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The numerical simulation of turbulent hypersonic flows poses a number of significant
challenges. Chief among these challenges is the stringent grid resolution requirement in
the boundary layer to accurately predict wall heat flux and skin friction. An enabling
modeling concept for such flows is the use of wall models to reduce the near wall compu-
tational burden. In this paper, we present the development and validation of a turbulence
wall model applicable to high Reynolds number flows. We review modeling choices that
arise given a use case of cold-wall hypersonic flow with shock-turbulent boundary layer
interaction. Finally, we assess the performance of the model in an a posteriori analysis of
a hollow cylinder-flare forebody and a large cone-flare forebody, and comment on model
performance and limitations.

Nomenclature

hwm wall model probe height Superscript
F, G flux vector k iteration
N number of point/elements n time-level of simulation
Q vector of solution variables + wall-units
q heat flux
Re Reynolds Number Subscript
U vector of conserved variables 1, 2, 3 coordinate directions in wall-frame
u, v, w velocity j index of summation
x, y, z displacement or position t turbulent
∆ difference operator w wall
δ update
κ von Karman constant, thermal conductivity
ν̃ Spalart-Allmaras variable
τ shear
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I. Introduction

Turbulence models for Reynolds-Averaged Navier-Stokes (RANS) and Wall-Resolved Large Eddy Simu-
lations (WR-LES) have stringent grid resolution requirements near solid boundaries to produce accurate

boundary layers and surface quantities. A typical requirement is that the maximum height of the wall-
adjacent cell across the entire boundary be kept under one in wall units (y+ ≤ 1). This requirement dictates
that a large percentage of the cells used in a given calculation be allocated to the boundary layer, limiting
the maximum Reynolds number that can be achieved on a given computational resource. Additionally, the
small dimensions of the cells near the wall give rise to restrictive timestep limitations. In order to rapidly
converge high Reynolds number flows of engineering interest, an alternative solution strategy is required.

Recently, Choi and Moin1 have revisited Chapman’s2 classic scaling estimates using a more current
understanding of how skin friction scales at high Reynolds number. Using this revised data, grid requirements
for high Reynolds number simulations scale with Reynolds number as shown in table 1. In order to compute
high Reynolds number flows of engineering interest, wall-resolved LES is not a feasible solution as the grid
requirements are nearly quadratic with Reynolds number.

Direct Numerical Simulation N ∼ Re37/14

Wall-Resolved LES N ∼ Re13/7

Wall-Modeled LES N ∼ Re

Table 1. Grid requirements for high Reynolds number turbulent boundary layers, from Choi and Moin.1

A preponderance of the existing literature on wall models for high Reynolds number flows assume that the
turbulent boundary layer experiences a zero or mild pressure gradient, and that all inertial terms balance.3–6

Under these assumptions, conservation of streamwise momentum reduces to a simple expression of constant
shear (µdu

dy = const), which is appealing due to the straightforward solution procedure required for the ODE,

and the availability of analytic solutions in the form of the well known law of the wall.7 Fewer works attempt
to model heat transfer within the wall model framework, but those that do often assume adiabatic walls and
flows with mild density gradients.

To overcome the wall spacing restriction inherent to high Reynolds number RANS or WR-RES, we have
developed a wall model that predicts surface quantities and boundary layer profiles on under-resolved grids
(y+ � 1). Particular attention was placed to ensure that the derivation of the model is valid for high
Reynolds number flows in the hypersonic regime, including regions of Shock Turbulent Boundary Layer
Interaction (STBLI). Model derivation, performance and limitations are discussed. Simulations thus far
were run a posteriori using converged solutions from the University of Minnesota hypersonics research code,
US3D.8

II. Recent Efforts

Several researchers in recent years have examined the accuracy of different wall model formulations for
application in WM-LES in various flow regimes. Kawai and Larsson3 examined the standard practice in
WM-LES of using data from the wall-adjacent computational cell in the LES as the boundary condition for
a wall model. They show that WM-LES calculations are necessarily under resolved in the wall-adjacent cell,
and that the use of such cells in a wall model will introduce numerical error. Instead, the authors propose
sampling data for the wall model from a position a few cells into the computational domain, approximately in
the log-layer for an equilibrium boundary layer. They show very favorable results on a compressible flat plate
with using an interrogation location placed a few cells into the boundary layer. One important implication
of this method is that the interrogation location of their wall model is placed significantly further into the
boundary layer than a method that uses the wall-adjacent cell as the interrogation location.

