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ABSTRACT

Aircraft coatings degrade over time, but aging can be difficult to detect before failure and delamination. We
present a method to evaluate aircraft coatings in situ using infrared diffuse reflectance spectra. This method
can detect and classify coating degradation much earlier than visual inspection. The method has been tested
on two different types of coatings that were artificially aged in an autoclave. Spectra were measured using a
hand-held diffuse reflectance infrared Fourier transform spectrometer (DRIFTS). One set of 72 samples can be
classified as either aged or unaged with 100% accuracy. A second sample set contained samples that had been
artificially aged for 0, 24, 48 or 96 hours. Several classification methods are compared, with accuracy better than
98% possible.
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1. INTRODUCTION

One of the most important functions of a coating material is to protect against corrosion of the underlying
panel. When the coating fails, moisture and air are able to penetrate to the interface between the coating and
substrate where it reacts with both the coating and underlying panel.1,2 Corrosion costs the United States Air
Force (USAF) billions of dollars per year, making corrosion prevention and control a priority for the USAF and
congress.3

The current inspection method for coating failure is a visual inspection. Visual inspections are inexpensive
and do not require extensive training or certification of the inspector. The inspector walks around and on the
aircraft looking for visible indications of coating failure. These indications are typically cracking, wrinkling,
blistering, and chipping. Visual indications are ambiguous and qualitative and often present themselves too late
for efficient maintenance scheduling.

There are laboratory characterization tools that are capable of characterizing the degradation present in the
coating material. However, these tools are impractical due to both their destructive nature and the requirement
that samples be removed from the aircraft and sent to the lab for evaluation. The USAF is in need of a
nondestructive field inspection method that is capable of characterizing the current state of coating degradation
and estimating the remaining service life of the coating.

The objective of this work was to investigate whether or not a handheld FTIR device is suitable as a non-
destructive inspection tool that can be used in the field. The portable and nondestructive nature of a handheld
FTIR device makes it ideal for this application. Specifically, Diffuse Reflectance Infrared Fourier Transform
spectroscopy (DRIFTs) was used to characterize the state of degradation of polyurethane aircraft coatings.
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Table 1. Sample naming convention and treatment conditions for samples used in this study

Set A: Set B:
REC/REC combination Top coat/REC combination
95◦C, 130% relative humidity 101◦C, 130% relative humidity
Sample Exposure Time Sample Exposure Time
A1 0 hrs B1 0 hrs
A2 0 hrs B2 24 hrs
A3 144 hrs B3 48 hrs
A4 144 hrs B4 96 hrs

2. MATERIALS AND METHODS

2.1 Sample Preparation

The sample coating materials and layer thicknesses were representative of coating layers applied to fielded aircraft.
All the samples used for this work were subjected to a combination of heat and moisture in an autoclave to
generate the degradation. Sample set A was the first sample set prepared to determine if the DRIFTs spectrum
could distinguish between an as-cured sample and a level of visual degradation. With that goal in mind, it
contained two as-cured samples and two samples aged to visual degradation. Sample set B was created to
determine if intermediate levels of degradation could be distinguished, so it contained an as-cured sample and
one each aged for 24 hours, 48 hours, and 96 hours with the 96 hour sample showing visual degradation. The two
different coating materials used for this investigation are labeled top coat and rain-erosion coat (REC). Table 1
summarizes the treatment conditions for the samples.

2.2 Equipment

The hand-held FITR device used for this study was an Agilent 4100 Exoscan containing a Michelson interferom-
eter with a 4 cm−1 resolution and a sampling range of 4,000-650 cm−1. The external reflectance sampling head
was used for all data collection and a gold diffuse reflectance reference was used for calibration. The Exoscan
uses a ZnSe beam splitter and a deuterated triglycine sulfate (dTGS) pyroelectric detector.

2.3 Data Collection

Spectra were collected from several locations across the sample surface to accurately represent variance in the
data from non-uniform degradation. Each location was interrogated once per trial, with three trials conducted
per day. The device was recalibrated between each trial with the gold diffuse reflectance reference standard
provided with the device. Sample trials were conducted on sample set A for two consecutive days immediately
after the aging regimen. Sample set B data was collected over the course of six weeks.

2.4 Data Analysis

The FTIR spectra were analyzed using singular value decomposition (SVD) and the samples were classified
using linear discriminant analysis (LDA). SVD is commonly used as a pattern recognition technique, making it
an ideal tool to search for a trend in the degradation levels of the samples.4,5 LDA is a simple data classification
algorithm that made sample classification objective and quantitative rather than subjective based on qualitative
analysis.6,7 It has been shown that when the two are combined, the predictive accuracy of discriminant analysis
can be improved.8

3. THEORY

3.1 FTIR of Polyurethane

Generally, all polymer materials are susceptible to the same degradation mechanisms that include photo-
degradation and thermal degradation.9−17 In the case of aircraft coatings, exposure to heat, moisture, and
UV radiation are the primary causes of degradation.14−17 There are changes in the chemical composition and



polymer chain structure associated with these degradation mechanisms that should be detectable by FTIR
spectroscopy.

