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A B S T R A C T   

This review on current US municipal solid waste-to-energy trends highlighted regional contrasts on technology 
adoption, unique challenges of each technology, commonly used decision support tools, and major operators. In 
US only 13% of MSW is used for energy recovery and 53% is landfilled. There are 86 WTE facilities that mostly 
use Mass-Burn and Refuse-Derived Fuel technologies and are concentrated in densely populated northeast 
(predominantly in New York) and the State of Florida. For the rest of the country most of the MSW ends up in 
landfills equipped with gas recovery, which is supplied to homes or used for electricity generation. However, 
there are many pilot and experimental systems based on advanced gasification and pyrolysis processes, which are 
viewed as potential technologies to respond to an issue of landfills nearing full capacity in various US states. 
These systems are viewed as “cleaner” (65% less toxic residue) than established mass burn technologies but not 
matured to commercialization due technical and cost hurdles. Operation and maintenance costs between $40- 
$100 per ton of MSW were reported for gasification systems. The heterogeneous nature of MSW, gas cleaning and 
air pollution controls are the main disadvantages. Key design and decision support tools used by the scientific 
community and major operators in US include: Techno-economic analysis, Life cycle sustainability assessment, 
and Reverse logistics modeling. A conclusion drawn from reviewed studies is that adoption of thermal WTE 
technologies in US could continue to increase, albeit slowly, in coastal and urban areas lacking suitable lands for 
new landfills.   

1. Introduction 

Waste-to-energy (WTE) conversion provides an excellent alternative 
to fossil fuel combustion [1]. The alternative energy source, MSW, burns 
practically more cleaner than many fossil fuels [2]. Emissions (dioxins, 
furans, mercury, cadmium, lead, hydrochloric acid, sulfur dioxide, and 
particulates) from the municipal solid waste-to-energy (MSWTE) facil-
ities in the US were found to be lower than comparable fossil fuel fa-
cilities [2]. The source of municipal solid waste (MSW) is the trash 
collected from household, industrial, commercial, construction, and 
municipal sources [3]. The acknowledgement of MSWTE as renewable 
energy generation is promoted by US policy makers in form of tax credits 
and subsidies to reduce dependency on fossil fuels [4]. The US govern-
ment also aims to increase the renewable energy generation from its 
present 12.6% to 25% by the year 2025 [5]. Many WTE reviews have 

covered the advances in thermochemical and biochemical methods of 
energy production from solid waste [6–9]. It however appeared to us 
that there are not many US specific information for waste-to-energy in 
published journal articles. Although there are many reports from ven-
dors and government agencies, these do not give a current and critical 
picture of WTE industry in the US. These reports are not well-known 
platforms to the scientific readers in general, and the data for various 
US states is very scattered. The WTE practice in US seemed to fall behind 
many European and Asian countries. Analyzing the recent trends in WTE 
developments could help in solving the issue of waste management and 
energy security for the US. State of the art technologies like gasification, 
pyrolysis, incineration/combustion, and anaerobic digestion with 
biogas recovery have utilized MSW as feedstock to generate electricity, 
heat, combined heat and power, and fuels. The byproducts of WTE 
conversion are also useful in many cases, such as compost (used as 
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manure), char and slag (for construction material). A review on WTE 
feasibility for the US will get attention of stakeholders including policy 
makers, investors, and scientists and can help them select the most 
sustainable technology. The present review made an attempt to provide 
a comprehensive overview of the current status and trends in WTE 
practice and feasibility of various technologies in US. 

The thermal and non-thermal WTE technologies, their application 
based on current US waste streams, as well as their advantages and 
drawbacks in context of environmental, technical, and cost structure 
will be discussed in this review. A section on trends, perspectives, pol-
icies and practical applications will follow the WTE technology evalu-
ation. Lastly, conclusions of the study will be presented. 

Over the past decade countries all over the world have been 
exploring ways to better use their MSW [10–12]. The increase in MSW 
can be related to the rapidly growing population and the per capita in-
come. According to the US Census Bureau, the US and the projected 
world populations were 328, 231, 337 and 7,543, 334, 085, respectively 
as of January 2019 [13]. The United States Environmental Protection 
Agency (US-EPA) reported 238.5 million tonnes of MSW generated in 
2015, showing a significant increase from the previous ten to twenty 
years [14]. With the world’s biggest economy of 20.4 trillion dollars, the 
US generates the largest amount of MSW globally but utilizes about 
12.8% of it for energy recovery [14–16]. In 2015, out of 238.5 million 
tonnes of generated MSW, the majority (52.5%) was landfilled, and the 
remaining was recycled (25.8%), composted (8.9%), and incinerated for 
energy recovery (12.8%) [14]. Due to greenhouse gas emissions, 
leachates, and land availability issues in overly populated cities, US 
states are moving from the traditional landfill practice to WTE as a 
sustainable alternative [2,17,18]. However, WTE systems are relatively 
rare due to high capital costs and lack of sufficient local government 
support. Globally, 765 MSW based WTE plants exist with an annual 
capacity of 83 million tonnes [19]. The US currently employs 86 of these 
MSWTE combustion facilities across 25 states [19,20]. A majority of 

these are mostly located in Florida and Northeastern states like New 
York that use a mass burn technology to combust MSW without much 
preprocessing [21–23]. Fig. 1 illustrates MSW disposal in 10 US-EPA 
regions and the population figure generating this waste [24,25]. Fig. 1 
also represents the 34 states in the US which consider the WTE con-
version as renewable. The north-east coastal regions (1–4 in Fig. 1) has 
the highest population density and accounts for the majority of the US 
WTE practice. In the mid-western regions of the US (5–8 in Fig. 1) 
landfill is the dominant technology for waste disposal with no to 
negligible WTE. The west coast regions (9 and 10 in Fig. 1) favor more 
recycling and composting of their waste than WTE. The coastal regions 
are more densely populated in comparison to the midwest US regions 
and therefore have to deal with higher amount of household trash. This 
clearly reveals that there is a significant challenge in improving the 
MSWTE generation in the midwest and west coast regions. 

Increasing urbanization has led to a rapid growth in MSW in other 
countries of the world as well, creating urgency in the local governments 
to properly plan waste valorization. Recently China issued a series of 
policies to promote WTE practice and diversion from landfills [26–30]. 
China had 200 waste incineration plants in 2014, and the Chinese 
government declared that this number would grow to 300 by the end of 
2020 [31]. India is the second most populated country in the world with 
a waste management scenario predominantly based on landfills, but 
increasing environmental regulations on landfill-based pollution are 
slowly moving the focus to cost-effective WTE technologies [32–36]. 
India has only eight operational WTE thermal plants with a total ca-
pacity of 94.1 MW, and an additional 50 initiated WTE projects near 
completion [37]. Energy recovery from MSW is also gaining momentum 
in the other top ten most populated countries of the world such as 
Indonesia [38,39], Brazil [40,41], Pakistan [42–44], Nigeria [45], 
Bangladesh [46,47], and Russia [48,49], as sustainable waste manage-
ment alternatives. Japan leads the world in recovering energy from 
waste with almost 78% WTE conversion with the remaining 22% sent to 

Fig. 1. MSW-to-energy landscape of the ten US EPA regions in year 2015 (Adopted from Refs. [24,25]).  
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recycling and composting [16,50]. 
In many European countries, WTE facilities are technologically more 

advanced than in the U.S [50]. Europe has 455 WTE plants in 18 Eu-
ropean countries [51]. Denmark, Sweden, Switzerland, and Norway are 
the top four European countries in WTE sector [50]. In Europe, an 
estimated 1.3 billion tonnes of waste is generated each year, of which 
around 241 million tonnes is MSW, and the remaining waste coming 
from manufacturing, construction, and water treatment sources [52]. 
The European Union is forcing the closure of all landfills under the 
Landfill Directive issued in 1999, and mandating that existing landfills 
meet new, more rigorous leachate and pollution control standards, thus 
diverting waste from landfill towards recycling and energy recovery [51, 
53]. The waste incineration directive in Europe has also set standards to 
reduce air and groundwater pollution from WTE emissions [52]. Glob-
ally, waste disposal option uses proportionally higher amounts of 
landfills and some incineration with energy recovery [50,54,55]. Ur-
banization, environmental awareness, regulations, and market forces 
are influencing the change in this trend. 