Dawson, Bodart and Lele4 developed a wall model inspired by Kawai and Larsson3 to examine STBLI in
the form of a compression ramp. A refined mesh is embedded into the coarse LES mesh, and the equilibrium
boundary layer equations are solved (temperature dependent). In an equilibrium model, all terms of the
Navier-Stokes equations are assumed to be negligible with the exception of the wall-normal viscous shear
term. They use the wall shear and heat transfer results of the wall model calculations as boundary conditions
for the LES. In their paper, Dawson et al., clearly make the case that equilibrium models are insufficient
to model compression ramps or other STBLI flows involving separation. They show that the assumption of
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neglecting pressure and convective terms of the streamwise-momentum equation, while appropriate for a flat
plate, neglect important physics involved in the STBLI.

Hickel, Touber, Bodart and Larsson9 developed a zonal method that includes non-equilibrium effects
while retaining connectivity in only the wall-normal direction. Importantly, they showed that retaining the
pressure gradient term while neglecting convection terms resulted in momentum not being balanced in a
control volume away from the wall. The inclusion of both terms is necessary to capture non-equilibrium
effects. Their model parameterizes the convective term in the boundary layer equation based on either the
streamwise pressure gradient in the outer layer or the mean streamwise convective term in the outer layer.
When applying this model to a wall-resolved dataset in an a posteriori analysis, the pressure gradient method
proved to be more robust and accurate than the second method, however neither led to a more accurate
prediction of skin friction than an equilibrium model.

III. Model Development

The primary error caused by under-resolved wall cells is an incorrect viscous flux calculation due to
inaccurate gradients evaluated at the wall. The purpose of a wall model is to leverage knowledge of the
physics of turbulent boundary layers to correct the calculation of wall shear and heat transfer to a physically
meaningful value. As discussed in section II, an equilibrium wall model will not be accurate for STBLI flows
with heat transfer due to the omission of pressure-gradient, convection and compressibility effects. We have
developed a wall-model that retains the necessary physics to resolve STBLI flows. The model is summarized
as follows.

A reduced set of the Reynolds Averaged Navier Stokes equations are solved in the modeled region. This
is necessary to account for compressibility, heat transfer and inertial effects. Input data for the model is
sampled several cells away from the wall. This places the interface location with the parent calculation,
or probe point, in the log-layer and avoids unresolved data in the wall-adjacent cells. A schematic of the
embedded wall grid within the LES grid is shown in Fig. 1. The model equations are solved via a 1-D iterative
method on a virtual grid embedded within the LES. While the iterative method is coupled in the wall-normal
direction, connectivity is used between the wall-normal solves to allow us to evaluate the convective terms of
the Navier-Stokes equations. We believe that these terms, often ignored in wall modeling, are necessary in
non-equilibrium STBLI flows. The wall model solution at the boundary is then used by the LES to inform
the construction of viscous fluxes at the wall.

Figure 1. Schematic of wall grid shown within LES grid.

III.A. Governing Equations

We start by defining a wall-based coordinate system where x1 and x2 are two arbitrary, orthogonal wall-
tangent directions and x3 is the wall-normal. The Navier-Stokes equations in divergence form are:

∂U

∂t
+
∂F1

∂x1
+
∂F2

∂x2
+
∂F3

∂x3
= 0 (1)
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where U and Fj are the vectors of conserved variables and fluxes respectively.

