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There are a wide range of applications involving laser propagation through a scattering medium.
Very often, a measurement of the scattered light will be taken with the intent of learning some
information about the medium. On the contrary, the present work seeks to extract a description of
the source of light and its location. A phenomenological model for off-axis intensity is presented which
employs a Mie scattering aerosol database. The model is extended to predict the off-axis polarized
light described by the Stokes vector. Several inversion techniques are given and analyzed as well as
example problems detailed which can recover the range, direction, power and polarization of the laser
source.
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1. Introduction

High energy lasers (HELSs) as directed energy weapons are increasingly becoming present
in defense applications. In the future, HELs weapon systems are to be deployed on
various platforms in the sea, air as well as ground based devices to attack targets and
conduct operations over several kilometers. To counter these weapons, specifically to
provide warning and enact counter-measures, it will be important to identify the threat
laser power and location as well as the laser beam direction. As such, a reliable and robust
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model is needed to predict HELs power level and characterize HELs from an off-axis site.

Earlier works have shown that laser beams can be detected from the photons
scattered off the aerosols in the beam path. Particularly, the measured intensity of
scattered light is in good agreement with the prediction from Mie scattering theory
[2]. Further studies have concluded that various environmental factors can affect the
aerosol distribution modeling [3]. Specifically, when humidity is increased, the scattering
becomes stronger due to the presence of larger aerosols in the atmosphere ([4], [5]). In
[6], a phenomenological model for remote detection of scattered light is presented and
compared with experimental intensity measurements. Furthermore, the model in [6] is
tested against a range of aerosol distributions present in the atmosphere under different
weather conditions. We refer to [6] for complete details on the experiment and the
comparison of experimental data with the model predictions for the scattered light (see
Figures 5 and 6 in [6]).

Given a volume scattering function, it is noted in [6] that the scattered intensity
at the receiver is affected by the laser power as well as the source distance and
direction, and often the laser parameters cannot be uniquely determined from only
the intensity measurements. In [6], it is observed experimentally that even if the beam
location is known, the laser power level and direction still cannot be resolved. To solve
this problem, accurate timing of the received intensity is taken in the experiment to
estimate the laser direction and consequently beam power level. In this paper, we
devise and analyze several inversion methods to solve the laser parameter extraction
problem for the phenomenological model in [6]. Based on only simulated intensity
measurements, the inversion algorithms we have constructed can uniquely solve for
any single unknown parameter. The limitations of each method vary as the number of
unknowns increases. All methods fail to find a unique solution when all four parameters
in the phenomenological model are unknown. The capability of sensors to measure
polarized light and the capability of the Advance Navy Aerosol Model (ANAM) to
model polarized aerosol scattering motivated an extension of the phenomenological
model to the Stokes vector for polarized light undergoing Mie scattering. When po-
larization of light is incorporated, four unknown parameters can be uniquely determined.

We further remark that, in the analysis of the scalar radiative transfer equation for
un-polarized light, it has been noted in [7, 8] that, in the steady state case, neglecting
the polarization of light can lead to significant error for the total intensity. It would be
interesting to clarify the connection between the extended phenomenological model in
this work and the radiative transfer equations [9, 10], and compare the full impact of
the degree of the polarization on the off-axis intensity measurements of scattered light
and consequently on the values to which the inversion algorithms converge for the laser
parameters. Nonetheless, the results presented in this paper illustrate how Mie scattering
polarizes light, and that including polarization is fundamental to accurately model the
state of light as the laser beam scatters off aerosols in the atmosphere.

2. Phenomenological Models

In this section, we formulate the necessary mathematical models in connection with the
laser parameters inversion problem for the scalar intensity equation and the extension of
this equation including the Stokes vector for polarized light.
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2.1 Off-Axis Intensity Model

A phenomenological model (cf. [6]) for electromagnetic intensity given off by a laser
source in two-dimensional (2D) space is given as:

O rma /
o e . —cx(z-{—r)ﬁ(g + ¢) /
IJ = /emm PO (& 7R8an do (1)

It is assumed that the light scatters only once, a distance z from the source, and
travels a distance r to a receiver. The receiver is located a distance R from the source.
These three distances uniquely define a triangle. The beam power at the source is Fp.
The angle v, the ‘source’ or ‘beam’ angle is the angle between the direction of light
propagation from the source and the direction from source to receiver. The angle @, the
‘viewing angle’, is the angle between the direction from the receiver to the scattering
site and the receiver to the source. The problem geometry is shown in Figure 1. In the
limits of the integral, e = 0 + AO/2 and 0,;, = 0 — Af/2 where the intensity I;
is the intensity at # = 3° in the center of the angular range A6 of the receiver in the
scattering plane. The receiver collects the scattered light and records the intensity over
a horizontal field of view (FOV).

