

DIRECT CARBOXAMIDATION OF SYDNONES WITH CHLOROSULFONYL ISOCYANATE

Kenneth Turnbull*, Kevin C. Gross and Tyler A. Hall

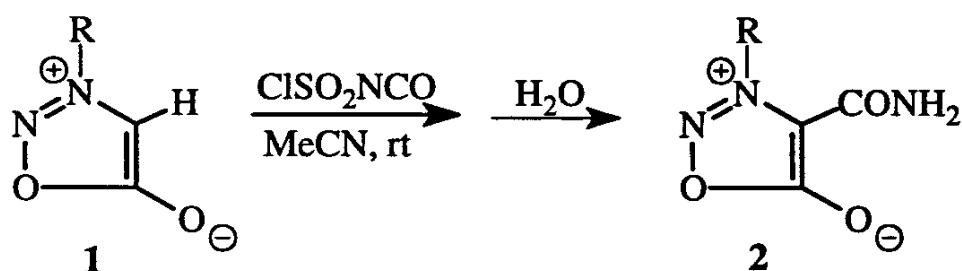
Department of Chemistry
Wright State University
Dayton, Ohio 45435

ABSTRACT: Various 4-carboxamido sydnone **2** can be prepared in good yield by reaction of the corresponding 3-substituted sydnone (*cf.* **1**) with chlorosulfonyl isocyanate at room temperature.

Sydnone, *cf.* **1**, undergo a variety of transformations including electrophilic aromatic substitution (at the 4-position, if unsubstituted),¹ cleavage with HCl to form hydrazines² or heterocycles³ and 1,3-dipolar cycloadditions to form pyrazoles or related species.⁴ Perhaps the greatest interest in these mesoionic compounds, however, stems from their biological activity; *inter alia* they have shown efficacy as antibacterial,⁵ antitumour,⁶ and antihypertensive⁷ agents.

Recently, in this vein, we required 4-carboxamido-3-arylsydnone (*cf.* **2**) as precursors to analogues of pyrazofurin, an antiviral pyrazole carboxamide.⁸ Surprisingly, even though brominations, nitrations and similar processes can be effected readily,¹ no satisfactory, direct route to **2** exists. Previously, such species (*i.e.* **2**) have been prepared in modest yield by abstraction of the sydnone ring proton (in **1**) with BuLi,⁹ treatment with CO₂, conversion to the acyl chloride and subsequent reaction with ammonia¹⁰ and by treatment of 4-

* To whom correspondence should be addressed


acylsydnones with hydrazoic acid.¹¹ Both of these methods suffer from considerable disadvantages; in the former, multiple steps lead to a low overall yield and substantial time investment while, in the latter, the use of potentially explosive hydrazoic acid is problematic. We required a direct, preferably one-step, process and we were attracted to reports of amidation of activated heterocycles with chlorosulfonyl isocyanate.¹² Since the sydnone ring is activated towards electrophilic aromatic substitution, this approach seemed viable and, indeed, treatment of various 3-substituted sydnones **1** with chlorosulfonyl isocyanate in acetonitrile at room temperature followed by an aqueous work-up gave moderate to excellent yields of the corresponding 4-carboxamido sydnones **2**.

The reaction is successful in the presence of a variety of functional groups including alkyl (in **1d** and **1e**), arylalkyl (in **1h**), alkoxy (in **1b**), halo (in **1c**), ester (in **1f**) and nitro (in **1g**) moieties. In general, the reaction apparently was unaffected by the nature or position of the substituent, however, when the strongly electron-withdrawing nitro group was present at the *ortho*-position (in **1g**), complete conversion to **2** required a considerable excess of chlorosulfonyl isocyanate and product yields over 55% were not realized.

The identities of the 4-carboxamido sydnones **2** followed from their spectral data, satisfactory microanalysis figures or comparison with authentic samples (for **2a**). For the new compounds (*viz.* **2b-h**) their IR spectra showed the absence of the signature sydnone C-H stretch at \sim 3150cm $^{-1}$ and the presence of the carboxamido C=O stretch at \sim 1670 cm $^{-1}$ and NH stretch at \sim 3400cm $^{-1}$ and \sim 3100-3300cm $^{-1}$; indicating that amidation had occurred. In their 1 H-NMR spectra, the absence of the sydnone ring proton (usually \sim 6.5-7 δ) was apparent and the NH₂ group showed 2 signals at \sim 7.9 δ and 7.2 δ . In their 13 C-NMR spectra the amide carbonyl signal appeared at \sim 156 ppm and, for the 3-aryl examples, a shift of the sydnone C-4 signal to \sim 103 ppm (from \sim 95 ppm in **1**) was observed.