Besides population growth and amount of MSW generation, per 
capita income of the countries significantly influences their waste 
management and WTE practice. Low income (Gross National Income: 
$1005 and lower) to lower middle income (Gross National Income: 
$1006 to $3975) countries in Asia (India, Bangladesh, Indonesia, 
Pakistan, Afghanistan, Thailand, Malaysia, Vietnam, Iran, Nepal), Af-
rica, and South America have little to no source separation of MSW, 
dump waste in open areas and uncontrolled landfills, and have minimal 
air and leachate emissions regulations [56]. The majority of MSW from 
these low income or developing countries is biodegradable organic 
waste (approx. 64%) which is utilized in few cases for anaerobic 
digestion and landfill gas recovery [56,57]. Upper middle income (Gross 
National Income: $3976 to $12275) and high-income population (Gross 
National Income: $12276 and higher) in developing or developed 
countries (like Japan, Taiwan, Singapore, South Korea, USA and parts of 
Europe) practice more source separation, 3Rs-concept of 
reduce-reuse-recycling (of plastics, metal, and glass); and composting 
[56]. The higher income countries generate larger quantity of MSW than 
low and middle income countries, however only about 28% of the waste 
is biogenic. The non-organic nature of the MSW composition is a major 
driving factor for implementation of WTE in higher income countries 
[57]. 

1.1. Characterization of the US MSW 

Characterizing the national MSW waste stream is the first significant 
step in designing an efficient WTE program. Site specific studies iden-
tifying the MSW composition, and analyzing total solids content of the 
collected waste by sampling, manually sorting or hand-picking, and 
weighing the individual waste components is the initial step [58]. 
Elemental evaluation of a MSW stream has revealed C, H2, O2, H2O, and 
ash to be 17–30, 1.5–3.4, 8–23, 24–34, and 18–43% by weight, 
respectively, and the average specific heat of combustion as 5–10 MJ/kg 
[59]. Similar elemental analysis of MSW from the ten regions of the US 
(Fig. 1) needs to be carried out for exploring their WTE potential and 
identification of the research gap. Proximate analysis to find the weight 
percentages of moisture, volatile matter, fixed carbon and ash, and ul-
timate analysis for weight percentages of chemical elements (carbon, 
hydrogen, nitrogen, oxygen and sulfur) gives relevant input data in 
determining the heating values of the solid waste [60]. Additionally, 
thermal properties and degradation behavior of various MSW compo-
nents need investigation using thermogravimetric and derivative ther-
mogravimetric analysis to evaluate how different MSW components 
from residential, industrial, commercial, construction & demolition, and 
municipal sources can combine to yield high energy [61–63]. The US 
waste stream is characterized by the US-EPA to contain paper products 
and cardboard as the most significant percentage (25.9%) followed by 
food waste (15.1%), yard waste (13.2%), plastics (13.1%), wood (6.2%), 

rubber and leather (3.2%), textiles (6.1%), metals (9.1%), glass (4.4%), 
other materials (e.g. electronic-waste 2%) and miscellaneous inorganic 
wastes (1.5%) [14]. Metal, glass and miscellaneous other inorganic 
waste components account for the non-combustible portion of the MSW 
with negligible calorific values. After separation of this non-combustible 
fraction of MSW and any paper or plastic material that can be recycled, 
the leftover MSW or “Residual MSW” is more suitable and preferred 
waste stream for WTE conversion. 

2. Current MSWTE situation in the US 

WTE or energy from waste (EfW) within the US is a debated topic and 
speculated as a potential technique to divert waste from existing land-
fills [64]. Landfill remains the conventional and most economically 
viable option for the U.S waste stream, due to land availability [2,16, 
24]. Although several thermal and non-thermal/biological MSW treat-
ment options are accessible for generating energy in the US there exists a 
significant gap in employing WTE policy predominantly due to a high 
cost of construction of new facilities, financial risks, and marginal eco-
nomic benefits [65]. The deployment of WTE is contingent on several 
techno-socio-economic impact factors. Technologically, the composi-
tion, volume, and energy content (calorific/heating value) of the MSW, 
thermodynamic and chemical conditions in which the plant operates, as 
well as the overall efficiency in energy yield are the critical factors. 
Additionally, incineration ought to be the option for MSW valorization if 
the average net calorific value of waste is at least 7 MJ/kg, as per energy 
experts [3,66]. An optimized WTE plant is expected to have a combus-
tible MSW supply of at least 100,000 tonnes per year [3]. This waste 
supply varies with region, locality, and season. Each waste treating 
process requires some specific reaction conditions, amount of 
oxygen-enriched air, moisture content, operating temperature, pressure, 
pre-treatment steps, gas cleaning, and tar, char or slag control/removal 
[8,67–70]. Dry MSW is the most suitable feedstock for incineration, 
gasification and pyrolysis, all of which requires excess to no air/oxygen 
supply for combustion and operates at high temperatures of 500 to more 
than 1000 �C [3]. The thermochemical processes generate oxidized or 
reduced gaseous pollutants like hydrogen sulfide, carbonyl sulfide, SOx, 
NOx, and solid ash, char or vitrified slag [3]. The wet and biogenic 
fraction of MSW is more suitable for microbial degradation to produce 
methane-rich biogas by anaerobic digestion and landfill gas recovery. 
Further details on these thermochemical and biological technologies are 
provided in the later sections. Fig. 2 summarizes the WTE technologies 
available for MSW in the US and a decision-making flowchart. All 
combustibles with low to high calorific value stand fit for WTE con-
version [8]. The non-combustibles like metals and glass are recycled if 
economical or landfilled [2]. Some of the combustible fraction of MSW 
such as paper, cardboard, and plastic is also recycled. Calorific value of 
this residual combustible MSW can be improved with different energy 
densification steps [71]. Thermal processing is more suitable for dry 
MSW with little or no moisture content [8]. Non-thermal processing like 
anaerobic digestion, landfill gas recovery or composting is preferable for 
high moisture-containing MSW and particularly its biodegradable frac-
tion [72–74]. WTE with biogas/methane recovery from non-thermal 
treatment should be obtained with a selective collection system for the 
biodegradable waste or will need advanced pre-treatment for segre-
gating the bio-decomposable portion from the overall waste. Landfilling 
should be the option for waste disposal only after a significant volume 
reduction by either WTE conversions or recycling [75]. A critical eval-
uation of these processes and parameters is required to assemble the 
decision-making building blocks, attract potential investment opportu-
nities, influence the marketplace, and regulate environmental policies 
for MSW disposal. 

2.1. Thermal treatment options 

At present, the US seems to be focusing more on thermal waste-to- 
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energy options for its MSW management. Lancaster county’s MSWTE 
facility in the state of Pennsylvania, operated by Covanta Holdings 
Corp., processes 1200 tons of MSW per day, with 99% below air emis-
sion limits, setting an exemplary WTE system near the capital region 
[76]. Florida has the highest capacity in the US to valorize MSW with 
almost 11 operational thermal WTE plants [77,78]. Covanta Holdings 
Corp. has around 30 energy from waste (EfW) facilities widespread 
across the coastal regions of the US which utilize the MSW from the local 
urban population for generation of power [79]. California has few mass 
burn facilities of which Southeast Resource Recovery Facility and Sta-
nislaus County Resource recovery facility, both operated by Covanta 
Holding Corp. together have a WTE capacity of 2180 tons of MSW per 
day, generating 58.4 MW of electricity [50]. Incineration is the primary 
thermal conversion method practiced in the US with gasification and 
pyrolysis as the rest. These thermochemical systems differ widely in 
their applications, costs, operating parameters, and overall efficiency 
[23,35,80–85]. All these processes require the MSW to be dry or have 
little moisture content nevertheless they can handle a wide variety of 
combustibles [8,83,86]. 

2.1.1. Incineration or combustion 
A majority of the US states classify incinerating MSW as a renewable 

energy source [50]. It is the most common thermal conversion for car-
bon containing fuels such as coal, biomass, or MSW [87]. Incinerators 
have a growing number of concerns and may be unable to cover the 
operating cost. The tipping fees for incinerating waste is two to three 
fold more than recycling, composting, or controlled landfilling. Incin-
eration is an exothermic process involving complete oxidation of MSW 
and generates flue gas, ash, and heat [84,88,89]. Air pollution control 
systems reduce the half-hour average air emission limit of waste incin-
eration plants below their regulated emission limits; for example for 
emissions like NOx (400 mg/Nm3), dioxins and furans (0.1 ng/m3), 
sulfur dioxide (200 mg/Nm3), carbon monoxide (100 mg/Nm3), HCl (60 
mg/Nm3), HF (4 mg/Nm3), total organics (20 mg/Nm3), mercury (0.05 
mg/Nm3), and metals (Cd, Ti, Sb, As, Pb, Cr, Co, Cu, Mn, Ni, and V – 0.05 
to 0.5 mg/Nm3) [90]. A recent analysis of air emission violations found 
the penalties imposed by the US favor updating emission systems more 

frequently than the comparable European Union’s emission structures 
[90]. Mass burning is the most common thermal treatment type, where 
unprocessed or unsorted MSW is burned in large incinerators in the 
presence of excess air, with a boiler and a generator for producing 
electricity. The US has 58 mass burn facilities, 4 modular facilities and 
13 refuse derived fuel (RDF) based facilities [50]. Most mass-burn fa-
cilities have a sloping or movable grate that vibrates to agitate the waste 
and mix it with air. The other mass burn incineration alternatives are 
rotary kiln and fluidized bed [67]. Modular systems are small sized and 
can be easily transported. Modular systems also burn untreated and 
mixed MSW. The major incineration technologies operational in the US 
based on the mass burn, RDF, and modular systems are presented in 
detail in Table 1. Almost all of these technologies receive tonnes of MSW 
feedstock each day and distribute electricity to the local population. 