Aerosols cause beam
scatter into 4n

Angle-Resolved

Laser !
Receiver

Figure 1.: Diagram of beam path from source to receiver.

The extinction coefficient a (km~!) gives the rate of intensity loss per distance
traveled along the beam. The scattering coefficient 3 = B(x + ) (km~tsr~!) gives
the amount of radiation scattered in a particular direction. Both of these quantities
are dependent on the local atmospheric properties. The ANAM code ([11],[12]) is used
to generate explicit values of o and [ for a given location with certain meteorological
conditions.

Equation (1) is derived in [6] under certain additional physical assumptions: 1) the
medium is uniform and homogeneous, 2) the beam is one-dimensional (beam size and
divergence are neglected) as the size-scale of detection is over several kilometers, 3)
multiple scattering events are neglected since the mean free path 1/b is large compared to
the receiver distance R to the laser source (here, total scattering b = 5 Jo sin(6)53(0)d6),
and 4) the ratio of beam width to the propagation time along the path from the source
to receiver is large (the long-pulse limit). We refer to [6] for the complete derivation of
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equation (1) and further discussion of off-axis scattering theory for free-space lasers.

Assuming that scattering parameters are known, intensity at the receiver depends on
the six variables { Py, z,r, R, 1, 8}. However, since there are geometric constraints, two of
the the unknowns will be fixed by some arrangement of the law of cosines and the law
of sines.

R =12z cosy + \/(z-cosgb)? — (22 =12

y = sin”! (r20)

2.2 Off-Axis Polarization Model

Assuming that aerosols in the atmosphere are reasonably far from each other and the
distance between the particles is much greater than the laser wavelength, then the type
of scattering which occurs is called independent scattering (see [1] for more details).
This is a reasonable model to study scattering for the types of aerosols of interest. An
elliptically polarized state of light can be uniquely described by the Stokes vector [9].
An analogous extension of the phenomenological model of intensity after scattering is as
follows. The scalar state equation, (1), becomes a vector of four components which, as a
whole, uniquely determine the elliptical parameters of the polarization state.

I—(I1,Q,U,V) (3)

The volume scattering coefficient 5 becomes a 4-by-4 matrix, S, which is the product
of a scattering matrix, S, and linear rotation matrices between the meridian planes of
the source and receiver with the scattering plane.

B—8S=T(—¢1) S T(—¢2) (4)

S is the Mie Scattering Matrix. The individual elements s;; depend on the scattering
angle and are given by ANAM.

si1s12 0 0

_ | si2sn 0 O
S_ 0 0 S33 S34 (5)

0 0 —s34 833

The linear transformation matrix, 7'(¢), is defined below.

1 0 0 0

0 cos(—2¢) —sin(—2¢) 0

T(9) = 0 sin(—2¢) cos(—2¢) 0 (6)
1

0 0 0

Assuming a 2D geometry implies that the rotation angles ¢; and ¢2 both have mag-

nitude 7, as shown in Figure 2a. In the case of 3D geometry shown in Figure 2b, the
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elevation angle would be an additional unknown. The extended off-axis phenomenological
polarized scattering model is given in equation (7).

Omax e—a(z—l—r)

LQUVO) = [ G 50+ ) (0, QU0 Vo @) (D)

min

Incident light that is purely elliptically polarized will also obey equation (8).

=QF+UF+ Vg (8)

After scattering, the light can have a polarized component and non-polarized compo-
nent. The fraction of the scattered light that remains polarized is also called the degree
of polarization (DOP), given in equation (9). In the results section it will be shown
that the type of incident polarization fixes the how the degree of polarization varies with
scattering angle.

2 2 2
DOP — V*F+U2+V

) (9)

3. Inverse Problem Formulation

3.1 Mayer-type Problem

The essence of a Mayer formulation is to minimize the difference between a final state
and measured data, given a model of how the state is constrained to evolve. In this case,
the unknown is the initial data. For the scalar problem, equation (1) is the state model
and the system must also obey the geometric constraints in equation (2). For the vector
problem, equation (7) is the state model, the geometric constraints still apply and the
incident Stokes vector will also obey equation (8). All of the scattering information comes
from ANAM and can be assumed as known.

