1. The stochastic process

%, = exp [— /0 1 (u(s))dBi(s) — % /0 ' |h(u(s))|2ds} (3.30)

is a G,-martingale and E[o,] =1 for all 0 <t < T.
2. The measure P defined by dP = a;dP is a probability measure and the process

Z(1) = Z(0) + B(1) + [0 ' h(u(s))ds (3.31)

is a Weiner process with respect to probability space (), G,, 5)

Proof. All the details of this Lemma follows from Lemma 3.1 in [11] except the
result E[o,] = 1, since 4 is unbounded function.

In order to obtain E[a,] =1 for all 0 <7< T, we use truncation function
approach by Ferrario [10].

We define truncation function y" for each N =1,2,3, ... as follows.
1 if [! |h(v(s))|’ds < N
Ay =L (3:32)
0 otherwise

From C2, Theorem 2.3 and (3.32), we have Novikov condition

E fexp (5 [ 12 @)h@en| ds) | < (3:33)

foral N=1,2,3,....
This implies E[aV] =1 for all N = 1,2, 3, ... with

t . . 1 t
o =exp | [ 2 @O @B - 5 [ @) ae)s]. 639
Now we prove E[«,] = 1. Consider

1=E['] = B[ @m)o']+ E[(1 - 1 () ']
= E [ (u(t)o,] + P {3 (u(r)) = 0} (3.39)

By applying Monotone convergence theorem, we have
lim E[£(a(0)2,] = E[]. (3.36)

On the other hand,

lim P {7 (u()) = 0} = lim P {/0 |h(u(s))Pds > N} = 0. (3.37)
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The last equality of (3.37) holds by Chebychev’s inequality, Theorem 2.3, and
condition C2.
Hence by letting N — oo in (3.35), we have the result E[z,] = 1. O

One can prove that under the probability measure P, processes Z(t) and u(r)
are independent since condition C3 holds.
Now define

> 1 L i 1t 2

7, = — =exp / R (u(s))dZi(s) — = / |h(u(s))2ds (3.38)
o 0 2Jo

Theorem 3.7. Suppose that (2.14), (3.1), and conditions C1-C3 hold. If f is

a cylindrical test function and f € D(s{), then unnormalized conditional density

E[ f(u(2))a, | F7] satisfy the following stochastic differential equation

ELf4, 1971 = Eo(fdy |90 + [ ECifa,155ds + [ E(fha, |57 - dZ(s),  (3:39)
0 0
where Z(t), (0 <t < T) is the observation process.

Proof. Applying 1t6 formula to (3.38), we notice that
g =1+ / % h(u(s)).dZ(s). (3.40)
0

Now we take conditional expectation under P on both sides of (3.40) with respect
to F7, using the fact that Z(¢) is measurable on F7 and by the Lemma 1.2 on

t

page 102 [5]:

B[4 |F7]=1+E [/ @.h(u(s)) | gf] dZ(s) (3.41)
0
Then we have,
dE(d, | F7) = E(hd, | F7)dZ(1). (3.42)

From Kallianpur-Striebel’s formula (see Theorem 3, [18]) (E(f | Fr) = E(fd,| F7)/
E(, |77)) we get

dE(f4,|F/) = E@&, | F/)E(f | F)) + E(f | F/)AE(, | F7) + dE(f | F7) - dE(E, | F7).

(3.43)

From (3.1), (3.7), (3.42), (3.43), and Kallianpur-Striebel’s formula, we obtain
dE(f7,|7/)

=E(@, FHE(h| F2)) - (dZ(r) — h,d1))

F)(E(Lf

F/)dt + (E(fh

F/) — E(f

+E(f|FHE@, | FHEM|F7) - dZ(1)
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+ (E(Lf |F)de + (B(fh|F7) — E(f | F)E(h|F))

(dZ(r) — h,dr)E(&, | F/)E(h| F7) - dZ(1)
= E(stfd, | F7)dt + (E(fhd, | F7) — E(f4,| F7)E(h | F7)) - (AZ(1) — h,d1)

+ E(hd, | F7)E(f |57) - dZ(1)
+ (E(fhd, | F7) — E(f5, | F)E(h | F))) - h,dt
= E(stfd, | F7)de + E(fhd, | F7) - dZ(2). (3.44)
We have, thus, derived the Zakai equation (3.39). O

3.2. Existence and Uniqueness of Nonlinear Filtering Equations

Set of all g-additive finite measures over the Borel sets of IH, endowed by weak
topology is denoted by #(H). ./, (IH) and 9(IH) are subspaces of /((IH) consisting
of all positive measures and probability measures over the Borel sets of IH,
respectively. If p € M(H), we represent u(f) := [, f(w)u(du) for f € C,,;. Now we
will define measure-valued solutions for the FKK and Zakai equations.

cyl*

Definition 3.3. A %(IH)-valued process II, is called a measure-valued solution of
the FKK equation on [0,T] if the following conditions satisfy.

