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ABSTRACT 

Chromotomography is a form of hyperspectral imaging that uses a prism to simultaneously record spectral and spatial 
information, like a slitless spectrometer.  The prism is rotated to provide multiple projections of the 3D data cube on the 
2D detector array.  Tomographic reconstruction methods are then used to estimate the hyperspectral data cube from the 
projections.  This type of system can collect hyperspectral imagery from fast transient events, but suffers from 
reconstruction artifacts due to the limited-angle problem.  Several algorithms have been proposed in the literature to 
improve reconstruction, including filtered backprojection, projection onto convex sets, subspace constraint, and split-
Bregman iteration.  Here we present the first direct comparison of multiple methods against a variety of simulatedtargets.  
Results are compared based on both image quality and spectral accuracy of the reconstruction, where previous literature 
has emphasized imaging only.  In addition, new algorithms and HSI quality metrics are proposed.  We find the quality of 
the results depend strongly on the spatial and spectral content of the scene, and no single algorithm is consistently 
superior over a broad range of scenes.   

Keywords: hyperspectral imaging, tomography, chromotomography, backprojection, projection onto convex sets, split-
Bregman method 

1. INTRODUCTION 
1.1 Background 

Hyperspectral imaging (HSI) systems record both the spatial and spectral energy distribution of a scene.  Attempting to 
capture three dimensions of information on a two-dimensional detector array requires some tradeoffs. Conventional HSI 
systems solve this by removing information from the scene to capture two dimensions at a time, using either spatial (slit) 
or spectral filters. This creates issues for changing scenes. Conventional systems cannot handle transient or rapidly 
changing events well. Spectral scanning systems will see the event in at most a few bands, and spatial scanning systems 
might not even notice the event happened at all. 

Tomography estimates an N-dimensional structure from a set of N-1 dimensional projections. Okamoto [1] and Bulygin 
[2] were among the first to propose using this idea to reconstruct a three-dimensional hyperspectral data cube from two-
dimensional projections, but system modeled here is patterned after Mooney [3].  Chromotomography (CT) systems are 
similar to slit-less spectrometers in that the entire scene is viewed simultaneously through a dispersive element. This 
dispersion multiplexes the spatial and spectral information together on the detector.  The spectra of different points in an 
extended scene can overlap, but by rotating the prism one can capture multiple projections which are used to reconstruct 
the data cube. While this method still requires multiple frames (and therefore time), the instrument captures information 
from all bands and all spatial points in every frame. This improves situational awareness and provides an ability to 
measure transient events, as well as boosting instrument throughput. 

As will be discussed below, the limited sampling angles available in CT lead to reconstruction artifacts.  There are 
several algorithms that have been developed to address this, generally by applying additional constraints and 
assumptions.  The principle purpose of this paper is to present a side-by-side comparison of the results of each algorithm.  
Much of the past literature has shown results of one algorithm at a time, using different data.  Previous results have 
shown that CT reconstruction accuracy depends strongly on the content of the scene being imaged [4] [5], so direct 
comparison has not been possible based on previously published results.  In addition to this comparison, several new 
reconstruction ideas were also tried, and will be presented below.       



 
 

 
 

2. THEORY 
2.1 Projections 

For an object represented by the hyperspectral data cube, f (x,y,λ), the CT instrument measures projections in which each 
wavelength layer of the f has been sheared laterally by a wavelength-dependent distance.  We generally represent the set 
of all projections as another 3-D array, g.  Using the vector x to represent the 2 spatial dimension of the image, the image 
(projection) recorded at prism angle θm is 
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Here n ∈ {1,2,...N} is the band number, dn is the scalar shift distance at wavelength λn, and pm = (cosθm, sinθm)T is the 
shift direction for the prism orientation during the mth frame.  The projections are really an integral over wavelength, but 
for convenience we use a sum over the discrete resolvable wavelength bins to approximate the continuous spectrum.  

Notice the shift imparted by the prism can also be thought of as a convolution by an off-center point-spread function.  In 
the Fourier transform space this becomes multiplication by a complex phase, so we can then rewrite equation (1) as 
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Here we use capital letters to denote the Fourier transforms and u for the two-dimensional spatial frequencies.  