The objective functional to be minimized in the Mayer formulation is given in equation
(10). The quantity L; represents the integrand of equation (1). Notice that if L; is correct
at each viewing angle, then the intensity will be correct. Physically this is analogous to
modeling the radiance which has units of intensity per solid angle, %, but since the
problem is planar 2D geometry, the units are in fact m2 - The discrete set of measured
data at N different viewing angles is denoted as M = (my,ma,...,my).

[u—y

N
52 (L;j —mj)* (10)
7=1

An optimal solution must also satisfy the differential constraints along the beam. By
. . . . oL oL; c e
inspection of equation (1), L = 5 = —alLj. By adjoining these con-
straints with lagrange multipliers, the augmented cost functional is defined in equation

(11).
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N
~ 1 %o oL; To oL;
J(z,r) = 5 E (L —mj)Q—i—/O Az- <8zj +aLj> dz+/0 Ar - (87"3 —i—ozLj) dr (11)
i=1

Optimal conditions are found by calculating the following derivative. Let € be a small
positive constant. The variational terms are undetermined.

d -
%J(zo +edz, 0+ €07)|e=0 = 0 (12)

Therefore,

0= %Z;VZI % [(Lj(z +ebz, 7+ €dr) — mj)2]€:o +

4[N, +ebAz) - (%sz (2 +€bz, 7+ €dr) + aL;(z + €z, r + 65r)) » dz+ (13)

40N + €dAr) - (%Lrj (z+€bz,m+ €br) + aLl;j(z + €z, r + 6(57")) » dr

Look at the three terms separately.

The first term K;:

= %Zj\f:l [(Lj(z—l—eéz,r—i—eér) —m;)- deL (z + €z, 7‘—1—667’)} o

(14)
= 33 (L(z,r) = my) - 6L,
The second term Ks:
Ky = [70X, ( i(z 4 €dz,r + €dr) + aL; (z+652,r+657“)> _O—I—
(A2 +€0Ay) (6‘?2 LLi(z+ebz,r+edr) + attLi(z+edz,r + €or)) _,dz
(15)
05 ( L(2,7) + aL;(z, )) 4 A, (261, + adL;) dz
= [\ OL 2 + [ 6. ( L(z,r) + oLz, )) + (- J+A.adL;) dz
And similarly for the third term Ks:
K3 = [° 0\, ( L(z+ €dz,r + €dr) + aL; (z—i—eéz,r—i—eér)) L7
(Ar 4 €6X) (B4 Lj(2 + €6z, 7 + €6r) + o Lj(z + €dz,r + €dr)) _, dr
(16)

= (T8N, - <8L (z,7) + aLj(z, )) + M (Z0L; + abL;) dr

= e S+ o oA (G2 (20m) + aLy(z,m) ) + (= i+ AadL;) dr
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Putting it all together gives:

0= >0, (Lj(z,r) — my) - 6L+

e 0L+ fooxe - (%2 (er) +aLi(en) + 0L, (-5 + da)dst (1)

z

[Ar - OL5100 + o7 0N - (88L7f (z,7) + ozLj(z,r)> +4L; - (—%}f + Arar) dr

The terms that are multiplying dA, and d\, are just the state equations. Grouping
what remains will give the adjoint differential equations and boundary conditions.

Boundary Conditions:

L;(20, 0) = A.(0)3L,(0,0))+ (18)
L

Ar(ro) = —(Lj(20,m0) — m;)
Az(20) = Ar(0) (19)
A2(0) - 8L;(0,0) = 0

Going back to Equation (17), the adjoint differential equations, after canceling out the
0L; multiplier, are:

foro (% - O‘)‘T‘) dr =0 (20)
20
(% —a).)dz=0

3.2 Parameter Expansion

The second approach treats equation (1) as a nonlinear map, G, from a space of unknown
parameters, z = (P, R, 6;,1), to a set of measurements M. Let the set of true values of
the parameters be defined as xg. Then the nonlinear map will satisfy equation (21).

G(l’o) =M (21)

Taking a small variation dz from the true parameters, the Taylor expansion of the map
truncated after the first term is shown in equation (22).

G(xo + 0x) = G(x0) + G'(w0) - 0 + ... (22)

The left hand side of Equation (22) will yield a prediction of the data, I 4., that is
not the true measured data M. Further manipulation will give a search direction (dz)
for the parameters based on the error (I.q. — M).