Advantages: Incinerators take unprocessed or unsorted MSW. These 
systems not only recovers energy from burning the waste, but also re-
duces the solid waste volume by almost 90%, and provides a diversion 
from landfilling [94]. 

Disadvantages: Mass burn systems require expensive air pollution 
control systems and can face stringent permit requirement in some US 
states. Some incinerators require pre-drying of the feedstock if the 
moisture is too high and the leftover ash contains leachable inorganic 
pollutants. These pollutants needs proper disposal and are mostly 
landfilled. 

The current trend in incineration and other thermal conversions is to 
upgrade the MSW feedstock by energy densification pre-treatment steps. 
The densification systems use pellet miller, tablet press, roller press, 
extruder, cuber, briquette press, and pressure agglomerator for shearing, 
mixing, and compacting the waste matter [95]. Incineration of pre-
treated and homogenized waste needs additional processing steps; 
however it improves the net energy gain or energy recovery, and com-
bustion quality of the MSW feedstock. It lowers the waste volume, size, 
and moisture content considerably and the overall cost for storage and 
transportation. Incineration of these energy-densified waste offer effi-
cient energy production with reduced emissions. Table 2 illustrates the 
current energy densification techniques used in waste management. 

Fig. 2. Decision-making flowchart on available WTE technologies for MSW valorization.  
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2.1.2. Gasification 
The growing popularity of MSW gasification in the US is the result of 

increasing technical, environmental and economic concerns with waste 
incinerators. Currently, the US has 33 gasification plants running mostly 
on carbon-based fuels such as coal, petroleum, and gas, with smaller 
amount of biomass/waste feedstock [111]. There is an increasing de-
mand for developing small-scale and compact MSW gasifiers in towns, 
cities or on military bases [111]. Gasification plants could be integrated 
with pre-existing industrial and thermoelectric plants, because of their 
flexibility and compactness [112]. Table 3 provides details on a few 
operational gasification technologies in the US based on biomass/waste. 

Gasification breaks MSW into a mixture of carbon monoxide, 
hydrogen, and carbon dioxide by-products, collectively known as syngas 
(synthetic gas or producer gas) with useable heating value through a 
sequence of exothermic and endothermic reaction steps [120–123]. The 
process involves a partial or incomplete oxidation carried out in pres-
ence of controlled amounts of oxidants (air, oxygen, or steam) at very 
high temperatures above 550 �C [124]. The heat content of syngas in 
commercial scale-ups is also improved by carrying out co-gasification of 
MSW with coal [125,126]. The heating value of MSW (11,000–12, 
000 J/g) is low compared to RDF (12,000–16,000 J/g) and coal (21, 

Table 1 
Current operational Mass Burn, Refuse derived fuel (RDF), and Modular Incin-
eration technologies in the US states (Adopted from Ref. [50]).  

Incineration 
type 

Remarksa Locations WTE Operators 

Mass burn 
and RDF 

Accepts 7.4 million tons 
of MSW or post-recycled 
waste each year; 
generates 5.8 billion 
kWh of energy each 
year; generates around 
1123 tons of NOx 
emissions per year; use 
activated carbon to 
remove mercury and 
trace organic 
compounds; lime 
treatment to neutralize 
acidic gases; fabric filter 
for particulates 
removal; combustion 
temperatures exceed 
1093.3 �C in boilers 

California, 
Connecticut, 
Florida, 
Maryland, 
Massachusetts, 
New Hampshire, 
New Jersey, New 
York, Virginia, 
Washington & 
Pennsylvania 

Wheelabrator 
Technologies 
[91,92] 

Mass burn, 
RDF and 
Modular 

Accepts 21 million tons 
of MSW each year; 
generates 9 million 
MWh electricity each 
year; operates 60–90% 
below the required 
emission limit; reduced 
air emissions of NOX, 
sulfur dioxide and 
hydrochloric acid 

Alabama, 
California 
(Modular), 
Connecticut, 
Florida, Indiana, 
Maryland, 
Michigan, 
Massachusetts, 
Hawaii, New 
Jersey, New York, 
Oklahoma, 
Oregon, Virginia 
& Pennsylvania 

Covanta Holding 
Corporation [16, 
93] 

Mass burn Accepts 182,500 tons 
MSW per year; 
generates 32,850 MWh 
electricity; provide 
power to 169,560 
people 

Florida Engen LLC. 

Mass burn Accepts 200,750 tons 
MSW per year; 
generates 32,193 MWh 
electricity; provide 
power to 250,000 
people 

Maine Ecomaine 

Mass burn Accepts 91,250 tons 
MSW per year; 
generates 10,950 MWh 
electricity; provide 
power to 65,000 people 

Maine Mid-Maine 
Waste Action 
Corporation 

Mass burn Accepts 
73,000–442,380 tons 
MSW per year; 
generates 
1095–80,373 MWh 
electricity; provide 
power to 
42,000–1,156,212 
people 

Minnesota GRE HERC 
Services LLC; 
Olmsted County 
WTE; Perham 
Resource 
Recovery 
Facility; and 
Pope/Douglas 
WTE 

Mass burn Accepts 292,000 tons 
MSW per year; 
generates 56,940 MWh 
electricity; provide 
power to 426,347 
people 

Washington City of Spokane 
WTE facility 

Modular Accepts 32,850 tons 
MSW per year; 
generates 4380 MWh 
electricity; serves 
75,000 people 

Wisconsin Zac Inc.  

Table 1 (continued ) 

Incineration 
type 

Remarksa Locations WTE Operators 

Modular Accepts 262,800 tons 
MSW per year; 
generates 8760 MWh 
electricity; provide 
power to 126,000 
people 

Minnesota Polk County 

Modular Accepts 73,000 tons 
MSW per year; 
generates 
41,610–52,560 MWh 
electricity 

New York Oswego County 
Energy recovery 
facility 

RDF Accepts 1.0 million ton 
MSW per year; 
generates 151,110 MWh 
electricity; provide 
power to 1,208,813 
people 

Connecticut NAES 
Corporation 

RDF Accepts 
146,000–992,800 tons 
MSW per year; 
generates 
41,600–61,320 MWh 
electricity; provide 
power to 
250,000–1,280,891 
people 

Minnesota, 
Wisconsin 

Xcel Energy 

RDF Accepts 63,875 tons 
MSW per year; 
generates 35,040 MWh 
electricity; provide 
power to 69,898 people 

Iowa Resource 
Recovery 
System, City of 
Ames 

RDF Accepts 262,800 tons of 
MSW per year; 
generates 25 MW 
electricity; provide 
power to 400,000 
people 

Maine ESOCO Orington 
Inc. or PERC 
Holdings LLC 

RDF Accepts 365,000 tons 
MSW per year; 
generates 54,750 MWh 
electricity; provide 
power to 850,000 
people 