Following Brodzik's notation [6], we can represent equation (2) as the matrix operation, 
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where the elements of the M × N matrix A are given by  

 ( )( ) exp 2mn m mA i dπ= − ⋅  u u p  (4) 
The argument u is used above as an explicit reminder that each matrix A is specific to a particular spatial frequency, so 
that equation (3) must be repeated for each u.  We will drop that argument for brevity, so we rewrite equation (3) as  

 G AF= . (5) 
2.2 Backprojection 

Backprojection, or the inverse Radon transform, is the most straightforward method to construct an estimated hypercube, 
fe(x,λn).  There are several ways to implement back-projection.  The simplest conceptually is to shift the  projections 
back by a distance opposite to the shift imparted by the prism.  The shifted projections, g'm(x) = gm(x + pmdn), are 
summed over all prism angles [7].  Because the distance dn is wavelength dependent [8], this is done separately for each 
reconstructed wavelength.  Consider the sum represented by backprojection: 
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Because each gm represents a sum over all wavelengths, this shows that every wavelength in the reconstruction contains 
energy from every wavelength of the object, which leads to spatial and spectral artifacts.  

The more compact notation is to solve this in the Fourier domain via 

 1
eF A G−= . (7) 

Examination of A shows it is rank-deficient for most spatial frequencies, so the Moore-Penrose pseudo-inverse, A+, 
would in general be preferred.   

Unfortunately, the system transfer matrix, A, has a large conical null-space, sometimes referred to as the cone of missing 
information (see [6] for a more detailed discussion).    Thus equation (7) does not have a unique solution, even in the 
limit of noise-free data.  In this case, all reconstruction artifacts are contained within the null space of A.  The remaining 
reconstruction algorithms beyond back-projection are all attempts to use other constraints to deal with this issue.   



 
 

 
 

2.3 Algorithms 

A number of algorithms from the literature have been implemented here.  We will briefly summarize each, but the reader 
is referred to the original papers for more detail. 

1. Backprojection (BPrj):  as described above, this can be done using either the shift-and-add method of equation 
(6) or the Fourier method of equation (7).  In practice we find the both methods agree within the significant 
digits, but the Fourier method is simpler to code as it avoids the extra step of interpolating after shifting images 
by fractions of a pixel.  

2. Backprojection then filtering (BPF):  Deming [9] demonstrates a form of Tikhonov regularization that is 
equivalent to the conventional filtered back projection [10], but more appropriate for the sampling space of a 
rotating prism system.  In this method, the filtered object estimate Fe' is computed from the backprojection 
estimate Fe by   
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where µ is the regularization parameter, B = 2π J0(2πd uλ), and J0 is the zero-order Bessel function.  The Fλ in 
equation (8) indicates a Fourier transform in the spectral dimension.   

3. Projection onto convex sets (POCS):  this is an iterative approach that applies additional constraints to infer 
reasonable information to fill in the null space of A.  In Brodzik's approach [6], the known image content from 
within the range of A is referred to as the transform-domain constraint.  The object-domain constraint is based 
on observing that pixel spectra in hyperspectral images of real scenes tend to be correlated.  This is enforced by 
using singular value decomposition (SVD) to project the spectra onto a basis set of the first K eigenspectra 
(with K≪N).   As implemented here, K is automatically chosen to use the singular values that explain 99% of 
the variation.  

4. Subspace constraint algorithm (SCA):  An [11] presents another way to apply the same conceptual constraints 
used in POCS.  Here, equation (7) to find a direct solution, which is only retained in the region where A is full 
rank and the projections are adequately sampled.  The remainder of the transform-space data cube is filled in by 
again using SVD to limit the number of eigenspectra & eigenimages to use.   

5. Split-Bregman iteration  (SBI):  the above algorithms amount to different computational methods to find a 
least-squared-error solution, or the solution that minimizes the L2-norm error term, 
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2
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If we instead seek to minimize the L1 norm error, we can take advantage of some very fast algorithms [12, 13].  
The L1 norm in this context is generally used as a numerically-stable proxy for the L0 norm, so in minimizing 
this we are effectively imposing a sparsity constraint.  Cooke [14] also demonstrated a highly efficient variant 
of this for the special case of only 8 projections.  

6. Deconvolution (DCnv):  backprojection gives rise to circular artifacts, where the radius of the circle is 
determined by the difference between the reconstruction wavelength and the source wavelength [4].  In three 
dimensions, this is a conic point spread function.  Here, we use the Richardson-Lucy iterative deconvolution 
method [15] to attempt to remove artifacts.  The point spread function was estimated based on the 
backprojection of a broadband point source.  

7. Algebraic reconstruction technique (ART):  this is an iterative method in which equation (1) is applied to the 
estimated object to compute what Colsher calls raysums, rm(x) [16],   
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These are, in effect simulated projections of what the system would measure if our estimate, fe, were the true 
object.  These are compared to the measured projections to create the error estimate E(x) = g(x) - r(x). Because 
this error could come from anywhere in the cube, it is uniformly back-projected to create a new object estimate, 
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where k is the iteration number. 