December 15, 2014 Inverse Problems in Science and Engineering Main*Document

Iate = M + G'(x0) - 0z

Tate — M = G'(xg) - 6z
(G (Leate = M) = (G")'G"(x0) - 0z
oz = [(G")"G'7HG") (0) (Leate — M)

The derivative of the map is defined as G’ = ala—m’ The terms are shown in equation
(24).
6I(‘alc — @
OFy Py
alca C — 8
% = —Leaclo (55 + 57) + &) o)
24
ale 8
g = Lo (5 + ) - 45}
Oste — —yefa (37'2 + %) Ba*ﬁ +cot(y)}

The partial derivatives from equation (24) are defined in Equation (25).

9z _ sin(6)
OR — sin(6+4)
dz __ r-cos(f)
00 — sin(y)
9z _ —rsin(0) cos(y)
o sin(y)?
2
OR — sin(0+v)
or _ —zsin(i)-cos(6)
00 — sin(0)?
dr _ zcos(v)
oY — sin(0)

In the polarization problem, the number of parameters increases from four to seven.
The three additional unknowns come from the initial values of the Stokes vector.

r = (IO,Q[),U[),‘/O,R,G,T,Z)) (26)

The map from parameter space to data measurement is extended to the Stokes vector
in equation (27).

= k(e’w?R) ’ S(ead)) ’ (IO’Q07U07%)T (27)
e—a(z—l—r)
= Rsin(d) (28)
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G:‘T]'_>(IJ7Q]'7U]"‘/]') (29)

Let

= (In, Qo, Up, Vo)T

0
2 30
L = (1;,Q;, U;, Vi))T (30)

where I is the Stokes vector of the emitted light at the source and I; is the j* measure-
ment of the Stokes vector, off-axis and downrange, at the viewing angle ;. The index j
is the number of (4-component) measurements from a single, static sensor. Each can be
distinguished by a different viewing angle ; which can be considered a known or single
unknown parameter 6 since all will be equally spaced. The index ¢ is the parameter index
which runs from 1 to 7 for all four stokes parameters, range, beam emission angle and
sensor viewing angle.

As an example, equation (31) shows the derivative of the second parameter,Qo, with
respect to the fifth, R,

0 ok - -
% =35 Sau(Lo)i (31)

where the index [ is summed over from 1 to 4.

4.

4.1
(1)

(7)

Inversion Methods

Shooting Algorithm

Assume known values for «, § and measurement M for a chosen set of viewing
angles 0;. Guess initial values for zy and ro. These values will fix R and ¢ from the
geometric constraints.

Solve for L; at the receiver. There will be some non-zero difference between the
calculated intensity and the measurement L; — m;.

Use equation (19) for a boundary condition on A.(r¢) and use equation (20) to
integrate from the receiver to the scattering site to obtain a value for A,(zp).
Again, use equation (20) to integrate from the scattering site to the source to get
a value for A,(0)

At the optimal solution, the boundary values on the co-states will be zero and,
therefore, their integrals will remain zero. Hence, the non-zero values of A,(0) and
Ar(0) represent search directions for updates to the lengths r and z.

The new values of 7y and 2y with fix values for R and 1, using Equation (2), such
that the geometric constraints are obeyed.

Repeat steps 2-6 until the value of L; matches the measurement m;.

Note: The solution to L; will match the measurement at the chosen viewing angle but
this solution is not unique. The slope of the result with respect to 6 will still be free to

vary.

Consequently, performing this procedure using several chosen viewing angles will

fix both the values and the slope of L; resulting in a unique solution.
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4.2 Newton’s Method

(1) Assume known values for a, $ and measurement set M for a chosen set of viewing
angles 6.

(2) A set of parameters can be chosen as the unknowns and the rest are fixed at their
true values.

(3) A set of intensities at each viewing angle are calculated. The difference between
the calculated values and the actual measurements are then used in equation (23)
to update the unknown parameters by determining the search direction. Note that
a fixed step size is always taken in the search direction dx.

(4) The lengths z and r are updated from rearranging the geometric constraints in
equation (2).

(5) Repeat steps 2-4 until the calculated intensity, 1.4, matches the measured intensity
M.

4.3 Simplex Method

The simplex method, as it is used here, seeks to minimize the same objective functional
as that of the Mayer formulation, equation (10). However, the simplex method is the
only method presented which does not approximate first derivatives. Instead, a set of
points in the parameter space and their resulting errors are stored. The evaluation of
the error from a new point determines which in the set will be dropped and which kept.
The size of the simplex contracts around a minimum until a tolerance in both the error
and parameter step size is reached. There are many general purpose simplex methods
available and in this work, MATLAB’s ‘fminsearch’ was used.