1. I1, is F7-measurable for all 0 <7 < T.
2.

T
sup E/]H |v|4H[(dv)+E/0 /W|v|2||v||2H,(dv)dt < .

0<t<T

3. Forall f e (Ecyl and 0 < r < T the weak FKK equation holds:

0,00 =T + [ TG ds+ [ I () = TL O TL (D] dv(), - (349

Definition 3.4. A ./ (IH)-valued process 7, is called a measure-valued solution of
the Zakai equation on [0,T] if the following conditions hold:

1. m, is F/-measurable for all 0 <7 < T.

T
sup Ef]H |v|4nt(dv)+E/0 /W|v|2||v||2n,(dv)d;< 0o.

0<t<T
3. E|7r%(1)|2 <ooforall0<r<T.
4. E [ |n,(1)]dt < oo

5. Forall f € €, and 0 <7 < T the weak Zakai equation holds

7,(f) = 1(f) + /Otns(&df)ds 4 /Otnx(hf) -dZ(s), (3.46)
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Note 3.2. By defining,
m ) =ex| [ 10 -0z - 5 [ mPas e, @an

and applying 1td6 formula to (3.47), one can obtain the measure-valued version of
the Zakai equation (3.46), (see Section 3.1 in [38]).

Let us now discuss existence and uniqueness of measure-valued solutions for the
FKK and Zakai equations (see [3, 30, 32]).

3.2.1. Existence of Measure-Valued Solutions.

Theorem 3.8. Assume that the conditions C1-C3 and Theorem 2.3 hold. Then there
exists a measure-valued solution 11, of the FKK equation (3.45) on [0, T| and there exists
a measure-valued solution m, of the Zakai equation (3.46) on [0, T].

Proof. Since I1, and =, are related by (3.47), it is enough to prove the existence of
one of the two measures. It will be convenient to prove existence for I1,. We use the
lemma 3.9 (R. K. Getoor [13]) to show the existence of II,. |

Lemma 3.9 ([13, Proposition 4.1]). Let Y be a Lusin space. We denote by B,(Y) and
B,(Q) the set of all bounded Borel functions on Y and Q respectively. Now suppose
that V: B,(Y) — B,(Q) is linear a.e., positive a.e., and satisfies 0 < g, 1+ g implies
that Vg, + Vg for any sequence of functions {g,} and g € B,(Y). Then there exist a
bounded kernel (., .) from (Q, %) to (Y, B(Y)) such that Wg(w) = [y, g(vV)y(w, dv)
for all g € B,(Y) and w € Q.

By using Lemma 3.9, we can find a kernel which is a candidate for the measure
that we wish to obtain. Hilbert space HH is a Lusin space since every complete,
separable, metric space (Polish space) is a Lusin space. Now define operator: V:
B,(H) — B,(£) by

¥, [f1(w) = E[f(u(r)) | F/], for all f € B,(IH). (3.48)

We can easily show that W is a linear, positive, continuous (see Lemma 3.9)
operator, a.s.. Then, there exists a 77-measurable random measure II(., .) such that

¥, [f] () = fH FWIL(w, dv), for all f € B,(H). (3.49)
We then write:
IL(f) = E[f(u(®) | F/] = /IH JWIL(., dv) (3.50)
for all bounded Borel functions f.
Now we have to check that II, is a measure-valued solution of the FKK

equation. Definition of the kernel in the lemma implies that II, is 7/ measurable.
Then we have Condition (1) of Definition 3.2.
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Now we want to show that measure-valued solution II, satisfies the Condition
(2) of the Definition 3.2. Let g,(v) = |[v|* A n for n € N. Consider

E/IH & WIL(., dv) = E[g, (u(n)]. (3.51)

The above result holds since g,(v) is a nonnegative, increasing, bounded Borel
function and (3.50). Now take liminf on both sides and apply the monotone
convergence theorem for the right-hand side of (3.51) to get,

lim inf E /]H ¢,(WIL (., dv) = Elu(n)|*, (3.52)

since {f}; &, (WIL(.,,dv)} is a nonnegative sequence of measurable functions.
Applying Fatou’s lemma for the left-hand side of (3.52),

E / V[*IL, (., dv) = E / lim inf g, (V)IL (., dv)
]}-I ]I—I n— 00
<liminfE | g,(WII,(.,dv) = E[u(n)|*.
n—0oo H
Taking the supremum on both sides, and applying Theorem 2.3, we have

sup E i [V|*IL, (., dv) < Eosup lu(r)|* < oo. (3.53)