8. Modified ART (MART):  we propose an approach that, like ART, begins by comparing g to r.  In this 
modification, we apply a correction after each wavelength image is computed, rather than computing the entire 
cube.  The reasoning behind this is as follows.  Imagine the scene contains a number of monochromatic objects 
at distinct wavelength.  The light from each object creates artifacts in all images except the one wavelength 
where the image belongs.  If we had some method to decide which image was correct, we could then forward 
project that image to estimate the object's contribution to g, and then remove it before continuing on to other 
wavelengths.  This method is repeated until the energy remaining in g is below a user-selected threshold (5% of 
the original energy, in the results shown below).  The mathematical expression of this looks much like ART, 
except we now have an opportunity to apply some logic to localize the error sources.  For the results presented 
here, we simply go through each band in order, but there are other options.   

9. Extreme-value reconstruction (EVR):  this is a class of nonlinear methods rather than a specific algorithm.  The 
version proposed here is based on the observation that reconstruction artifacts are always additive.  Consider a 
single pixel in the backprojected image.  If the pixel value is zero for any prism angle, then we assume its 
correct value is zero, and any non-zero values are due to off-wavelength artifacts.  More generally, we take the 
back-projected pixel value that is the minimum over all angles,   
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10. Constrained backprojection (CBP):  Back-projection is based on a sum of shifted images.  Image data that has 
been shifted by the correct distance (because our reconstruction wavelength is in-band to the source) will appear 
stationary with respect to prism angle.  We propose a technique that rejects backprojections on a pixel-by-pixel 
basis if the change in intensity with respect to prism angle exceeds some user-defined threshold.  For similar 
reasons, any pixel (after summing) with a value less than M × threshold is also rejected.    

11. Hybrid constraint: Lastly, we note that some algorithms tend to produce better image quality, while others are 
better at preserving spectral accuracy.  The hybrid method uses the panchromatic image (summed over all 
wavelengths) from one reconstruction as a constraint to renormalize the spectra produced by a different 
reconstruction.  For the results shown below, the hybrid algorithm automatically selected the best results of the 
previous algorithms to use. 

3. METHODOLOGY 
3.1 Simulated data 

Object data cubes were simulated to facilitate quantitative comparison of processed results against a known "truth" target 
cube.  The details of each data cube are described below.  

1. A high-contrast synthetic bar target:  this is a 64×64×64 sparse cube with the following objects embedded in a 
dark field:  (a) a broad-band point source located at image center from bands 2-20; (b) a monochromatic 3-bar 
pattern in band 24, located NW of center; (c) a monochromatic 8x8 pixel square in band 31 at image center; and 
(d) a narrow-band 3-bar pattern in bands 42-48, located SE of center.  These objects, shown in Figure 1, were 
chosen to create high-contrast and high spatial frequencies with a variety of spatial extent and bandwidth.  

2. 3-D Shepp-Logan head phantom (as implemented by Schabel [17]).  Here we use the third dimension, usually 
interpreted as depth, as a surrogate for wavelength.  A 64×64×64 cube was simulated, then zero-padded (to 
simulate the field stop) out to 128×128×64.  Sample images from this cube are shown in Figure 2. 

 



 
 

 
 

    
 (a) (b) (c) (d) 

Figure 1: four single-band images from the object cube 1 to show the primitive objects.  

  
Figure 2:  image slices from the modified 3D Shepp-Logan head phantom.  As used here, each slice represents an image in a 
single wavelength band.   

3. AVIRIS data cube from Cuprite, NV (from 14 Oct, 2010).  The full file was cropped down to 100×100 spatial 
pixels and 31 spectral bands covering the visible spectrum.  This was zero-padded to 200x200 spatial pixels to 
simulate the effects of the field stop.  A small bright spot simulating steady combustion flame was digitally 
added in order to have a region of high spatial and spectral contrast included in the scene.  This was modeled as 
a circle with a radius of 1.6 pixels.  The fireball spectrum is based on a 3,000K blackbody, with a few atomic 
emission lines added to provide spectral features.  Images from the scene and a panchromatic image of the 
extracted cube are shown in Figure 3. 
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(d) 

Figure 3: (a) pseudo-color image constructed from the AVIRIS data cube from Cuprite, NV.  (b) a closer view of the area 
shown in the yellow box of panel a.  (c) false color panchromatic image from object cube extracted from the region of the 
yellow box in panel b. (d) simulated flame spectrum (blue line) added to create the bright spot in panel (c), along with the 
mean spectrum of the background (black line).   