Minnesota Great River 
energy  

a Descriptions are based on company’s claims as published in the company 
website. 
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000–32,000 J/g) [127]. Plastics and rubber have the maximum heating 
values in MSW while food waste and yard trimmings have the lowest 
[127]. Conventional gasification of solid waste takes place in a variety of 
gasifiers or blast furnaces comprising downdraft and updraft fixed bed, 
fluidized bed, entrained flow, and twin bed [84,124]. Fixed bed gasifi-
cation of MSW generates small scale power, less than 1 MW, whereas 
fluidized bed gasification (FBG) of other feedstock can produce 
15–150 MW of power [123,128]. FBG provides great advantages such as 
uniform temperature distribution, elevated operating temperatures, 
ease of operation, and easy scale up [84,129]. Dual fluidized bed (DFB) 
gasifier is another promising technology to produce high-quality syngas 
[130–132]. The char in DFB gasifiers is converted in the combustor, 
while in typical FBGs, char conversion is rather limited [133]. The ef-
ficiency of biomass gasification is either based on energy (lower heating 
value, LHV) or exergy (chemical and physical). The efficiency is defined 
as the ratio between the exergy of the syngas to the exergy of the 
biomass [133]. Concentrated Solar Power (CSP) can be used to supply 
the initiation energy required for gasification and improve the target 
carbon efficiency significantly. For the biomass-to-liquid (BTL) process a 
carbon efficiency of 60–70% can be reached with the utilization of CSP 
[134]. Byproducts such as tar and char are primarily eliminated from a 
gasifier by optimizing the operating parameters such as air or steam to 
biomass ratio, temperature, pressure, gasifying agents, use of catalysts, 
and gasifier design [128,135–137]. Almost 100% of tar removal is 
feasible with catalytic treatments. Nickel catalysts are highly efficient 
but get deactivated due to deposition of carbon on catalyst surface 
[135]. Secondary tar removal methods involve physical or mechanical 
treatment methods outside of the gasifier. Table 4 summarizes current 
advances in secondary tar removal techniques in the gasification pro-
cess. Techno-economic concerns in commercializing gasification are to 

Table 2 
Energy densification and homogenation techniques for MSW.  

Energy densification and 
homogenation techniques 

Remarks 

Refuse derived fuel (RDF) [96, 
97] 

RDF systems use shredding or extrusion, 
magnetic separation, presorting, separating out 
non-carbonaceous and non-combustible matter 
in MSW to produce a uniform, combustible, and 
higher calorific waste for combustion in 
incinerators. 

Torrefaction [98–103] Torrefaction is another means of producing 
energy dense biomass with improved 
grindability, and hydrophobicity. It is 
considered a mild pyrolytic conversion of 
biomass into energy dense storable product. 

Pelletization [104,105] Pellets are mostly produced from biomass waste, 
wood, and waste from agricultural and food 
industries. The quality and durability of pellets 
depends on applied pressure, die temperature, 
particle size of the feed, amount of moisture, 
operating conditions, and presence of binder 
such as starch, wood powder, lignosulphate, etc. 
Waste pellets are mostly utilized for 
incineration/combustion as the combustion 
efficiency of pellets is higher than their raw 
materials. 

Combining Pelletization with 
torrefaction/RDF [106,107] 

Modification of carbonized RDF or terrified 
biomass by thermal pretreatment generates 
pellets with increased energy density and 
uniformity in size. 

Solid recovered fuel (SRF) [108] SRFs are produced by shredding and blending a 
mixture of plastic and paper materials and then 
compressing it into a solid form; calorific value 
of SRF is very high; also used for co-firing with 
coal in cement kilns 

Hydrothermal carbonization 
(HTC) [109,110] 

Thermochemical conversion that converts wet 
biomass into hydrochar of higher heating value 
without pre-drying; Hydrothermal liquefaction 
(HTL) and hydrothermal gasification (HTG) are 
upgraded forms of HTC  

Table 3 
Current operational MSW gasification technologies in the US states.  

Gasification 
Typea 

Remarksa Location WTE Operators 

Modular 
Gasification 
[113,114] 

Accepts untreated 
MSW; no pre- 
treatment steps 
needed; accepts 
loose, bagged, or 
pelletized waste; 
accepts 365–730,000 
tons MSW per year; 
operates on different 
feedstocks like tires, 
mattresses, furniture, 
and construction 
debris; two-stage 
biomass conversion 
to electrical energy; 
first step gasification 
at 450–550 �C; 
second step 
combustion with 
oxygen at 
982–1093 �C; simple 
design; custom 
scalability; loads 
1102.31 tons MSW 
per combustion 
cycle; 95% volume 
reduction; generates 
super-rich syngas & 
ash; minimizes NOx 
emissions, 
particulates, and 
toxic volatile metals; 
mostly used for 
waste destruction 
with capability for 
power production 

Idaho, 
Alaska 

Dynamis 3.0 Thermal 
Conversion 
Technologya 

Gasification in 
fixed bed 
gasifier [115, 
116] 

Accepts wide variety 
of MSW like 
packaging, grass 
clippings, furniture, 
clothing, bottles, 
food scraps, 
newspapers, 
appliances, paints, 
batteries, tires, 
medical waste, 
construction & 
demolition materials 
and hazardous 
waste; accepts 
4022–36,500 tons 
MSW per year; 
feedstock is shredded 
before feeding; 
generates energy- 
dense syngas; ultra- 
high temperature 
around 2200 �C; use 
purified oxygen 
(contrary to 
nitrogen-rich 
ambient air); has 
zero direct emissions 

California, 
New Jersey 

Sierra Energy’s 
FastOx® gasification 
systema 

Atmospheric 
Circular 
Fluidized Bed 
gasification 
[117] 

Accepts biomass like 
wood chips, bark, 
sawdust, RDF and 
switchgrass; 
gasification 
temperature is 
830 �C in one vessel 
using steam; high 
throughput system 

Ohio, 
Vermont 

The BCL/SilvaGas™ 
(earlier called BCL/ 
Ferco) technology 

(continued on next page) 
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meet projected energy production, revenue generation, emission targets, 
and reduce operation and maintenance costs. Secondary tar removing 
methods provides economically viable and simple solutions for 
improving the gasification process. 

Advantages: Gasification is a cleaner thermochemical option than 
incineration [114,115]. The reaction conditions inside a gasifier is 
reductive which prevents formation of dioxins, furans, and NOx and also 
improves the quality of solid byproducts like prevents oxidation of 
metals, and generates inert and vitrified ash [141]. Syngas after proper 
cleaning and scrubbing generates superior quality fuels and cleaner 
energy [141]. Clean syngas can be converted by Fischer-Tropsch 

synthesis to liquid fuels for use in internal combustion engines [142]. 
Disadvantages: Requires a series of syngas pre-treatment and cleaning 

that adds challenge and cost [112,124,143,144]. Gasification of waste 
using catalysts improves the yield and purity of syngas; nevertheless this 
increase the production cost [145–147]. Gasification is more suited for 
homogeneous wastes (such as wood chips, waste tires, paper and card-
board, and plastics); the heterogeneous nature of MSW makes gasifica-
tion and syngas cleaning more challenging. To increase the heating 
value, gasification may require preprocessing of waste by shredding and 
densification using steps like RDF, torrefaction, and pelletization [99]. 
Though gasification is a well-established technology it needs to deal 
with tar, char, and particulates in the syngas [135,148–150]. Tar can 
condense at low temperatures and clog the downstream pipes and 
equipment [137]. Companies have not yet overcome these challenges, 
hence not many large-scale stand-alone waste gasification plants can be 
found in the US or the world. 

2.1.3. Plasma assisted gasification 
There is an increasing interest in plasma-assisted gasification of MSW 

in the US [151,152]. Plasma gasification can use a range of waste types 
including MSW, tires, and hazardous waste [121,153,154]. This tech-
nology uses an AC or DC plasma torch as a heat source to pyrolyze solid 
waste components into syngas [153]. The heat energy is generated by a 
plasma torch which passes an electric current through a gas, usually air 
or oxygen used for oxidation [155,156]. Fluidized bed plasma gasifi-
cation in solid waste is an emerging and promising technology which 
should enhance performance of gasification [157]. 

Advantages: It is efficient and a cleaner WTE technology. The plasma 
stimulates greater syngas yields than regular gasifiers. It operates at very 
high temperatures, often greater than 5000 �C, and the inorganic waste 
components are removed as inert vitrified slag, with minimal toxic 
element leachability [151,158]. The amount of toxic materials in the 
product syngas is much lower than incineration and conventional gasi-
fication techniques. Additionally, plasma gasification exhibits much 
lower slag leachate toxicity than incinerator ash in landfills [159]. 

Disadvantages: Although this technology was recognized in some 
metals and chemical industries, its use in solid waste is relatively recent 
[160]. No commercial MSW plasma gasification technology is known to 
be operational in the US so far, most of these systems are currently still in 
demonstration or experimental validation stage for industrial and pilot 
scale use [59,154,161,162]. PyroGenesis Canada Inc. installed and 
operated the first commercial plasma gasification system at the US Air 
Force base for processing MSW, hazardous, and biomedical waste and 
generated electricity from the syngas [163]. Currently this facility is not 
in regular operation [164]. US military bases are therefore exploring the 
feasibility of the available WTE techniques for waste management so-
lutions at their installations [5]. A few projects in the developmental 
stage include InEnTec Chemical LLC, Geoplasma Inc., Green Power 
Systems LLC, and GasPlasma technologies [165–167]. 