No obvious trend in product yield was apparent in the effects of electron-donating or electron-withdrawing groups on the aryl ring, although especially low yields were obtained with the strongly electron withdrawing nitro group.

Overall, we have shown that 4-carboxamido sydnones can be prepared in good to excellent yield using chlorosulfonyl isocyanate. The advantages to this

Table. Reaction of 3-substituted sydnone with ClSO_2NCO

Product	R	Yield [%]	m.p. [°C]
2 a	Ph	79	229-230 ^a
b	3-MeOC ₆ H ₄	81	175-6
c	4-ClC ₆ H ₄	79	173-5
d	2,3-Me ₂ C ₆ H ₃	72	164-5
e	3,4-Me ₂ C ₆ H ₃	68.5	182-4
f	2-MeO ₂ C	78	178-9
g	2-NO ₂	55	186-8
h	PhCH ₂	69	158-9

^alit.¹⁰ mp 227°C

method over those previously employed are the one-step nature of the process and the resultant higher yields. We plan to study this approach further in order to assess its scope and limitations.

EXPERIMENTAL

Preparation of 4-Carboxamido-3-Substituted Sydnone (2); General Procedure.

To a stirred solution of the sydnone **1** (0.75 mmol) in acetonitrile (3 mL / 100 mg) at 0°C was added chlorosulfonyl isocyanate (0.425 g, 3.00 mmol)

dropwise. After 10 min, the mixture was allowed to warm to room temperature, stirred for a further 1.5 h and poured carefully over ice (*ca.* 15 mL). In a few cases a precipitate was obtained which was collected by filtration, otherwise, the water / acetonitrile was removed *in vacuo* or under a stream of air. The resultant solid was recrystallized from hot ethanol to yield the pure carboxamide **2**.

Preparation of 4-Carboxamido-3-phenylsydnone (2a).

Using 3-phenylsydnone **1a** (0.1215 g) in the general procedure gave the title compound **2a** as colourless needles, 0.122 g (79%); m.p. 229-30°C (lit. m.p.¹⁰ 227°C); IR (KBr) ν 3385, 3149 (NH str.), 1757 (sydnone C=O str.), 1679 (amide C=O str.) cm^{-1} (lit.¹¹ 3375, 3140, 1750, 1674 cm^{-1}).

Preparation of 4-Carboxamido-3-(3-methoxyphenyl)sydnone (2b).

Using 3-(3-methoxyphenyl)sydnone¹³ (0.144 g) in the general procedure gave the title compound **2b** as colourless needles, 0.143 g (81%); m.p. 175-6°C; IR (KBr) ν 3432, 3319 (NH str.), 1774 (sydnone C=O str.), 1686 (amide C=O str.), 1604, 1465, 1257 cm^{-1} ; $^1\text{H-NMR}$ δ (DMSO-d₆) 3.81 (s, 3H), 7.13 (s, 1H), 7.23-7.57 (m, 4H), 7.80 (s, 1H); $^{13}\text{C-NMR}$ (DMSO-d₆) 55.7 (OCH₃), 102.8 (sydnone C-CONH₂), 111.6, 117.5, 117.6, 129.9 (aromatic CH's), 135.7, 159.2 (aromatic C's), 156.0 (amide C=O), 166.4 (sydnone C=O) ppm; analysis: calculated for C₁₀H₉N₃O₄: C, 51.09; H, 3.83; N, 17.87. Found: C, 51.18; H, 3.88; N, 17.85.

Preparation of 4-Carboxamido-3-(4-chlorophenyl)sydnone (2c)

Using 3-(4-chlorophenyl)sydnone¹⁴ (0.1475 g) in the general procedure gave the title compound **2c** as colourless needles, 0.142 g (79%); m.p. 173-5°C; IR (KBr) ν 3408, 3205 (NH str.), 1752 (sydnone C=O str.), 1671 (amide C=O str.), 832 cm^{-1} ; $^1\text{H-NMR}$ δ (DMSO-d₆) 7.14 (s, 1H), 7.69-7.81 (dd, 4H), 7.87 (s, 1H); $^{13}\text{C-NMR}$ (DMSO-d₆) 102.9 (sydnone C-CONH₂), 127.5, 129.0 (aromatic CH's), 133.4, 136.6 (aromatic C's), 156.0 (amide C=O), 166.1 (sydnone C=O) ppm; analysis: calculated for C₉H₆ClN₃O₃: C, 45.09; H, 2.51; N, 17.54. Found: C, 45.20; H, 2.46; N, 17.31.