After creating the object cubes, each was forward projected using equation (5) to simulate the effects of an idealized CT 
instrument (i.e. no detector noise, no aberrations, no motion blur, etc.).  The same set of simulated measurements were 
then used as input to all reconstruction methods.   

(c) 



 
 

 
 

Some methods, such as projection onto convex sets, require an estimated object cube as a starting point for iteration.  
The results from back-projection according to equation (7) were use as the starting point for all such cases.  Some 
experiments were conducted to see if there was any significant benefit to using other reconstruction methods to generate 
this input, but initial results showed no clear advantage to this.   For example, using the results of split-Bregman iteration 
as an input to the subspace constraint algorithm did cut the image error nearly in half, but raised the mean spectral angle 
by nearly a factor of 3.   

3.2 Quantifying results 

The example above points out another issue: how to best characterize the quality of the reconstruction results.  There are 
a number of metrics to characterize image quality or spectral accuracy, but the community has not adopted a metric that 
addresses the combination of the two.   

A number of image quality metrics were tested, but the results presented here all use the structural similarity index (SSI) 
proposed by Wang [18], as implemented by the SSIM function in Matlab's Image Processing Toolbox.  SSI compares 
two images--in this case two single-wavelength image slices taken from the original object cube and the reconstructed 
estimate.  Values of SSI can range from 0 to 1, with 1 indicating identical images.  SSI was chosen as a metric because it 
considers not only image brightness, but also contrast and structure.  It is therefore a good indicator of  how recognizable 
an image would look to a human operator.  One drawback to this metric is that it does not handle dark images well 
because of the normalization method.  For example, the low and high wavelength extremes of the 3D head phantom have 
no objects.  Here reconstructed images that contain any energy at all report poor SSI.   

Spectral accuracy is characterized using the spectral angle, SA, which is a measure of the overlap of two vectors, 
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Here a  represents the true spectrum for one pixel of the object and b


 is the reconstructed spectrum of the same pixel.  
Identical spectra produce a spectral angle of 0, while orthogonal spectra give SA = π/2.  In practice, we add a small value 
(equal to the least significant digit) to both numerator and denominator to avoid divide-by-zero issues in dark pixels.    

We have metrics for image quality and for spectral accuracy.  For purposes of comparison, we propose a quality metric, 
Q, that combines the spectral angle (averaged over all spatial pixels) and the image quality (averaged over all bands).  If 
the number of pixels in each image is p×p, we define quality as 
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Note that we use (1-SSI) so that lower scores indicate better performance as with spectral angle.  This metric assumes 
that imagery and spectra are of equal importance, so for some applications it may be more appropriate to construct a 
combined metric that includes relative weighting functions.   

When computing these metrics, we first renormalize the entire data cube to the range [0,1] and crop the reconstruction to 
remove the field stop region of zero padding in the object.    

4. RESULTS 
4.1 Parameter selection 

Several of the algorithms have user-selected parameters.  Values for these were chosen by comparing the quality of the 
results as a function of filter parameter, as shown in Figure 4.   We assume the optimal value will not be known in 
general, so there was no attempt to optimize -- rather, we selected a value that seemed to offer relatively good and stable 
performance over the range of targets used in this study.   



 
 

 
 

    
 (a) (b) (c) 

Figure 4: Parameter selection plots. (a) quality as a function of filter parameter for BPF, compared for all targets. (b) quality 
as a function of splitting parameter for SCA. (c) contour plot of quality in SBI results after 3 iterations for the head phantom 
target (blue = best to red = worst). 

Table 1: Parameter values used in this study.  See references for detail on parameter definitions 

Algorithm Parameter Value Algorithm Parameter Value 
BPF [9] µ - regularization coeff. 100 POCS [6] N - # of iterations 

L - singular value threshold 
10 
0.99 

SCA [11] λ - Splitting coefficient 0.1 SBI [18] µ - regularization const. 
λ - Splitting coefficient 
N - # of iterations 

0.5 
2 
10 

ART [19] N - # of iterations 10 MART N - # of iterations 10 
 
4.2 Image quality 

Figure 4 shows example single-wavelength images from different reconstructions of the bar target.  Each row of images 
are for the same wavelength, and each column are from the same reconstruction method (or from the original object, in 
the far left column).  For brevity, not all algorithms or wavelengths are shown here.  These images demonstrate the off-
wavelength artifacts.  Most reconstruction methods recover the shape of the bright objects fairly well, but struggle to 
produce the correct brightness and fail in the dark region of the images.   
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Figure 5:  false-color single-wavelength images from the original object and five different reconstructions of the bar target.  
Each row shows images for the same wavelength, and each column shows images from the same reconstruction method.  
The color scale is the same for all images, with blue for low intensity and red for high.   