There are two important regions of the IR spectrum of an organic polymer. The first region is called the
functional region because it allows for the identification of functional groups present in the material. Depending
on the source, the functional region is located in the 4,000-1,500 cm−1 (2.5-6.7 µm) to 4,000-1,300 cm−1 (2.5-7.7
µm) range of the IR spectrum.18−20 The absorption bands seen in this region are typically due to stretching
vibrations from single-, double-, and triple-bonded molecules.

The other region is known as the fingerprint region, which is of particular importance in a polymer’s IR
spectrum. The precise location of the fingerprint region is generally considered to begin where the functional
region ends (1,500-1,300 cm−1) and ends around 910-600 cm−1(11-16.7 µm).18−20 The fingerprint region is aptly
named because it contains absorption frequencies arising from the complex interactions of molecules in the
material and is unique to the material being examined. Molecular vibrations seen in this region include wagging,
twisting, scissoring, and rocking as well as interactions between the functional groups.20 Many polymer spectra
will look very similar in the functional region, but will have a unique fingerprint region.

3.2 Pattern Recognition

Singular value decomposition (SVD) is a matrix decomposition method with many applications in image pro-
cessing, data compression, pattern recognition.5,21 For any M ×N data matrix, D, there exists a factorization

D = UΣV T , (1)

such that U and V are unitary matrices and Σ is a diagonal matrix whose elements are known as singular values.
The rows of U and V are eigenvectors of DDT and DTD, respectively. Because the matrices are unitary, the
rows can be used to form an orthonomal basis set.

For this data, the rows of D are mean-removed spectra, each of length N spectral channels chosen to use
only the fingerprint region (850-1,220 cm−1). Each of the M sample spectra can be characterized by weights
ai, i ∈ {1, 2...K < M}, which represent coordinates in a K-dimensional subspace of the basis set formed by V .
These values are found by projecting the spectrum onto the basis set of eigenvectors, or

ai = d⃗ · v⃗i, (2)

where d⃗ is a spectrum (row of D) and v⃗i is the ith column of V . More generally,

A = DV, (3)

so that aij represents the jth coordinate of the ith spectrum.

We should note here that the mean-removed spectra forming the rows of D can be computed in two different
ways. For purely independent, uncorrelated samples, it would be appropriate to remove the average intensity
over all bands, then divide by the standard deviation over all bands. This produces a zero-mean, unit area
spectrum, equivalent to the z-score in statistics. The z-scored spectra are then

z⃗i =
d⃗i − d̄i

σ(d⃗i − d̄i)
, (4)

where the operator σi( ) indicates the standard deviation and d̄ represents the mean over the band (fingerprint
region, in this case).

Alternatively, one could note that the differences between the sample spectra are relatively small. This
suggests subtracting the sample mean (average spectrum over all samples) instead of the spectral mean in order
to emphasize the small spectral differences between samples. If we denote these sample mean-removed spectra
as s⃗,

s⃗i = d⃗i − ⟨d⃗⟩, (5)



where ⟨d⃗⟩ represents the mean spectrum over all samples.

Henceforth, we use the notation ai to indicate weighting coefficients (or coordinates) computed from the
z-scored spectra, and bi when the spectra in equation 2 have had the sample mean removed. The choice of
spectra will, of course also affect the eigenspectra. In other words,

Z = UΣV T
z ⇒ A = ZVz and S = UΣV T

s ⇒ B = SVs, (6)

where S is the data matrix composed of row-spectra s⃗i and Z is composed of rows z⃗i.

3.3 Sample Classification

Discriminant analysis is a statistical approach to data classification first developed by Sir Ronald A. Fisher.7

Commonly, either PCA/SVD or discriminant analysis is used independently to classify data.4,6, 21 PCA or SVD
are more commonly used when all the variables are quantitative and discriminant analysis is more appropriate
when the dependent variable is categorical and the independent variables are quantitative. However, if the
principal components (or singular values) show separation or clustering, discriminant analysis can be applied to
the principal components to improve classification accuracy.8

Much like SVD, the application of discriminant analysis to a data set is straightforward in commercial
software. The general approach consists of collecting truth data to generate the discriminant function(s) and
determining the prior probability that an observation belongs to a group. In this work, the prior probability for
each sample is equal because there is the same number of samples in each group. The computational software
will then calculate the discriminant score function(s) based on the sample mean vectors and variance-covariance
matrices. After the discriminant function(s) are developed based on the truth data, the accuracy of the rule is
checked using a method such as the holdout method or cross-validation. The classification model is then applied
to new data with unknown classification for prediction purposes.