2.1.4. Pyrolysis 
Pyrolysis is another attractive substitute to MSW incineration in the 

US. The rapid development of pyrolysis technology commonly called 
plastics-to-oil could contribute USD billions to the US economy [168]. 
RES Polyflow based in Ohio is an industry leader converting plastics and 
mixed polymers pyrolytically to fuels without significant sorting or 
cleaning [169,170]. Pyrolysis thermally degrades the polymers and 
plastics containing large chain hydrocarbons in the absence of external 
air or oxygen supply producing a mixture of combustible gas, liquid 
bio-oil, tar, and char at high temperatures of 300–600 �C [112]. Cata-
lysts, if used in pyrolysis, improve the product yield and reduce the 
energy need for the process. Various catalysts range from nickel and 
ruthenium built catalysts, zeolites, and dolomite [171,172]. Pyrolysis 
has also gained significant attention owing to high liquid yield under 
high heating rates, a reaction temperature of 425–600 �C and short 
residence time of vapor in the reactor [63]. Pyrolytic heating can be 

Table 3 (continued ) 

Gasification 
Typea 

Remarksa Location WTE Operators 

Bubbling 
fluidized bed 
gasification 
and 
combustion 
[117] 

Accepts biomass, 
RDF and MSW; 
gasification of 
feedstock at 
800–850 �C 

Maryland MTCI’s 
PulseEnhanced™ 
steam reforming 
gasification 

Entrained-flow 
steam 
gasification 
[118] 

Accepts biomass; no 
tar formation; 
modular gasification 
system 

Texas and 
Louisiana 

Brightstar Synfuels 
Co. 

Downdraft 
moving-bed 
gasification 
[118] 

Accepts biomass; 
operates at 982 �C 

North 
Carolina 

Thermal 
Technologies Inc. 

Updraft 
gasification 
[118] 

Accepts biomass, rice 
husk, switch grass, 
paper mill sludge, 
rice straw, bagasse, 
and poultry litter; 
generates electricity 
and heat 

Oklahoma 
and 
Arkansas 

Primenergy Inc. 

Air-blown, high 
pressure 
gasification 
[118] 

Accepts MSW, RDF, 
tires, sludges, 
biomass, etc.; 
generates power; 
mass production 
technology 

Texas Cratech Inc. 

Modular 
gasification 
[119] 

Accepts MSW and 
biomass; HelioStorm 
ionic gasification 
system for small 
scale energy 
generation; Hyper- 
high temperatures of 
10,000 �C; integrate 
WTE with other 
technologies like 
solar power, wind 
power and microgrid 
energy storage 

Virginia Cogent Energy 
Systems Inc.  

a Descriptions are based on company’s claims as published in the company 
website. 

Table 4 
Current advancements in secondary tar removal techniques in gasification.  

Tar removal techniques Advantages 

Nickel/coalchar and Ni/ 
woodchar catalyst [138]  

� Removes 97% of tar in syngas; cost-effective; 
catalyst gets deactivated later (tar conversion/ 
reforming with catalysts) 

Bio-oil scrubber and char-bed 
filter [139]  

� Overall 98% of tar is removed of which 81.5% is 
removed by char-bed filter; cost-effective; use 
gasification byproducts for tar removal (tar 
removal by gas washing and adsorption) 

Passing over hot char 
particles [140]  

� Removes 75% of tar at 800 �C (by adsorption)  
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accomplished by conventional or by microwave means [173–176]. 
MSW is an efficient feedstock for pyrolysis, and the process can be 

commercialized to obtain high grade fuel [117,177,178]. A co-pyrolysis 
of different components of MSW observed that synergistic interactions 
of various MSW components, especially plastics, produce fuels with high 
heating values comparable to conventional fossil fuels [63]. Most of the 
industrial MSW pyrolysis facilities are integrated with gasification or 
combustion processes [179]. The reported pyrolysis reactors include 
fixed-bed, rotary kiln, fluidized-bed, and tubular reactors, but only ro-
tary kiln and tubular reactors are applied to scale-up facilities 
[180–182]. The output from commercial pyrolysis systems is mainly 
power or heat; bio-oil, reformed syngas, and char. The char from the 
pyrolysis of MSW is of high calorific value and thus a potential solid fuel 
source. 

Advantages: The feedstock is heated directly by conventional or by 
microwave means and there is no need for feedstock shredding. The 
pyrolysis process can be used for large scale commercialization due to its 
low-cost production and flexibility. Natural catalysts like char, zeolites, 
and dolomites are readily available and increase the efficiency in py-
rolysis [63]. 

Disadvantages: Physical separation of the incombustibles (metal and 
glass) beforehand, avoids the adverse effects during pyrolysis. 
Requirement of catalysts increases costs and some natural or synthetic 
catalysts have some limitations due to the structure, physical and 
chemical properties. For example, impurities and contaminants in the 
heterogeneous MSW can deactivate the catalysts in the feedstock. Syn-
thetic catalysts like nickel and ruthenium are high cost and get deacti-
vated at a much faster rate than the natural catalysts [63]. Temperature 
is kept relatively high to maintain catalysts in optimum particle size 
range and in the activated form. The char produced from pyrolysis could 
be contaminated with heavy metals and organic pollutants. MSW py-
rolysis pygas could be contaminated with undesirable gases such as HCl, 
H2S, SO2, and NH3. Pyrolysis facilities employ emission control devices, 
to measure and improve the quality of the gas, liquid and char products 
to make MSW pyrolysis a more environmentally beneficial process 
[178]. 

2.2. Non-thermal treatment options 

Landfilling and anaerobic digestion with methane gas recovery are 
the most commonly used non-thermal methods of WTE generation in the 
US [183]. The process is more efficient for wet and decomposable wastes 
like food waste, wood, agricultural residues, and sewage sludge and 
utilizes microorganisms to carry out the degradation of organic matter 
[8]. 

2.2.1. Landfilling 
Landfill with methane gas recovery is still the dominant solid waste 

disposal technology in North America [2]. Landfills are gradually 
becoming full near major cities and reaching their max capacity. For 
example the Miramar landfill in San Diego, California is the only 
regional active dumping site occupying 607 ha of land [184]. This 
landfill will reach its maximum capacity by 2022. Efforts are being made 
to increase the lifespan of this landfill to 2030 using a new trash 
compaction method and applying regulations, incentives and fee hikes 
to raise the recycling rates [184]. Fortistar Methane Group LLC invested 
in utilizing Miramar Landfill’s biogas for generating 51,224 MWh net 
power for the local communities [185]. Landfilling is often more 
economical than burning waste in incinerators [186–188]. Traditional 
landfilling involved dumping MSW into pits and then burying it to 
decompose naturally over years. The US-EPA regulations on landfills, 
based on the Resource Conservation and Recovery Act of 1976, made 
construction and operation of most local dumps illegal [189]. The re-
quirements for current operating landfills are to minimize odor, elimi-
nate any seepages of leachate, and lessen greenhouse gas emissions by 
burning them off. 

Today’s controlled and sanitary landfills are technologically more 
advanced with leachate and landfill gas (LFG) management [7]. Landfill 
managers are employing new efficient solutions, such as aeration of 
landfill to accelerate MSW stabilization and controlling methane and 
nitrous oxide emissions [190]. Landfills use liners to prevent leachates 
entering the underground water. New liner materials like nanosilica and 
clay of low hydraulic conductivity and high mechanical strength are 
efficient for this purpose [191–193]. A study proposed an efficient 
collection and transportation system for supplying MSW that includes 
transfer stations, where MSW is treated mechanically, shredded and 
compacted. The study applied a Multi Criteria Decision Making method 
ELECTRE III and recommended that a centralized WTE facility with an 
adjacent landfill is the economic option for MSW disposal [194]. Current 
technological advancements in leachate treatment and landfilling sus-
tainability are described in details in Table 5. 

Advantages: Most US landfills recover landfill gas (methane) to 
generate heat and electricity for local homes [200]. In US states with 
available land, landfilling is often more economical than incinerating 
waste [187,188]. Landills are potential future reservoirs for resource 
extraction [166,201]. 