U =


ρ

ρu1

ρu2

ρu3

E

, Fj =


ρuj

ρu1uj + pδ1j − σ1j
ρu2uj + pδ2j − σ2j
ρu3uj + pδ3j − σ3j

(E + p)uj − σkjuk − qj

 (2)

The viscous stress tensor, σij , and heat conduction vector, qj , are defined as

σij = µ̂

(
∂ui
∂xj

+
∂uj
∂xi

)
− 2

3
µ̂
∂uk
∂xk

δij (3)

qj = κ̂
∂T

∂xj
(4)

where the effective viscosity and thermal conductivity are approximated via the Boussinesq approximation
as the sum of a molecular and turbulent component

µ̂ = µ+ µt, κ̂ = κ+ κt (5)

We assume the pressure to be constant in the wall-normal direction, which allows us to decouple conser-
vation of wall-normal momentum and conservation of mass from the equation set. For an perfect gas, the
equation of state allows us to recover the density field solely from the temperature field for an isobaric gas.

ρi =
Pe

RTi
(6)

As suggested by the solution strategy of Bond and Blottner,10 the density field and flow primitives can be
updated in an outer loop while each of the remaining governing equations are solved in a decoupled fashion
in an inner loop. Assuming no time-derivative of density, we recast the above equations as:

∂Q

∂t
+

1

ρ

[
∂G1

∂x1
+
∂G2

∂x2
+
∂G3

∂x3

]
= 0 (7)

where Q is the solution vector with density decoupled, and Gj is the flux vector of the reduced set of
equations.

Q =

u1u2
e

, Gj =

 ρu1uj + pδ1j − σ1j
ρu2uj + pδ2j − σ2j

(E + p)uj − σkjuk − qj

 (8)

The equation for conservation of wall normal momentum is not necessary since under the boundary-
layer assumptions it reduces to the invariance of pressure in the wall normal direction ( ∂P

∂x3
= 0). Constant

pressure in the boundary layer then allows us to decouple conservation of mass and prescribe density from
an equation of state. The equations are expressed in terms of the primitives to decouple the density field,
which has severe changes in gradient, from the ODEs being solved. The resulting velocities and specific
energy fields are monotonic and better conditioned for implicit solution.

These equations are discretized on an embedded node-based mesh in the near wall region. The outermost
node coincides with the probe location in the solver, and the innermost node is on the wall face.
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III.B. Eddy Viscosity Modeling

This paper will examine the performance of two different eddy viscosity models in the proposed wall model.
The first model examined is a simple mixing length model with near-wall damping. This type of model is
the one most typically found in compressible wall models.3,4, 6, 11,12

D =
[
1− e−(x?

3/A
+)
]2

(9)

µt = ρκx3

√
τw
ρ
D (10)

where A+ = 17 and the von Karman constant is chosen as κ = 0.41. The wall coordinate used in the
damping function, D, is modified to account for cold wall conditions.

x?3 = x3

√
ρτw

µ
(11)

The second model chosen for this work is the compressible form of the Spalart-Allmaras turbulence model
proposed by Catris and Aupoix13 (SA-Catris). This eddy viscosity model is very similar to the formulation
of the SA model used by Bond and Blottner10 in their study. Using the assumptions inherited so far in this
work and only considering gradients in the wall-normal direction, the SA-Catris model is expressed as:

∂ν̃

∂t
=

1

ρ
(SP − SD +D) (12)

where

SP = cb1S̃ρν̃ (13)

SD = cw1fwρ

(
ν̃

d

)2

(14)

D =
1

σ

[
∂

∂x3

(
µ
∂ν̃

∂x3

)
+

∂

∂x3

(
√
ρν̃
∂
√
ρν̃

∂x3

)
+ cb2

∂
√
ρν̃

∂x3

∂
√
ρν̃

∂x3

]
(15)

Equation (12) is added to the set solved in Eq. (7). The model coefficients in Eqs. (13) - (15) are taken
from the standard SA model. The turbulent Prandtl number for all models is chosen to be a constant 0.9.

III.C. Solution Form

Given the strong coupling in the wall-normal direction, the flux-derivatives in the wall-tangent directions
can be evaluated explicitly and moved to the right-hand side.