For illustration purposes, consider classifying samples into two classes based on only the first two singular
values. Linear discriminant analysis (LDA) results in drawing a decision line that divides the a1 − a2 plane into
two classes. For higher dimensional data (more than two principle components), the discriminant function will
be a hyperplane rather than a line.

4. RESULTS AND DISCUSSION

Figure 1 is a plot of the mean reflectance collected the first week on sample set B in the 1,800-800 cm−1 range.
The spectra were examined for immediately evident trends such as peak broadening or changes in peak height,
but none were apparent. Several different bands of the sampling spectrum were analyzed using SVD, but the
1,220-850 cm−1 region of the spectrum provided the highest level of LDA discrimination. That result is expected
since the 1,220-850 cm−1 band falls within the published bounds of the fingerprint region.

Figure 2 is a plot of the first two SVD coefficients for the 1,220-850 cm-1 band for sample set B. The left plot
shows the a coefficients (computed using z-scored spectra), and the right plot shows the b coefficients computed
by subtracting the mean spectrum (over all samples) as in equation 5. In both plots, you can see clear separation
of the classes, although the z-scoring method does show significant overlap of the 24-hour samples (B2) with
both 0 and 48-hour samples (B1 and B3). The separation is enhanced by removing the sample mean first, as
shown in the right plot. Samples in the z-scored plot appear to show a smooth trajectory as the age increases,
indicating that this method may be more useful for predicting different ages (e.g. a new 72-hour sample set),
but the overlap between sets shows this will be less useful for classification of the present sample set.

Table 2 contains the confusion matrix and error rates of the classification rules generated using both Z and
S spectra. When the first two coefficients were used to generate the classifier, the error rate was only 3% using
sample mean subtration. The misclassifications occurred primarily between the 24 and 48 hour samples. When
the third coefficient was included in the generation of the classifier, the error rate becomes less than 2% with the
misclassifications being between the 24 and 48 hour samples. Classification accuracy in the z-scored spectra is
lower, as expected from figure 2.
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Figure 1. The long-wavelength end of the sampling spectrum, including the fingerprint region, for samples B1-B4 collected
the first week. The solid lines show the mean spectrum over 75 samples and the shaded regions show ± one standard
deviation.
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Figure 2. Plot of the first two coefficients in the 850-1,220 cm−1 band for sample set B. There is significant clustering of
the samples that makes each sample clearly distinguishable from each other. The figure on the left was calculated from
spectra in Z, while the figure on the right uses S. The dashed line on the left is a parabolic fit.

Table 2. Classification results for sample set B in the 850-1,220 cm−1 band. The confusion matrices are for 2-coefficient
classification; only total error rate is shown for higher dimensional results.

True Predicted Age Number of Error
Spectra Age Age [hours] Coeff. used [%]

[hours] 0 24 48 96

0 65 10 0 0 2 16.3
Z 24 8 49 18 0 3 15.3

48 0 13 62 0 4 13.3
96 0 0 0 75 5 13.0

0 75 0 0 0 2 3.0
S 24 0 70 5 0 3 1.7

48 3 1 71 0 4 1.7
96 0 0 0 75 5 1.7
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Figure 3. Mean reflectance of the four samples in set A. The two untreated samples (A1 & A2) lie almost on top of each
other while the treated samples (A3 & A4) have a higher mean reflectance over the entire spectrum. Error bars have been
omitted here for clarity, but are similar to those shown in Figure 1.
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Figure 4. The first two coefficients generated from the fingerprint region (850-1,220 cm−1) for both the training set (•)
and the test data set (▽) for prediction. The untreated samples are in black and the treated samples in red. As in Figure
2, the left plot shows results from z-scored spectra (Z) with a parabolic fit line, while the right plot is from spectra with
the sample mean subtracted (S).

After verifying that different degradation levels are detectable, the final step in demonstrating the potential
of this approach is classifying new sample data correctly. Sample set A is comprised of two untreated samples
and two samples treated to a visibly degraded level. There are no intermediate levels of degradation to attempt
to classify. This makes it ideal for a rudimentary test of the approach and its ability to correctly classify new
samples. One untreated sample and one visibly degraded sample were used to generate the classifier and the
other two samples used as blind samples. As with sample set B, the first step is an examination of the mean
reflectance of the four samples in set A. Figure 3 reveals that the two untreated sample spectra are nearly
identical and the two treated samples are distinctly different from the untreated samples and each other.