0<t<T <t<T

Denote g,(v) = (|v|*||v]|*) A n for n € N. Now consider,
T _ T _
E fo /w 2, (WIL(,dv)dr = E fv fo &, (VIL (., dv)dr
T
<E % IT (., dv)dz
<E[ [ &mm,.dv

=l [ () (3.54)

The above result (3.54) holds since g,(v) is a nonnegative bounded Borel function,
by Fubini’s theorem and result (3.50). By following similar a arguments as in
deriving (3.54), we can show that

T T
2 2 _ . . -
E/O fW|v| vl H,(.,dv)dt_E/O /whﬁgfgn(v)n,(.,dv)dt
T T
< liminfE/ /gn(v)H,(.,dv)dtzE/ ()] [u(n)|dr.
n— 00 O W 0
Then, from Theorem 2.3,
T
E/ /|v|2||v||2r[,(.,dv)dt<oo. (3.55)
0 v

Results (3.53) and (3.55) immediately give us the condition (2) of the Definition 3.2.
Our main work of the existence of measure-valued solution is verifying the condition
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(3) of the Definition 3.2. To obtain the desired result (3.45), we will simply substitute
(3.50) to (3.7), but one can find that without further restrictions on f € B,(IH),
the term fot E(sif | 77)ds associated with (3.7) is not well defined and (3.45) is not
implied from (3.50) and (3.7). In order to make sense of the terms involve with
(3.7), we have to restrict function f to the class of cylindrical test functions (C,y,). In
Theorem 3.5, results (3.13), (3.14), (3.16), (3.19) imply that the term [ E(s(f | FZ)ds
is well defined for f € €. Result (3.10) in Theorem 3.5 shows that the last term of
(3.7) is a martingale. Therefore, we can conclude that all terms associated with (3.7)
are well defined when we restrict function f to the class of cylindrical test functions.
Then by substituting (3.50) to (3.7), we can obtain the desired result (3.45). d

3.2.2.  Uniqueness of Measure-valued Solutions. Let us denote by S,(¢ > 0) the Feller
semigroup associated with the transition probabilities P,(x, F) = E(1:(u(?)) | %),
(F € %(H), where %(IH) consists of all Borel subsets of H):

S = [ FOIP(x. dy). (3.56)
S, maps C,(IH) into itself for all (z > 0). Let f € €, € D(s/) and consider
EIML0) - 1) = E| [ 10nds + [ ILGm = IM,00]-dv(0)| < .
(3.57)

The above result can be established by using Condition (2) in Definition 3.3,
Burkholder’s inequality and Cauchy-Schwartz inequality. Then,

lim E |IL,(f) — I, (f)| = 0. (3.58)
t—t'
This gives us
E I, (f) = IL ()]
> f L (/) (@) = TL, (f)(w)[ P(dw)
{:lIL, (N (@) T, (N(0)|2€)
> eP{o: |IL()(w) — I, (f)(w)| > €}, foralle> 0. (3.59)
Combining (3.58) and (3.59), we have
lim P {w : |IL,(f)(w) — II,(f)(w)| > €} =0, forall € > 0. (3.60)
t—t

Then we can conclude that for each f € €., € D(s4), IT,(f) has a sample continuous
path since the result (3.60) and (S,) is a Feller semigroup and C,,, is dense in C,(IH)
(see [17, Section 11.5] and [7, Theorem 2.8]).

cyl

Theorem 3.10. For all f € C,(H), I1,(f) satisfies the equation
IL(f) = I, (S.f) + /0 (L (S,—N)h) — TL(S,_ NHIL ()] - dv(s), (3.61)

where S, f(u(s)) = E[f(u(1)) | 7]
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Proof. See [17, Theorem 11.5.1] |

Now let {v(z),t >0} be a Wiener process defined on (Q,%,, P) and take

(/) = E[f(u(0))] (i.e., I, € 2(H)).
We say that 2(IH)-valued stochastic process I1,(.) is a solution of the equation

L) = IS0 + [ LS00 — LELALM]-dvs)  (:62)

if it satisfies Conditions (1) and (2) in the Definition 3.3 and for every #(> 0), IL,(f)
satisfies (3.62) a.s.

Theorem 3.11. Let {u(z), t > 0} be the Feller-Markov process which is a solution of
the Ito-Lévy stochastic two-dimensional Navier-Stokes equation given by (2.14). The
observation process Z(t) associate with the signal process u(t) is given by (3.1). Assume
that the conditions C1-C3 hold. Let f € €., € D(s{). Then Equation (3.62) has a
unique solution in the probability measure space P(IH) within the class of {I1, € P(IH) :
E [ |h(v)[PIL,(dv) < CE|h(u(1))|, for all 1 € [0, T]}:

Proof. We suppose that 11, and IT/ are two solutions of (3.62) with the same initial
conditions. Our goal is to show that A,(f) = E(|IL(f) — II,(f)|*) = 0 for all #(> 0)
and each f € C,.