∂Q

∂t

∣∣∣∣n+1

+
1

ρ

∂G3

∂x3

∣∣∣∣n+1

= −1

ρ

2∑
j=1

∂Gj

∂xj

∣∣∣∣∣∣
n

(16)

The terms on the left-hand side of Eq (16) (including the SA-Catris equation) are cast into delta-form
yielding a set of tri-diagonal scalar systems that are solved iteratively until convergence.

A number of other assumptions simplify the numerical procedure. Namely, viscous fluxes in the x1
and x2 direction are negligible, the streamwise and spanwise pressure gradients are assumed to be constant
throughout the height of the modeled region, and are therefore determined by the LES sample location, and
that the inner layer responds instantly to fluctuations in the outer layer, decoupling the timestep taken in
the wall-solve from the global timestep. With the above assumptions the final form of the equations become:
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u-velocity

1

∆t
δuk+1 − 1

ρk
∂

∂x3

[
µ̂k ∂δu

k+1

∂x3

]
=

[
1

ρ

∂

∂x3

(
µ̂
∂u

∂x3

)]k
− 1

ρk

 2∑
j=1

∂

∂xj
(ρu1uj + pδ1j)

n

(17)

v-velocity

1

∆t
δvk+1 − 1

ρk
∂

∂x3

[
µ̂k ∂δv

k+1

∂x3

]
=

[
1

ρ

∂

∂x3

(
µ̂
∂v

∂x3

)]k
− 1

ρk

 2∑
j=1

∂

∂xj
(ρu2uj + pδ2j)

n

(18)

specific energy

1

∆t
δek+1 − 1

ρk
∂

∂x3

[
κk

cv

∂δek+1

∂x3

]
=

[
1

ρ

∂

∂x3

(
uµ̂

∂u

∂x3
+ vµ̂

∂v

∂x3
+ κ̂

∂T

∂x3

)]k
− 1

ρk

 2∑
j=1

∂

∂xj
{(E + p)uj}

n

(19)

SA variable

Aδν̃k+1 − 2cb2
σρk
B ∂

∂x3
δν̃k+1 − 1

σρk
∂

∂x3

(
Cδν̃k+1

)
− 1

σρk
∂

∂x3

(
D∂δν̃

k+1

∂x3

)
= E

∣∣∣∣k (20)

where the coefficients of the SA equation are:

A =

[
1

∆t
−
(
cb1S̃ −

cw1fw
d2

ν̃

)
− 2cb2

σρ

(
ν̃
∂
√
ρ

∂x3

∂
√
ρ

∂x3
+
√
ρ
∂
√
ρ

∂x3

∂ν̃

∂x3

)]k
(21)

B =

(
ρ
∂ν̃

∂x3
+
√
ρν̃
∂
√
ρ

∂x3

)k

(22)

C =

(
2
√
ρν̃
∂
√
ρ

∂x3
+ ρ

∂ν̃

∂x3

)k

(23)

D = (µ+ ρν̃)
k

(24)

E =
1

ρk

{
SP − SD +

1

σ

[
∂

∂x3

(
µ
∂ν̃

∂x3

)
+

∂

∂x3

(
√
ρν̃2

∂
√
ρ

∂x3
+ ρν̃

∂ν̃

∂x3

)
+ cb2

(
√
ρ
∂ν̃

∂x3
+ ν̃

∂
√
ρ

∂x3

)2
]}k

(25)

Where needed, S̃ is limited from reaching negative values using the method suggested by Allmaras et al.7

Equations (17) - (20) are discretized using second-order central differencing. The index n indicates data from
the previous solver timestep, which his held constant while solving the wall-model. The k index represents
data from previous iterations. As was done in the work by Bond and Blottner,10 the equations are solved
iteratively using an inner-loop/outer-loop construct. On the inner loop, only the variable being solved for
is updated in each equation. An outer loop exists to sync the flow variable amongst the equations, and to
update the density field.