5. Results and Analysis

Table 1 shows the ANAM input parameters for all of the results presented. In addition,
for both scalar and vector results, the runAngles flag must be true and only for the
vector cases is the polarization flag set to true.

5.1 Shooting Method

Figure 3a shows a result using the Mayer-type formulation and shooting method. Notice
that the value and slope of the blue curves matches the trend in the measurements. With-
out multiple measurements, this method would fail. It was found that this method could
solve the problem with certain combinations of up to two unknowns, but each different
combination of unknowns requires a different arrangement of the geometric constraints
and convergence was sensitive to the initial guess. Figure 3b shows convergence of the
parameters to the true values, and the error down to machine precision. In this result,
the unknown parameter is the range and the initial guess is off by 5% of the true value.

5.2 Newton’s Method

The major advantage of Newton’s Method over the Shooting Method is that the same
procedure and equations are used regardless of which parameters are unknown. Figures
4-7 show results using Newton’s Method. Figure 4 shows two cases where only one out of
the four parameters is unknown. The true value of the unknown parameter is determined
down to machine precision. In this section, the initial guess was within 25% of the true

10
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value.

Figure 5 shows two cases where two out of the four parameters are unknown. Once
again, the true values of the unknown parameters are determined down to machine
precision.

Figure 6 shows two cases where three out of the four parameters are unknown. Notice
that in Figure 6.a, the errors in # and v converge to a non-zero value while the cost
functional still achieves a very small value. This shows a non-uniqueness in the phe-
nomenological model to the quantity € 4+ ¢ when three or more quantities are unknown.
A similar result is shown in Figure 6.b to the error in the quantities R and Py. This shows
another non-uniqueness to the quantity % when three or more quantities are unknown.

Figure 7 shows two cases where all four parameters are unknown. Figure 7.a is based
on a cost functional with four measurements while Figure 7.b used six measurements.

Both of the non-uniquenesses are present in this result. With more measurements, the
inversion algorithm calculates the values of 6 + ¢ and % which get closer to the true
values. Some of the non-uniqueness might be dealt with by using measurements that not
only differ by viewing angle, but also by range and beam angle. This could be achieved
by multiple sensors placed asymmetrically about the beam axis.

5.3 Simplex Method

All of the results in this section are for an initial power Py = 100 kW, range R = 5
km, beam angle ¢ = 30° and viewing angles {6;}7_; = {10°,27.5°,45° 62.5°,80°}. The
initial guess for any unknown is within 25% of the true value.

The use of MATLAB’s optimization tool fminsearch leads to better control in
‘tuning’ search direction limiters and makes the Matrix Inversion method more robust.
We obtain far more efficient rates for convergence down to machine precision for
one unknown parameter inversions (see Figures 8a-8b) and two unknown parameters
inversions (see Figures 8c-8d). More importantly, the three unknown parameters
inversion problem (see Figure 8e) is completely resolved. However, for the case in which
all four free parameters are unknown, the method still converges to non-unique values
(see Figure 8f). This inability to solve four unknown problem uniquely motivates the
inclusion of polarization and the inversion of the vector problem.

Scattering can change the DOP of scattered light. For a given scattering kernel, the
degree of polarization depends on two factors: 1) the initial polarization state and 2)
the scattering angle. Elliptical representations of incident Stokes vectors are given in
Figure 9a. Figures 9b-f show the scattered and attenuated ellipses for various types of
incident polarization as a surface with the scattering angle as the z-axis.

The scattered Stokes vector components versus scattering angle for each incident
polarization state are shown in Figures 10a-f. For each scattering angle, the solid
curve for each Stokes component represent the magnitude of the component without
attentuation (extinction rate o = 0 km™!) and the corresponding dashed curve represent
the magnitude of the component with attentuation (extinction rate o = 0.02 km™1!).
Note that if one of the components is uniformly zero it will not appear on the logarithmic
scale. By inspection, the Stokes components and the elliptical axes are minimum at
about 120° scattering angle.

Figure 11 shows how the DOP changes with scattering angle for all of the types of
incident polarization considered. Rayleigh scattering of unpolarized light is included to

11
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highlight the difference from the Mie model. It is interesting to note that linear vertical
and horizontal polarization are the only types which remain fully polarized after Mie
scattering. All fully-polarized light states remain so under Rayleigh scattering as well.
The other four types of incident polarization follow the exact same trend under Mie
scattering. At about 100° of scattering angle they are composed equally of polarized
and unpolarized light.