Preparation of 4-Carboxamido-3-(2,3-dimethylphenyl)sydnone (2d)

Using 3-(2,3-dimethylphenyl)sydnone¹⁵ (0.1425 g) in the general procedure gave the title compound **2d** as colourless needles, 0.126 g (72%); m.p. 164-5°C; IR (KBr) ν 3398, 3131 (NH str.), 1759 (sydnone C=O str.), 1685 (amide C=O str.), 1476, 1242, 787 cm⁻¹; ¹H-NMR δ (DMSO-d₆) 2.01 (s, 3H), 2.34 (s, 3H), 7.09 (s, 1H), 7.27-7.48 (m, 3H), 7.80 (s, 1H); ¹³C-NMR (DMSO-d₆) 13.4 (CH₃), 19.5 (CH₃), 103.4 (sydnone C-CONH₂), 123.7, 126.0, 132.7 (aromatic CH's), 132.2, 134.6, 138.1 (aromatic C's), 155.9 (amide C=O), 166.2 (sydnone C=O) ppm; analysis: calculated for C₁₁H₁₁N₃O₃: C, 56.68; H, 4.72; N, 18.02. Found: C, 56.49; H, 4.69; N, 17.88.

Preparation of 4-Carboxamido-3-(3,4-dimethylphenyl)sydnone (2e)

Using 3-(3,4-dimethylphenyl)sydnone¹⁵ (0.1425 g) in the general procedure gave the title compound **2e** as colourless needles, 0.12 g (68.5%); m.p. 182-4°C; IR (KBr) ν 3400, 3163 (NH str.), 1769 (sydnone C=O str.), 1690 (amide C=O str.), 1462, 1238, 1062, 692 cm⁻¹; ¹H-NMR δ (DMSO-d₆) 2.29 (s, 3H), 2.32 (s, 3H), 7.14 (s, 1H), 7.41 (m, 3H), 7.80 (s, 1H); ¹³C-NMR (DMSO-d₆) 19.2 (2 CH₃), 102.5 (sydnone C-CONH₂), 122.7, 125.8, 129.7 (aromatic CH's), 132.4, 137.3, 140.8 (aromatic C's), 156.1 (amide C=O), 166.5 (sydnone C=O) ppm; analysis: calculated for C₁₁H₁₁N₃O₃: C, 56.68; H, 4.72; N, 18.02. Found: C, 56.57; H, 4.71; N, 17.99.

Preparation of 4-Carboxamido-3-(2-methoxycarbonylphenyl)-sydnone (2f)

Using 3-(2-methoxycarbonylphenyl)sydnone¹⁶ (0.165 g) in the general procedure gave the title compound **2f** as colourless crystals, 0.154 g (78%); m.p. 178-9°C; IR (KBr) ν 3434, 3414, 3265 (NH str.), 1758 (sydnone C=O str.), 1723 (ester C=O str.), 1686 (amide C=O str.), 1601, 1502 cm⁻¹; ¹H-NMR δ (DMSO-d₆) 3.75 (s, 3H), 7.07 (s, 1H), 7.66 (m, 4H), 8.15 (m, 1H); ¹³C-NMR (DMSO-d₆) 52.7 (CO₂CH₃), 103.6 (sydnone C-CONH₂), 125.9, 127.8, 130.9, 132.4, 133.8, 134.1 (aromatic C's and CH's), 156.2 (amide C=O), 163.2 (ester C=O), 165.9 (sydnone C=O) ppm; analysis: calculated for

$C_{11}H_9N_3O_5$: C, 50.20; H, 3.45; N, 15.96. Found: C, 50.26; H, 3.39; N, 15.87.