Disadvantages: Landfills require large and isolated lands. Near 
densely populated areas in US, many landfills have already closed, and 
availability of any new sites is getting limited and could involve pro-
hibitively long transportation distances. The tipping fees for landfilling 
is higher in some US states than for incineration [202]. The decom-
posing waste emits methane which is a more potent greenhouse gas than 
carbon dioxide [190]. Furthermore, landfills also produce biogenic 
carbon dioxide, non-methane volatile organic compounds, as well as 
smaller amounts of nitrogen oxides and carbon monoxide. Additionally, 
ground water contamination by hazardous leachate, as well as health 
concerns caused by malodor and gases, make landfills undesirable [191, 
192]. 

2.2.2. Anaerobic digestion 
Anaerobic digestion (AD) or bio-methanation in the US regions 

currently needs exploring for large scale energy generation. The US has 
over 2100 biogas production facilities of which 247 are for AD on farms, 
and 38 are standalone operations utilizing the biomass from local waste 

Table 5 
Recent technological advances in landfilling of waste.  

Technological advancements in Landfill Remarks 

Conversion of landfill waste to activated 
carbons using microwave irradiation 
and chemical activation steps [195]  

� Activated carbons are of high utility in 
many technological areas, helps in 
revenue generation, reduce waste 
volume and increase landfill capacity 

Combined treatment of landfill leachate 
with sequential persulfate and Fenton 
oxidation [196]  

� Decolorization and demineralization is 
effective in treating highly colored 
effluents 

Treatment of landfill leachate 
employing Fenton oxidation with air 
stripping, and enhanced coagulation 
[197]  

� Air stripping removed 51.50% of 
chemical oxygen demand (COD), 
74.60% of biochemical oxygen demand 
(BOD), and 97.60% of ammoniacal 
nitrogen  

� Fenton oxidation removed 67.70% of 
COD, 92.30% of BOD, and 14.90% of 
Hg  

� Coagulant removed 55.98% of COD 
and 77.68% of Hg  

� Overall leachate removed 90.80% of 
COD, 98.0% of BOD, 97.60% of 
ammoniacal nitrogen, and 82.68% of 
Hg 

Fenton oxidation with electrochemical 
oxidation (electroFenton process) 
[198]  

� Removes 92% COD and 93% color 
using aluminum electrodes 

Landfill leachate removal using hybrid 
H2O2 oxidation and adsorption in an 
activated carbon bed [199]  

� Removed 97.3% COD by the hybrid 
treatment by H2O2-granular activated 
carbon  
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generators [203]. Remaining AD units are at water resource recovery 
facilities [204]. Table 6 describes the few current operational standalone 
AD technologies in the US. 

The feasibility of AD is already accepted for small scale use on farms 
and local organic waste; however, development is still ongoing for MSW 
feedstock for pilot scale use [205–207]. AD is compatible with only the 
source-separated organic matter of MSW [8,208,209]. The process in-
volves microbial decomposition of organic matter in the absence of air 
but in the presence of high moisture to recover biogas and enriched 
compost [8,210]. Produced biogas primarily contains methane, along 
with carbon dioxide, and trace impurities. It can be upgraded to pure 
methane (higher calorific value) by the removal of carbon dioxide, 
water, and other trace elements. Anaerobic digesters operate at different 
temperature ranges such as 30–37 �C for mesophilic and 50–60 �C for 
thermophilic [204]. Thermophilic digesters are more expensive and 
difficult to operate but needs less time to process feedstocks. Mesophillic 
digesters are more flexible in operation and maintenance, but deactivate 
less pathogens [204]. In spite of having many industrial methods of AD, 
there is still room for further improvements, both in the process and in 
the pre- and post-treatment steps [205,218–220]. A two-phase AD 
(TPAD) displays superior methane production rates than single phase 
AD [221–223]. An economic feasibility study of a pilot scale TPAD of 
MSW blend observed the effects of digestion temperature, fuel content of 
digester feed, loading rate, RDF particle size and pretreatment with a 
cellulase or diluted NaOH or lime on the digester performance [224]. 

Dry fermentation is emerging as an alternative solution where water 
is not needed. The feasibility of dry fermentation of MSW has been 
investigated by several research groups [218–220]. The rate of 
bio-gasification of dry-solid feed is always slow. The gasification process 
can be accelerated in dry-solids fermentation by slightly increasing the 
moisture content of the MSW bed later to allow filtration and recircu-
lation of bed leachate. AD needs continuous monitoring and progressive 
automatic control [221]. The profitability of this technology should be 
suitably analyzed prior to building a WTE plant. 

Advantages: Biogas may be used as cooking gas, household heating 
fuel, power fuel cells, or combusted for generating electricity [222,223]. 
The compost or digestate is used in agriculture and soil amendments 

[224]. 
Disadvantages: AD faces challenges related to low biodegradability of 

some wastes like lignocellulosic biomass, accumulation of solids, 
blender malfunction, slow digestion rate, incomplete degradation of 
large particles, and digester shut downs [225–230]. These lead to poor 
methane yields, low energy production, high maintenance, and oper-
ating costs, and eventually high methane price. Moreover, sometimes 
the addition of an external water source is needed to produce diluted 
slurry in large and expensive digestion tanks. The digestate needs sig-
nificant processing before its use in agriculture [224]. Digesters require 
heating in cold climates [231]. Digesters also face difficulty in con-
struction and prevention of gas leakage [231]. Moreover AD reduces the 
volume of waste by about 50% and needs costly biogas cleanup [232]. 

3. Modeling and simulation in MSWTE evaluation 

Optimal design of MSWTE systems entails mathematical modeling 
and simulation tools. The use of models has become almost inevitable in 
waste management decision-making. Computer codes and models based 
to assist incinerators/gasifier designs [233,234], for evaluating con-
centration of air pollutants [235], landfill gas to energy system [236], 
life cycle assessment of environmental impacts of MSW incineration 
[237], and efficiency of syngas generation [238], are all found in the 
literature. When properly executed, these models can accurately portray 
problems such as short-circuited flows, dead zones, recirculation zones, 
and other conditions that can significantly affect the performance of the 
WTE system. Models were also used to predict the calorific value of MSW 
components [239,240]. Available models range from relatively simple 
to complex systems [241,242]. Models on cost analysis of MSW man-
agement helped to estimate both economic and environmental costs 
[243]. The capacitated vehicle routing problem model was developed 
for waste collection and route optimization [244]. Over the last decade 
modeling has evolved as a useful technique in solid waste management 
systems [245,246]. Integrated models of biomass gasification with solid 
oxide fuel cells (SOFCs) showed efficiency in predicting the performance 
of energy recovery contained in the syngas [247]. Modeling of fluidized 
bed gasifiers is considered challenging owing to multiple mathematical 
complexities in hydrodynamics of fluidization and phase rules 
[248–250]. Accurate forecasting of MSW generation is essential for the 
design and operation of an efficient MSWTE system. Application of 
machine learning algorithms, specifically decision trees and neural 
networks have been successfully used to develop models of MSW gen-
eration with good prediction performance [251]. The WTE 
decision-making process can benefit from the modeling and simulation 
tools for optimizing the technical parameters and cost factors using a 
techno-economic approach. 

3.1. Techno-economic analysis (TEA) 

The technical and economic feasibility of any new WTE technology 
depends on an in-depth understanding of the process steps, chemical and 
physical parameters, as well as operational, maintenance, and capital 
costs. Simulations stand as useful tools in carrying out TEA of MSWTE 
systems [252]. Advanced Simulator for Process Engineering (Aspen) 
Plus is a problem-oriented input program based on mass and energy 
balances that has been used for optimizing the WTE process steps and 
calculating the costs [253]. The Aspen Plus software accounts for solids 
in addition to vapor and liquid streams. The composition and yield of the 
gasification products are modeled by considering thermodynamic 
equilibrium or Gibbs free energy minimization. Aspen Plus simulator is 
equipped with large data containing various stream properties required 
to model the material streams in a gasification plant wherein in-house 
data can be added to update the process. FORTRAN subroutines are 
developed, wherever more refined calculations are needed [133,254]. 
Aspen Plus models assess the mass and energy flows and incorporate 
principal conversion reactions and operating parameters of the reactor 

Table 6 
Examples of few current operational stand alone anaerobic digestion technolo-
gies in the US states.  