Figures 12a-f shows results for the inversion of the Stokes vector (I, Qo, Uy, Vo) with
the beam geometry parameters (R, ), 0) for horizontally polarized light. Figures 11a and
11b show convergence down to machine precision for one unknown parameter Iy and
two unknowns parameters (Ip, Qo), respectively. Figure 11c shows the inversion for the
three unknown parameters case (lo, R, 1)), verifying that the simplex method is robust
enough to determine the laser power as well as beam location and angle for a polarized
laser beam. Most importantly here, we finally obtain, as indicated in Figure 12d-f, the
full inversion of all four parameters (Ip, R, v, 0) for a case of each of the DOP curves in
Figure 11.

In an effort to make the results contained in this manuscript more useful in the less
ideal real world, a simple noise study was conducted to quantify the robustness of the
model and solution method. Two types of noise were considered; white noise at the
sensor and uniform uncertainty in the meteorological inputs to ANAM for each beam
path. Figures 13a-f show the results for white noise and Table 2 shows the results for
meteorological uncertainty.

A normally distributed random variable with standard deviation scaled to the signal
was added to each measurement. A sample size of 1000 was used for each trial with the
simplex method. A histogram of the error of the resulting prediction for an unknown
parameter is shown in Figure 13a. The error is normally distributed which justifies the
use of confidence intervals of one standard deviation on each side of the true parameter
value, which are shown in Figures 13b-e. The horizontal axis in Figures 13b-e is the log
base 10 of the noise-to-signal ratio. As can be clearly seen, more unknowns make the
confidence interval larger for the same amount of sensor noise. The noise levels were
chosen such that the standard deviation of the error was between 0.1 and 1.

In addition, the ANAM meteorological input parameters were varied to assess the
sensitivity of a unique solution to uncertainty in the scattering environment. Table 2
demonstrates that with up to 20% variation in ANAM input, the simplex method still
recovers the right parameters to within about 1%. The noise study demonstrates that
the simplex method presented will be predictably robust against sensor noise and that
the sensitivity to ANAM input is small.

6. Conclusions

In the coming years, HELs will be in operation on many platforms on sea, land,
and in the air. In response, advance warning systems and countermeasure opera-
tions will require a robust capability to detect and characterize laser sources from
an off-axis location. Of the three inversion methods presented, the simplex method
is by far the most reliable and complete approach to solve the nonlinear inverse problems.

Extension of the off-axis intensity model to include the scattering effects of polarized
light was worthwhile since that proved to be the only way to uniquely determine three or

12
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more unknown parameters. The solvability of the four unknown problem using the Stokes
model and simplex method was found to be insensitive to the incident polarization state.
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2D

Figure 2.: (2.a) Problem geometry in two dimensions (2.b) Problem geometry in three

dimensions
| Quantity | Name | Value | Units |
Laser Wavelength A 1.064 wm
Instantaneous Wind Speed | mets.ul0 3 m/s
24-hr Average Wind Speed | mets.u24 8 m/s
Altitude mets.z 2 m
Relative Humidity mets.RH 40 %
Air Mass Parameter mets. AMP 3 -
ANAM Version modelchoice | anam4 -
Angular Resolution angelRes 1 °

Table 1.: ANAM input
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Figure 3.: Convergence results for shooting method
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Figure 4.: Convergence results for Newton’s Method with one unknown.
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Figure 5.: Convergence results for Newton’s Method with two unknowns.
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Figure 6.: Convergence results for Newton’s Method with three unknowns.
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Figure 7.: Convergence results for Newton’s Method with four unknowns.

| Quantity | Nominal Value | Variation | [R—Ro| | [P — Pyl | [t —tbo] | |0 — 6o |
Wind Speed 2 m/s {1.4,1.7,2,2.3,2.6} m/s | 1.51% 1.23% 1.11% 0.33°
Altitude 2 m 14,17,2,23,26) m | 1.18% | 1.05% | 0.88% |0.2651°
Relative Humidity 90% 185,87.5,90,92.5,95) % | 1.54 % | 0.47% | 1.13% | 0.34°
Air Mass Parameter 3 {2.4,2.7,3,3.3,3.6} 0.79% 0.59% 0.60% 0.18°

Table 2.: Simplex Method robustness with uncertain in ANAM paramters
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Figure 13.: One standard deviation confidence intervals for parameter estimation with

sensor noise.

22

(e) Confidence intervals for Py