Preparation of 4-Carboxamido-3-(2-nitrophenyl)sydnone (2g)

Using 3-(2-nitrophenyl)sydnone¹⁶ (0.1553 g) in the general procedure (but using 8 equivalents of chlorosulfonyl isocyanate added in 2 portions, 60 min apart) afforded the title compound **2g** as light yellow crystals, 0.103 g (55%); m.p. 186-8°C; IR (KBr) ν 3419, 3137 (NH str.), 1753 (sydnone C=O str.), 1677 (amide C=O str.), 794 cm^{-1} ; ¹H-NMR δ (DMSO-d₆) 7.13 (s, 1H), 7.96-8.06 (m, 4H), 8.46 (d, 1H); ¹³C-NMR (DMSO-d₆) 103.0 (sydnone C-CONH₂), 125.8, 129.0, 133.8, 155.5 (aromatic CH's), 127.8, 143.0 (aromatic C's), 156.2 (amide C=O), 165.3 (sydnone C=O) ppm; analysis: calculated for $C_9H_6N_4O_5$: C, 43.23; H, 2.40; N, 22.40. Found: C, 43.34; H, 2.61; N, 22.21.

Preparation of 4-Carboxamido-3-(2-benzyl)sydnone (2h)

Using 3-(2-benzyl)sydnone¹⁴ (0.132 g) in the general procedure afforded the title compound **2h** as colourless crystals, 0.113 g (69%); m.p. 158-59°C; IR (KBr) ν 3417, 3308 (NH str), 1752 (sydnone C=O str.), 1656 (amide C=O str.), 1499 cm^{-1} ; ¹H-NMR δ (DMSO-d₆) 6.08 (s, 2H), 7.07 (s, 1H), 7.36-7.51 (m, 5H), 7.78 (s, 1H); ¹³C-NMR (DMSO-d₆) 54.9 (CH₂), 98.4 (sydnone C-CONH₂), 127.3, 127.4, 127.7 (aromatic CH's), 130.5 (aromatic C), 155.9 (amide C=O), 165.0 (sydnone C=O) ppm; analysis: calculated for $C_{10}H_9N_3O_3$: C, 54.79; H, 4.14; N, 19.17. Found: C, 55.00; H, 4.02; N, 18.95.

Acknowledgment is made to Dr. Daniel M. Ketcha for useful discussions pertaining to this work.

REFERENCES AND NOTES

1. a) Ohta, M. and Kato, H. in *Nonbenzenoid Aromatics*, Vol.1, Snyder, J.P., ed., Academic Press, Inc., New York, NY, 1969, p 146. b) Stewart, F.H.C. *Chem. Rev.*, **64**, 129 (1964).
2. Earl, J.C. and Mackney, A.W. *J. Chem. Soc.*, 899 (1935).
3. Gelvin, C.R. and Turnbull, K. *Helv. Chim. Acta*, **75**, 1931 (1992).

4. Huisgen, R., Grashey, R., Gotthardt, H. and Schmidt, R. *Angew. Chem.*, **74**, 29 (1962).
5. a) Brookes, P. and Walker, J. *J. Chem. Soc.*, 4409 (1959). b) Ackermann, E. *Pharmazie*, **22**, 537 (1967), [*Chem. Abstr.*, **68**, 28171 (1968)].
6. Kier, L.B. and Roche, E.B. *J. Pharm. Sci.*, **56**, 149 (1967).
7. Saito, Y. and Kamitani, T. (Takeda Chem. Ind., Ltd.), Japan. 70 10,510; [*Chem. Abstr.*, **73**, 14853 (1970)].
8. a) Buchanan, J.G. *Fortschr. Chem. Org. Naturst.*, **44**, 243 (1983). b) Petrie, C.R., III, Revankar, G.R., Dalley, N.K., George, R.D., McKernan, P.A., Hamill, R.L. and Robins, R.K. *J. Med. Chem.*, **29**, 268 (1986).
9. Greco, C.V. and O'Reilly, B.P. *J. Heterocycl. Chem.*, **9**, 123 (1972).
10. Kato, H. and Ohta, M. *Bull. Chem. Soc. Jpn.*, **32**, 282 (1959).
11. Yeh, M.-Y., Tien, H.-J., Huang, L.-Y. and Chen, M.-H. *J. Chin. Chem. Soc.*, **30**, 29 (1983).
12. Mehta, G., Dhar, D.N. and Suri, S.C. *Synthesis*, 374 (1978).
13. Puranik, G.S. and Suschitzky, H. *J. Chem. Soc. (C)*, 1006 (1967).
14. Baker, W., Ollis, W.D. and Poole, V.D. *J. Chem. Soc.*, 307 (1949).
15. Turnbull, K. *J. Heterocycl. Chem.*, **22**, 965 (1985).
16. Applegate, J. and Turnbull, K. *Synthesis*, 1011 (1988).

(Received in the USA 22 August 1997)