III.D. Boundary Conditions

The boundary conditions for Eqs. (17) - (20) are determined by the wall-state and the LES solution at the
probe location. The values on the boundary are held fixed for the wall-model calculation. Turbulent eddy
viscosity is specified to be zero at the wall, however its determination at he outer boundary differs depending
on which viscosity model is used. If the mixing length model is used, the value is determined by the model
and updated at each iteration. If the SA-Catris model is used, the value of the SA variable on the boundary
is chosen to produce the eddy-viscosity from the LES or RANS at that point, and held fixed throughout the
wall model calculation.
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IV. A Posteriori Evaluation

We conducted a posteriori analysis to evaluate the accuracy of the proposed wall model, and the per-
formance of the various eddy viscosity models. For this analysis, we chose the to use the forebody data
from the CUBRC LENS-II Hollow-Cylinder Flare (HCF) and Large Cone Flare (LCF) experiments from
the shock wave/turbulent boundary layer study presented at AIAA Aviation 2014.14 The HCF forebody is
a hollow cylinder with an outer diameter of 0.496 meters and a length of 2.474 meters. The LCF forebody
is a 7-degree cone with an axis length of 2.35 meters. The test conditions used for each geometry are given
in table 2.

HCF run 16 LCF run 14

Mach 4.97 7.14

ReL 8.54× 107 5.27× 107

Tw/T0 0.25 0.52

Table 2. Test conditions for CUBRC LENS-II HCF and LCF experiments.14

We chose these conditions due to the high Mach number, cold-wall isothermal conditions, and large extent
of flow over the test articles where inertial effects and pressure gradients are negligible. Simulations were
conducted in US3D using modified Steger-Warming flux vector splitting15 with second-order MUSCL on
density, velocities, turbulence variable and pressure, gradients evaluated by weighted least-squares, molecu-
lar viscosity determined by Sutherland’s formula, and turbulent viscosity from the SA-Catris Model.13 Time
integration was accomplished with the DPLR16 method to drive the flow to steady-state. The 2-D axisym-
metric grids were resolved to the wall with a y+ � 1. Data extraction locations .5, 1.1, and 1.5 meters
from the leading edge were chosen to minimize the influence from both the leading edge of the geometry
and downstream shock-shock interaction. Probe data were extracted from the converged US3D solutions at
various heights in the boundary layer and used as boundary values for evaluation of the wall model. The
heat flux and wall-shear determined by the US3D simulations are given in table 3.

HCF Run 16 LCF Run 14

x [m] 0.5 1.1 1.5 0.5 1.1 1.5

τw [Pa] 309.18 276.15 263.58 86.56 76.84 73.31

qw [W/cm2] 21.11 18.83 17.96 2.23 1.99 1.90

Table 3. US3D wall shear and heat flux.

Both of these test conditions are axisymmetric with no surface curvature in the streamwise direction in
the area of interest. To capitalize on this fact and simplify the model formulation, the wall-tangent flux
derivatives in Eq. (16) are neglected in the current implementation of the wall-model. This results in a
purely 1-D model involving only diffusive terms, as is common practice in wall modeling. This assumption
will result in error for regions of flow where pressure gradients and inertial terms are non-negligible.

IV.A. Baseline Solutions

IV.A.1. Hollow-Cylinder Flare

Figure 2 shows the reference boundary layer profile computed by US3D at the 1.1 meter station in wall units.
Notable features include a peak in the SA variable at a distance of 2800 wall units above the surface, and a
peak temperature overshoot at 28 wall units. There is a very strong temperature gradient in the inner portion
of the boundary layer to recover the cold-wall temperature from the peak temperature location. Associated
with the temperature variation are strong density gradients throughout the boundary layer which peaks
below 30 wall units. The same features are present at the other stations at different different values of y+.