Since two measures 11, and II; satisfy Condition (2) in Definition 3.3 and f € C
we have following estimates:

cyl>

E|IL (A’ < CE|f(u(r))]* < oo, (3.63)
EIIL(f)* < CE|f(u(n))]? < . (3.64)

Using the Triangle inequality with (3.63) and (3.64), we have
. 2 —
3,0 =& (| =] ) = 4CEmoP <o, (3:65)

where C = max{C, C}.
Let us introduce stopping times involve with the terms A(u(7)) and II, (k).

) =inf {r < T: |h(u(t))| > N},
) =inf {r < T:|l,(h)| > N}.
Take 1, = ¥ A 7).
Now we will show that 7y, — t as N — oo for any ¢ < T. Applying a priori
estimates with condition C2, we get,
[E[TL,(A)|]* < E|IL ()| < CE[h(u()* < CGE(1 + [u()[*) < oo. (3.66)

This gives us that if we define

Oy = {weQ:|I,h)| <N}, (3.67)
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then we have

[, mmip@o) + [ miPe) < & (3.68)

dy

Hence drop the first integral and note that |II,(h)| > N in Q\Q,. Then we have
A C
P {Q\QN} <+ (3.69)
Note also that
P{weQ:r{V<t}=P[Q\ﬁN} <. foranyr=T. (3.70)

Hence, limsup,_, . P{w € Q : 1) < 1} = 0. Therefore, 1) — ¢ as N — oo. Similarly,
we can show that rév — tas N — oo. Thus, 1y — ras N — oo for any r < T.
Consider

INT

S = B[S0, 0+ [ (LGS,

— T1,(S 0z, - NIL ()] - dv(s) — TTy(S, 1., /)
2

[ LS e = T8, L] - ()

_ E‘ /Orw [TL,((Syrey s ) — TL((Sipe_ HI)] - v (s)

[ I L () = TL ()] - dv(s)
2

[ IS,y f) = TS,y )] - (9

2

<3| [ LS D) = TS D] -9

2

[ LG e HAL )~ TL )] - dv )

|

A 1RO IG RESNINIE | RCHNG)) R0

=3B [ LS ) = TL (S I s
+ /(;IATN ‘H.Y(StAers.f)(f[x(h) - Hv(h))}zds

Nty .
[ G, ) = 1S, 0]
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<3 / o {As((sm,v_s D)+ NA(S, 0,
0
+17Pa, 0 s o

The last inequality of (3.71) follows from It6 isometry and definition of A, (f).

Now we estimate the terms involve in right-hand side of (3.71) in their order of
appearance. Using the fact that i(u(r)) is measurable with respect to 77, applying
Jensen’s inequality with condition C2,

A ((Sipey—s/)1) < 4CE[R(u(5))S ey, f(u()
< 4C,E[E (|h(u(s)) f(u(t A 7)) P|F7)]
< 4CE[[h(u(s))Plfa( Aty)P], for0<s<i<T, (372)
A,(h) <4C,Elh(u(s))]>, for0<s<t<T (3.73)

and
A((S, e, of) SACE[f(u(t ATy))]?, for0<7<T. (3.74)

From (3.71), (3.72), (3.73), and (3.74), we obtain
S =403 [ EIMGO) Pl A 5 )P 0

8 [ Bl 1 [ B s
0 0
< 4.32C, N*|f*(r A 1y). (3.75)

where C,, = max{C,, C,, C;}.
Substituting the estimate (3.75) into the right-hand side of (3.71),

ATy INTy
Bes ) = 403 N E [, pisds B [ s
0 0

ATy
FE [ 80 s

2
(VAN
<4.3. c,gvﬂﬂz%. (3.76)
We can get the following estimate by repeating the above procedure n times:
n+1 2 ar2n (t A TN)n
Ao, (f) =43 C|fIINT'——— <o (3.77)

n!

By letting n — oo of the right-hand side of (3.77) for fixed N, we can get the
uniqueness result for measure-valued solutions of (3.62) up to stopping time 7.
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Now let Q ={we Q: A, (f) =0}. Then we have A,(f) =0 for r>1y, 0<t<T
on the set Qy ={we Q:1y, =T}NQ, since A,(f) =0 may not hold for > 1.
Since we have P(Q,) — 1 as N — oo, we will get A,(f) =0 for w e Uy_Qy
with P(U3_,Q,) = 1. This implies that uniqueness result holds for whole interval

[0, T]. O
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