The two samples used as the training set to generate the classification rule were samples A1 and A3. Samples
A2 and A4 were the blind samples for classification. Notice the clear separation between the two treated samples.
The plan was to use A3 to train a rule that would be tested against A4, but clearly there is a lot of variability
between sample sets that were prepared in the same way. It is not yet known what caused this variation, or
whether this represents the variability between actual naturally aged samples. A much larger set of samples is
currently being prepared which will help answer this question.

Figure 4 is a plot of the first two SVD coefficients of the training set and the unknown samples generated from



Table 3. Confusion matrices for 2-coefficient classification of sample sets A2 and A4, using only samples A1 and A3 to
train the classifier.

Num of True Predicted
Spectra Method Coeff. Cond. Condition Error

Used [hours] Untreated Treated [%]

Untreated 36 0
Z LDA 2

Treated 0 36
0

Untreated 36 0
LDA 2

Treated 26 10
36.1

Untreated 36 0
S LDA 3

Treated 35 1
48.6

Untreated 36 0
QDA 2

Treated 0 36
0

the fingerprint region. As in Figure 2, the analysis is repeated, once with z-scored spectra and once where the
sample mean spectrum has been subtracted. In this case, the sample mean is calculated from only the training
data set, then subtracted from both training and test sample spectra.

Based on figure 4, it was expected that the blind samples would classify well because there is a clear separation
between the treated and untreated samples. Notice, however, the variance of the treated samples is much larger
than the untreated samples (seen as the large spread of points in 4). LDA assumes identical covariances, which
in this case leads to some misclassification, evident in the confusion matrices in table 3.

Table 3 shows the classification accuracy in this sample set is higher when using the z-scored spectra rather
than the mean-removed spectra, S. Using the first two coefficients for classification, the rule correctly assigned
all 36 untreated samples; however, only 10 of the treated samples were correctly classified for an accuracy of
64%. When the first three coefficients were used for classification, accuracy drops to 51%, indicating singular
values above 2 are noise.

Figure 5 shows why results for LDA are so poor in sample set A. This is a plot of the first two SVD
coefficients for the samples used to develop the discriminant function, along with the resulting discriminant
function (a straight line). It shows why the discriminant function misclassifies so many of the treated samples.
This results from the separation between the two treated samples in 4. The classification function derived from
one treated sample does not adequately represent the other treated sample.

One way of improving the accuracy of a discriminant classification model is to adjust the cost of misclassifi-
cation, as demonstrated in figure 5. In this example, we assume the cost of misclassifying a treated sample as
untreated is 100× higher than vice versa. The adjusted classification rule still correctly assigned all 36 untreated
samples, but now correctly assigns 28 of the unknown treated samples for an accuracy of 78%. This is much
improved over the 28% accuracy before adjusting the cost; however, the classifier still does not achieve 100%
accuracy as expected from an examination of figure 5. These results show that a larger sample set is necessary
to ensure the training data set adequately represents the test data.

Another alternative is to use quadratic discriminant analysis (QDA), which results in the classification line
being a quadratic curve. LDA does not consider differences in the covariance of the two classes in training
data, so the classification line tends to be the linear bisector of the line connecting the centroids of the two
point clouds. QDA, on the other hand, takes into account the larger spread of points in the treated class. The
result is a classification ellipse that encloses the tightly grouped points of the untreated class. This increases
the classification accuracy to 100% for both the training data and the blind samples, using either two or three
coefficients.

5. CONCLUSIONS AND FUTURE WORK

This study shows there is strong evidence to support the further investigation of DRIFTs for use as a nonde-
structive inspection tool for aircraft coating characterization. The fingerprint region of the IR spectrum showed
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Figure 5. Classification results from LDA (left) and QDA (right). LDA trained with samples A1 and A3 (black and red •)
produces the classification line (solid black line). This can be translated by adjusting the cost of misclassification, resulting
in the weighted classification line (dashed black line). QDA trained with the same sets produces the classification ellipse
(thick black line), which is also effective in classifying the test samples A2 and A4 (black and red ▽). Black points show
untreated samples; red points are treated.

great potential to discern degraded material from non-degraded material as well as the ability to distinguish
between intermediate levels of degradation. The data showed that multi-class samples could be correctly clas-
sified with 98% accuracy. When the approach was applied to classify samples with unknown degradation, the
classification rule was 100% accurate. Note, however, that different normalization methods were used for the
two different sample sets. The z-scoring method produced 100% accuracy in sample set A, where subtracting the
mean spectrum (over all samples) was more accurate in sample set B. More research, using larger sample sets,
is needed to determine the most robust classification method. Samples generated from many different coating
configurations and fielded aircraft panels will be examined in future work. In order to extend the application to
predicting remaining service life, the accelerated degradation applied to lab samples must be correlated to real
on-aircraft degradation. While the combination of SVD and LDA revealed the potential of DRIFTs to detect
coating degradation, there are many other classification techniques available, which will be compared in future
work.
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