IV.A.2. Large Cone Flare

Figure 3 shows the reference boundary layer profile computed by US3D at the 1.1 meter station in wall
units. The boundary layer at this station for the LCF case is only 1000 wall units tall. The SA variable
peaks at approximately 400 wall units, while the temperature peaks very close to the wall at six wall units.
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(a) wall-unit (b) log wall-unit

Figure 2. US3D HCF boundary layer profile x=1.1m

(a) wall-unit (b) log wall-unit

Figure 3. US3D LCF boundary layer profile x=1.1m

At this station the wall temperature is very close to the peak temperature overshoot, leading to very mild
temperature and density gradients in the viscous sub-layer of the boundary layer. The boundary layer profiles
at the x = 0.5 m and x = 1.5 m station are qualitatively similar to the profile presented in Fig. 3 with the
predominate difference being the total height of the boundary layer.

IV.B. Model Performance

To evaluate the various formulations of the proposed wall model, data were sampled from the baseline
boundary layer at specific heights in the boundary layer. Those data were used as boundary conditions for
the wall model’s ODE solve. The models were run independently of the solution that generated the baseline
profiles. For both proposed eddy viscosity formulations, a single iteration of the inner loop was sufficient
to stabilize the outer loop to convergence. In all cases the models converged to machine zero in negligible
computational time.

The following model factors were examined:

• The impact of choice of eddy viscosity model

• The impact of probe height for the wall-model

To evaluate the above factors, boundary layer profiles computed by the wall model were compared to
those from the reference solution. Additionally, we compared predictions of wall shear and heat flux from
the wall models to the baseline solutions.
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Figure 4. Velocity and temperature profiles for HCF at x = 1.1m

IV.B.1. Hollow-Cylinder Flare

Van Driest-transformed Velocity and temperature profiles computed by both eddy viscosity models with
data extracted at various probe locations at the x = 1.1 meter station of the HCF are shown in Fig. 4. For
probe locations placed more than 1000 wall unites from the wall the mixing length model boundary layer
profiles deviate significantly from the reference boundary layer. Use of the SA-Catris model to determine
turbulent eddy viscosity significantly improves the wall model’s approximation of the boundary layer profile.

Figures 5 through 7 show the wall shear and heat flux predicted by the two eddy-viscosity models for
varying probe locations. These values are normalized by the quantity produced by the reference solution.
The mixing length model significantly overpredicts both wall shear and het transfer for probe location at or
beyond 1000 wall units at all stations. The SA-Catris model shows asymptotic convergence at all stations
as the probe is brought closer to the wall. Compared to the predictions made by the mixing length-based
model, the SA-Catris model more accurately determines wall shear and heat transfer at every station and
at each probe location.

The wall shear and heat-flux calculations produced by the mixing length model are accurate so long as the
probe is placed near the inner region of the boundary layer where viscous dissipation dominates the solution.
Probes placed further into the log region of the boundary led to rapidly diverging predictions of both wall
shear and heat flux. For cases where the probe was placed further into the log-layer, not only is density
variation be a factor, but so is non-linear variation of the production of turbulent kinetic energy, and by
extension turbulent eddy viscosity. While most CFD practitioners refrain from using mixing length models
outside of the inner-layer of a boundary layer, the employment of Kawai and Larsson3 like probe placement
methods will result in interface points being placed further into a boundary layer than has traditionally been
accepted practice. This occurrence should be accounted for when choosing a turbulence modeling strategy.

IV.B.2. Large Cone Flare

Van Driest-transformed Velocity and temperature profiles computed by both eddy viscosity models with
data extracted at various probe locations at the x = 1.1 meter station of the LCF are shown in Fig. 8.
As was seen in the HCF case, for probe locations placed in the log-law region the mixing length model
boundary layer profiles deviate significantly from the reference boundary layer. Use of the SA-Catris model
to determine turbulent eddy viscosity significantly improves the wall model’s approximation of the boundary
layer temperature profile, however it does not improve the van Driest velocity profile compared to the mixing

9 of 14

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 A

FR
L

 D
'A

zz
o 

W
ri

gh
t-

Pa
tte

rs
on

 o
n 

Se
pt

em
be

r 
20

, 2
01

6 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
6-

05
86

 



(a) wall-shear (b) heat-transfer

Figure 5. Wall fluxes determined by two eddy-viscosity models on HCF at x=0.5m with varying probe heights.