Standalone Anaerobic 
Digesters 

Location Remarksa 

RefCom (refuse converted 
to methane) [211] 

Florida  � Accepts MSW; high-rate digestion 
process; single-stage, low-solids, 
complete-mix reactor with mechanical 
mixing and no Heating; process 33,000 
tons per year; density separation in a 
hydrocyclone; faced problems due to 
clogging 

Fluence Corporation 
[212] 

New York  � Accepts MSW; continuous stirred tank 
reactor; Reduction of greenhouse-gas 
emissions 

PlanET Biogas 
Technology [213] 

New York  � Accepts MSW and wide range of 
organic waste like manure, crop 
residues, food waste, or animal by- 
products; generates biogas or 
biomethane 

Kompogas® Plants 
[214–216] 

California  � Accepts degradable portion of MSW; 
process up to 36,500 US tons of waste 
per year; digestion at 55 �C; generates 
high-grade fertilizer; horizontal plug- 
flow digester 

Michigan State 
University’s anaerobic 
digester [217] 

Michigan  � Digest food waste and dairy manure; 
process 17,000 tons of organic waste 
each year; generates electricity from 
biogas for 10 buildings on campus  

a Descriptions are based on company’s claims as published in the company 
website. 
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[80,133,255–262]. Several TEA models of biomass WTE based on Aspen 
Plus are known in the literature [263–265]. Table 7 presents de-
scriptions on some of the studies reviewed, modeling scheme and major 
remarks. 

3.2. Life-cycle assessment 

In the last decade, life cycle assessment (LCA) models have been 
extensively used to evaluate the environmental impacts from solid waste 
management systems, including incineration, gasification, pyrolysis, 
and anaerobic digestion (AD) and landfill with energy recovery [245, 
246,271]. In LCA all material and energy inputs or resources, and out-
puts (emissions to air, water, land and useful products like heat and 
power) are identified and quantified [272–275]. Without sufficient 

understanding of assumptions an LCA model can significantly affect the 
conclusions of studies, and lead to discrepancies in impacts and poten-
tially lead to contradictory results [276]. 

The LCA modeling of solid waste is data intensive, and the quality of 
data governs the impact and validity of the model’s output [277–279]. 
The data source and completeness influence the output of WTE process 
analysis. The generic LCA models of WTE are mostly constructed using 
popular tools such as SimaPro [280,281], GaBi [280,282–284], 
Umberto [285–287], and EASEWASTE [280,288–291] software pack-
ages. Most of these tools host the Ecoinvent, a database containing more 
than 2500 processes [292]. OpenLCA is an open source generic LCA 
software widely used for life cycle assessment [293]. 

These tools determine mass and energy flows and contain modules to 
include different waste treatment processes [294,295]. For WTE, the 
inputs and outputs of biomass and energy are used to estimate cost of 
energy around processes, raw materials, pumps, pipes, transportation, 
and construction of the processing plants. Emissions from processes are 
also accounted for [296,297]. 

The technical literature referring to the LCA of MSWTE methodolo-
gies for a few studies is illustrated in Table 8. 

3.3. Reverse logistics modeling 

An important step in the conceptual development of any WTE project 
is the design of logistics, collection area determination and capacity 
proposal. This is often covered by so-called “reverse logistics” modeling 
[308,309]. Reverse logistics process as stated by American Reverse Lo-
gistics Executive Council is “the refurbishing, reclaiming, reusing or 
recycling materials or finished products and related information back to 
its origin for recapturing the asset value or for proper disposal” [310]. 
The increase in packaging materials caused a waste disposal and envi-
ronmental concern and many countries are developing policies geared 
towards reverse logistics to recuperate materials for recycling and reuse 
[311]. Significant cost savings and optimization of the WTE process 
steps can be achieved by analyzing the parameters such as collection 
site/districting/zoning, collection patterns, cost of waste collection 
(equipment and manpower), location of transfer stations, processing 
facilities, and landfills, shipping of waste flow, and ratio of recycling to 
WTE alternatives [309]. Stochastic parameters such as generation of 
waste and time to transport the waste as well as socio-political in-
fluences needs to be accounted for in future reverse logistics analysis of 
WTE projects [309]. 

4. Trends and perspectives 

4.1. Techno-economic comparative assessment of the WTE studied 

The capital cost of thermal technologies (Mass-burn/RDF, gasifica-
tion, and pyrolysis) is comparatively not much different; it is estimated 
between 0.15 and 0.4 Millions $ per “Ton-per-Day (TPD)” of waste (300- 
1000 TPD facility) and $7,000–11,500 per kW generated (15 MW fa-
cility) [312,313]. Major differences occur in operation and maintenance 
costs (O&M). One source estimates $8.33 per MWh of energy generated 
in Mass-burn facilities; about $20 million annually for a 1000 TPD fa-
cility. Costs could also involve contingencies such as fire accidents, 
breakdowns and air emissions exceedance [314,315]. There are few 
information sources on O&M costs of gasification and pyrolysis tech-
nologies in US since gasification is still on trial phases. Estimates of 
vendors range between $40-$100 per ton [316,317]. Plasma gasification 
uses electricity which is an expensive energy source in US and gasifi-
cation systems are prone to corrosion due to high temperature oxidation 
[318]. Gasification produces 65% less residue than incineration, which 
could translate into less disposal costs [319]. For these thermal tech-
nologies, the net energy, revenues, and operating costs are dependent on 
composition of the waste stream. While plastics are high calorific waste 
preferred by thermal systems operators, there is a debate in US that 

Table 7 
Recent Techno-Economic Analysis models using Aspen Plus simulator.  

Models of WTE technology Remarks 

Model for fluidized bed and entrained 
flow gasification of biomass (2018) 
[266]  

� The thermal efficiency of entrained flow 
is 11% higher than fluidized bed (45%)  

� The minimum H2 selling price for 
fluidized bed process is $0.3 per kg H2 

lower than the entrained flow  
� To make the least hydrogen selling price 

of biomass-based plants equivalent to 
comparable natural gas-based plants a 
biomass price of $100 per tonne, either a 
$115/tonne liquefied CO2 or a minimum 
of $5/GJ natural gas price is required  

� Sensitivity analysis evaluates the impact 
of feedstock cost on the minimum 
hydrogen selling cost 

Model for fluidized bed gasification of 
biomass (2018) [267]  

� Comparative TEA of different 
technological alternatives in Biomass 
Integrated Gasification Combined Cycle 
(BIGCC) power system with CO2 

emission control  
� Sensitivity analysis assess the impacts of 

availability factor, capital cost, and 
operational and maintenance cost on the 
power systems  

� Monte Carlo shows the uncertainty in 
simulation in different operational 
periods. It shows a 86% confidence 
interval based for less than 4 cents/kWh 
electricity distribution cost  

� Technical assumptions: Equivalence 
ratio-0.27, gasification temperature - 
810 �C, pressure - 1 atm, and carbon 
conversion ratio - 90.5%  

� Biomass price lower than $10 per ton air 
gasification without CO2 capture and 
storage (CCS) is comparable to 
commercial electricity generation 
technologies, but with CO2 removal is 
$90 per ton then using CCS technology 
reduce cost of power plant 

Model for integrated anaerobic 
digestion with torrefaction of 
biomass (2018) [268]  

� Selling price of torrefied biomass pellets 
reduced from 199 euros/ton for 
standalone torrefaction to 185 euros/ton 
for the integrated process  

� Feedstock price and total investment are 
sensitive input parameters  

� The integrated process has better 
economic and technical feasibility 

Model for entrained flow gasification 
of biomass (2018) [269]  

� 1 kg dry biomass yield 18.5 mol of 
methanol  

� Steam and CO2 use in gasification gives 
high yield 

Model for fluidized bed fast pyrolysis 
of biomass (2018) [270]  

� Optimal temperature between 400 and 
450 �C, the flow rate of 45 L/min and 
21.3 g of biomass feeding per injection 
gives maximum bio-oil yield 

� $0.55/liter bio-oil selling price is prof-
itable for plant size of 1000 tonnes/day  
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plastics and paper should be recycled instead of being burned [317]. All 
these thermal systems require a water supply, sludge treatment, and 
chemicals, which is an additional logistical and regulatory burden. In 
water-stressed regions of the southwest US such as California, the water 
footprint of thermal systems could be a concern. Thermal combustion 
and gasification of chlorine-containing materials such as plastics and 
textiles produces toxic dioxins and furans and these have been touted as 
an air pollution control challenge of MSWTEs [312,314]. Occasional 
breach of permitted limits has been reported for existing systems and 
creates a public relations nightmare for operators. The ability to 
de-conflict technical, environmental, economic and regulatory aspects 
for gasification is key for future success. Integrated systems such as a 
wastewater treatment plant and a waste-to-energy system have been 
suggested. 