Figure 5 demonstrated that image quality is not uniform with respect to wavelength.  Figure 6 shows plots of the 
Structural Similarity Index (SSI), as a function of wavelength for the head phantom target and the AVIRIS target.  
Figure 7 shows image quality for panchromatic images created by summing each reconstruction over all bands.  

 

 



 
 

 
 

    
Figure 6:  Structured Similarity Index as a function of spectral band for all reconstructions of the 3D phantom (left) and 
AVIRIS data (right).  The spectrally-averaged SSI from AVIRIS reconstructions are shown in parenthesis in the legend.  
Notice the SSI changes sharply in regions of sharp spectral features, such as the Na emission line of the simulated fireball. 

  
Figure 7:  Panchromatic images from 11 CT reconstructions of the head phantom target. 

4.3 Spectral Accuracy 

The primary way to compare spectral accuracy is through the spectral angle.  Figures 8 and 9 show images of the 
spectral angle at each spatial pixel for all reconstructions of the head phantom target and the AVIRIS target.  The 
numbers in parentheses above each image show the spatial average, in radians.   
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Figure 8: Spectral angles in radians for all reconstructions of the 3D Shepp-Logan phantom.  Spatially-averaged spectral 
angle is shown in parentheses above each image.  

 
Figure 9:  Spectral angle for each reconstruction of the AVIRIS data, in radians.  The number in parentheses above each plot 
shows the spatially-averaged spectral angle.  Note that the methods with the best SSIM in Figure 6 have the worst spectral 
angle.      

4.4 Combined HSI quality metric 

Figures 10 and 11 show how the image quality and spectral accuracy combine into the overall scores, which are then 
compared for all targets.  In figure Figure 10, both spectrally-averaged SSI and spatially-averaged spectral angle are 
plotted for each algorithm.  The values are overlaid on contours of constant Q, with lower values (dark blue) indicating 
best performance.  In each plot there is a tight grouping of points near the "BPrj" backprojection result.  This grouping 
includes the unlabeled points for SCA and CBP for all targets.  The group also includes unlabeled points for BPF and 
POCS in the bar target;  DCnv in the phantom; and POCS in the AVIRIS data.  For the AVIRIS data, the SBI result is 



 
 

 
 

off-scale (mean SSI = 0.42, mean SA = 0.58).  There are few consistent trends in these results across different target sets.  
There is a weak negative correlation between image quality and spectral accuracy, for example.    

     
Figure 10: Results for reconstructions of the bar target (left),  head phantom target (center) and  AVIRIS target (right).  
Lines show contours of constant Q (from blue = best to red = worst).    

 

 
Figure 11:  combined HSI quality metric, Q, and computation time ( Log[T, in seconds] ) for all cases.  Each bar group is for 
one algorithm; each bar color is for one target.  

Actual computation times compound in most cases, because many algorithms rely on a first estimate from 
backprojection as input.  Figure 11 does not take this into account.  For example, Figure 11 seems to indicated 
backprojection then filtering (BPF) is the fastest method.  This figure only shows the time taken for the filtering step 
after backprojection.  This is done because the initial estimate could be generated by any algorithm before filtering.    

5. CONCLUSIONS 
The results shown here that the quality of CT reconstruction depends strongly on the content of the target.  Here we 
tested 11 reconstruction algorithms against two high-contrast synthetic targets and one synthesized from actual HSI data.  
The results vary significantly from one target to the next.  The common trend over these targets was the Hybrid 
algorithm and modified-ART algorithms tend to perform well for all targets.  The split-Bregman iteration performs very 
well on the bar target but poorly on AVIRIS data, which is to be expected since the method assumes sparsity.  
Surprisingly, the Hybrid method, which is based on a relatively weak assumption, also tends to perform well.  Results of 
the other algorithms were inconsistent.    

The fastest method (as implemented in our code) is backprojection, with POCS being the slowest.  Filtering after 
backprojection can be done very quickly, but adds little value and sometimes even degrades the quality of the 
reconstruction.   

Future work will further investigate methods to evaluate the accuracy of reconstructions for the case of an unknown 
target. 
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