(a) wall-shear (b) heat-transfer

Figure 6. Wall fluxes determined by two eddy-viscosity models on HCF at x=1.1m with varying probe heights.
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(a) wall-shear (b) heat-transfer

Figure 7. Wall fluxes determined by two eddy-viscosity models on HCF at x=1.5m with varying probe heights.

length model.
Figures 9 through 11 show the predicted wall shear and heat flux for LCF geometry using both eddy

viscosity models at varying probe locations. The predicted quantities are normalized by the values produced
by the reference solution. Both models converge towards similar values of wall shear and heat flux as the
probe is brought closer to the surface, however this value is significantly less than the resolved RANS result.
The error associated with each eddy viscosity model at the closest probe location (y+ = 50) is presented in
table 4.

Mixing Length SA-Catris

x [m] 0.5 1.1 1.5 0.5 1.1 1.5

τw [%] −6.8 −10.7 −11.7 −9.3 −10.4 −10.8

qw [%] −5.9 −10.6 −11.5 −9.7 −10.9 −11.2

Table 4. Error in predicted wall quantities for LCF at a probe y+ = 50

The fact that both turbulence models are converging to lower values of wall shear and heat flux than
the RANS solution indicate that the error lies in a discrepancy between the wall model formulation and the
physics of the LCF test case. Compared to the the HCF test case, the LCF has a much smaller radius of
curvature in rotational symmetry. Additionally, the LCF flowfield has a strong attached shock that results
in non-negligible pressure variation throughout the entire post-shock region, including the boundary layer.
Additionally, an entropy layer is present due to the shock. The particular implementation of Eq. (16) being
tested does not account for inertial effects, pressure gradients, or axisymmetry.

V. Conclusion

We presented the derivation of a turbulence wall model suitable for high Reynolds number cold-wall flows
involving shock turbulent boundary layer interactions. The equations were presented in a form that allows
for rapid convergence of the model despite strong density and temperature gradients at the wall.

A posteriori analysis was conducted simulations of the CUBRC LENS-II hollow cylinder flare and large
cone flare to validate the wall model and evaluate the performance of two eddy viscosity models. We
considered determining eddy viscosity via a mixing length model and the Catris-Aupoix formulation of the
Spalart-Allmaras one-equation turbulence model.

For the HCF case, both eddy viscosity models produced accurate values of wall shear and heat flux for
probe locations placed near the wall. As the probe moved away from the wall into the log-layer, the wall

11 of 14

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 A

FR
L

 D
'A

zz
o 

W
ri

gh
t-

Pa
tte

rs
on

 o
n 

Se
pt

em
be

r 
20

, 2
01

6 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
6-

05
86

 



Figure 8. Velocity and temperature profiles for LCF at x = 1.1m

(a) wall-shear (b) heat-transfer

Figure 9. Wall fluxes determined by two eddy-viscosity models on LCF at x=0.5m with varying probe heights.
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(a) wall-shear (b) heat-transfer

Figure 10. Wall fluxes determined by two eddy-viscosity models on LCF at x=1.1m with varying probe heights.

(a) wall-shear (b) heat-transfer

Figure 11. Wall fluxes determined by two eddy-viscosity models on LCF at x=1.5m with varying probe heights.
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model solution produced using the mixing length model departed rapidly from the reference solution while
the solution produced by SA-Catris model remained accurate. It is important to keep this limitation of the
mixing length model in mind when choosing modeling strategies for very coarse grids, or models with probe
placement several cells off the wall.

For the LCF case, both eddy viscosity models produced wall shear and heat flux values that did not
agree with the reference simulation, however they agreed with each other as the probe was moved closer to
the wall. This systemic error may be due to the fact that the model used to evaluate this case neglected the
inertial inertial and pressure gradient terms in the model’s formulation. This work suggests that equilibrium
wall models may omit terms necessary to model cold-wall boundary layers on cones.
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