4.2. Environmental and policy analysis 

Most of commercial WTE were built in 1980s and 1990s, after the 
passage of the 1978s Public Utility Regulatory Policies Act (PURPA) to 
promote the energy security and conservation after the oil crisis 
[320–322]. Tax incentives, funding and the approval process made it 
possible to build multiple dozens of WTE facilities. Those facilities are 
now aging and need investments. Some struggled to meet design spec-
ifications and were forced to close or operate under capacity. Mass burn 
incinerators faced opposition from various citizens groups and for 20 
years no new large facility was built [87,323–325]. During that period 
globalization was in full swing and facilitated export of waste to 
developing countries (mostly in China) and new advanced landfills were 
built in US [326]. A recent ban of waste import in China and issues with 
dwindling landfill space near population centers in US have revived 
interests in WTEs [326]. There are dozens of planned facilities in US, 
mostly in island US territories such US Virgin Islands, Guam, Puerto 
Rico, and Hawaii [327]. However, the approval process is an uphill 
battle because of public opposition, the time it takes for impact assess-
ments and the approval process. In addition, WTE is viewed as a 
renewable energy only in 34 states and in others it does not get in-
centives meant to promote the renewable energy [24]. Detractors claim 
investments in WTE will undermine “reduce and recycle” efforts and 
reverse gains in air quality improvements. In US the national air quality 
standards can make it impossible to site WTE in some areas, and face 
stringent air pollution regulations in others. 

Siting WTE in poorer neighborhood has also raised environmental 
justice protests. The Wheelabrator’s and Covanta’s Mass burn facilities 
in Baltimore and Philadelphia are always cited in News Media as 
example of worst cases of WTE and environmental justice [322,328]. 

In near future, most states could come up with integrated waste 
management that include incentives for separation at the source, recy-
cling facilities, advanced WTEs, and more trade in waste management 
services across state lines. 

Policy makers can provide more economic incentives and tax credits 
to Renewable Obligation Certificates (ROCs) holders for renewable 

Table 8 
LCA models of MSWTE technologies.  

Models of WTE technology Remarks 

Model for comparison of co- 
combustion, and anaerobic digestion, 
with incineration (2011) [298]  

� Incineration with energy recovery was 
preferred over anaerobic digestion  

� For co-combustion waste composition 
and flue gas cleaning were essential  

� Energy production from mixed high 
calorific waste and source separated 
organic waste was evaluated 

Model for comparing anaerobic 
digestion, incineration, pyrolysis, and 
gasification (2019) [299]  

� Anaerobic digestion and gasification 
contributed lower to global warming 
and acidification than incineration  

� A strong relation was identified 
between a country’s economy or 
income and rate of LCA analysis of WtE  

� North American and EU member 
countries were evaluated  

� LCA results varied with waste 
structural characteristics, calorific 
value, gas cleaning systems, emission 
control, WTE technology employed, 
and uncertainty analysis, amongst 
other factors  

� A gap was identified in LCA analysis of 
polymers and electronics WTE 
treatment 

Model for environmental assessment of 
grated firing incinerator (GFI) and 
fluidized bed incinerator (FBI) (2010) 
[290]  

� GFI contributes less to global warming 
potentials than FBI  

� Incineration of MSW with lower 
heating value requires presence of 
secondary fuel  

� GFI has higher net power generation 
than FBI 

Model for comparison of climate 
impacts of landfill and WTE (2010) 
[300]  

� Crossover rate was influenced by 
composition of waste, heat capture, 
electricity generation efficiency, scrap 
metal recovery, greenhouse gas 
intensity, and LCA time horizon.  

� Greenhouse gas emissions were 
observed from both WTE and landfill 
methane  

� Neither WTE nor landfill were carbon 
neutral  

� Landfill with effective methane capture 
is better for the climate than burning 
MSW in WTE 

Model for comparison of thermal 
treatments of waste (2009) [301]  

� Thermal treatment and energy 
generation from waste can be 
optimized for reducing emission of 
greenhouse gases 

Model for comparison of incineration 
and anaerobic digestion (2007) [302]  

� Anaerobic digestion resulted in higher 
net energy output compared to 
incineration  

� Anaerobic digestion had more potential 
impact for nutrient enrichment than 
incineration 

Model for MSW landfill gas to energy 
(2007) [303]  

� Evaluating environmental 
consequences of landfilling  

� Large centralized landfill and 
electricity production is preferred over 
several small, localized landfills  

� Global warming potential depends on 
gas collection efficiency 

Model for comparison of integrated 
biomass gasification combined cycle 
(IBGCC) with similar coal gasification 
(ICGCC) (2005) [304,305]  

� Assessment showed reduction of 
greenhouse gas emissions and natural 
resource depletion with use of biomass 
in gasification  

� Results were presented according to 
Eco-Indicator 95 impact assessment 
methodology 

Model for comparing anaerobic 
digestion and landfilling of food 
waste (2012) [306]  

� Anaerobic digestion of food waste was 
found preferable compared to 
landfilling  

� Environmental impacts decreased with 
better recovery from waste  

Table 8 (continued ) 

Models of WTE technology Remarks 

Model for comparing landfilling, 
incineration, recycling, digestion and 
composting using SimaPro 4.0 (2005) 
[307]  

� Combustible and recyclable or 
compostable fractions of MSW was 
considered like food waste, newsprint, 
cardboards, polyethylene, 
polypropylene, polystyrene, polyvinyl 
chloride and polyethylene 
terephthalate  

� LCA analysis validated the waste 
hierarchy, recycling-incineration- 
landfilling, based on overall energy 
use, green-house gas emissions, and the 
total weighted results  
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energy practice. Policies should also promote maintaining strict envi-
ronmental emission level standards by imposing higher taxes on carbon 
emission outputs [327]. The governing bodies can also make mandatory 
for WTE investors to evaluate the costs and benefits of their WTE pro-
jects through techno-economic analysis; control assets and resources 
through reverse logistics; and facilitate location of WTE plants near 
MSW sources or city energy distribution infrastructures [142]. Life cycle 
analysis is another comprehensive performance evaluation tool which 
should be mandated in WTE project proposals and reports for identifying 
key determinants and environmental factors [142]. Social acceptance 
can be achieved by supplying the renewable electricity production at a 
lower price than fossil fuel generated electricity. 

4.3. Practical implications of this study 

Major challenges in developing any WTE technology for commercial 
use include capital, plant O&M, controlling the air emissions such as 
dioxins, furans, NOx, SOx, CO, CO2, acid gases, and other greenhouse 
gases. Additional concerns are the solid byproducts like fly ash, slag, 
char, and tar control for proper disposal or further reuse. Syngas, pygas 
or biogas cleaning before use in electricity generation to meet regulatory 
standards add to the overall cost burden. Along with technical chal-
lenges, socio-economic acceptance of the WTE concept by local com-
munities and WTE investors also needs consideration while evaluating 
the viability of any WTE technology. 

Future technologies may include integrating one or more WTE 
techniques to give better energy outputs. These could include plasma 
with fluidized bed gasification, plasma gasification with solid oxide fuel 
cells for generating electricity, gasification with pyrolysis, or anaerobic 
digestion with gasification. An ideal MSWTE technology in US would be 
a cost-effective system that promote recycling, reduces emissions, and 
address the MSW disposal issue in a sustainable manner. 

5. Conclusions 

The US generates the largest amount of waste in the world, recycles 
less (about 25%), and landfills most of the waste (about 53%). The US 
regions without adequate landfill space are considering various 
advanced WTE systems. These systems have to overcome pollution, 
financial, and technical challenges. This review presents various WTE 
technologies including incineration, gasification, plasma gasification, 
pyrolysis, and anaerobic digestion with biogas recovery. The technical 
aspects, advantages, and disadvantages of each technology are high-
lighted. Existing systems that uses mass-burn technology are aging and 
most do not perform well in terms of pollution control and financial 
soundness. High capital cost, operational and maintenance costs, energy 
consumption, pre-treatment steps, and post-generation fuel cleaning, 
make these technologies unattractive to investors. Most gasification 
systems are still at the experimental and trial phases and not much is 
known about their operational success. Many literature sources show 
that they produce fewer toxic residues and air emissions than in-
cinerators. But the operation and maintenance costs of gasification 
systems could be twice or higher due to higher energy consumption, 
cleaning of syngas, and complexity of the systems. There are many 
factors that affect WTE systems in US including economic incentives and 
subsidies from the local governments, amount of tipping fees, revenue 
from selling energy, public acceptance, and environmental regulations. 
These parameters are often optimized using life cycle assessments, 
techno-economic analyses, and reverse-logistics simulations. Trends and 
perspectives on policies, techno-economic aspects, and practical appli-
cations are also discussed in this review. A system that integrates recy-
cling, other infrastructure such as wastewater treatment, minimizes 
emissions, creates jobs, and is profitable, can be successful in the US. 
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