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Abstract

We present an efficient, accurate computational method for a coordinate-free model of

flame front propagation of Frankel and Sivashinsky. This model allows for overturned

flames fronts, in contrast to weakly nonlinear models such as the Kuramoto–Sivashinsky

equation. The numerical procedure adapts the method of Hou, Lowengrub and Shelley,

derived for vortex sheets, to this model. The result is a nonstiff, highly accurate solver

which can handle fully nonlinear, overturned interfaces, with similar computational

expense to methods for weakly nonlinear models. We apply this solver both to simulate

overturned flame fronts and to compare the accuracy of Kuramoto–Sivashinsky and

coordinate-free models in the appropriate limit.

2020 Mathematics subject classification: primary 65M70; secondary 80A22.

Keywords and phrases: flame fronts, coordinate-free models, overturned interfaces.

1. Introduction

We study a model for one-dimensional flame fronts moving in two spatial dimensions,

developed by Frankel and Sivashinsky [7]. Such models specify the velocity by which

the front moves, in terms of intrinsic geometric information, namely curvature and

arclength. While these models allow for general geometries, flame fronts are more

commonly studied with weakly nonlinear models such as the Kuramoto–Sivashinsky

(KS) equation, which places constraints on the geometry, for instance, that the height

of the front is a single-valued function of horizontal position. Recently, Goto et al.

directly simulated a model without assuming weak nonlinearity [9]. The numerical

method of Goto et al. [9] used finite difference discretization in space and the

fourth-order Runge–Kutta method for timestepping, and thus is subject to a classic

explicit timestep restriction. In this contribution, we demonstrate that fully nonlinear,
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2 B. F. Akers and D. M. Ambrose [2]

coordinate-free models may be efficiently simulated. In particular, we introduce a

nonstiff method for the initial value problem, which is pseudo-spectral with respect

to spatial variables and which uses implicit–explicit (IMEX) timestepping, avoiding

the timestep restriction present in [9].

The method is based on the work of Hou, Lowengrub and Shelley (HLS) for

interfacial fluid flows with surface tension [10, 11]. The HLS method is based on

evolving geometric quantities naturally related to the curvature; specifically, these

are the tangent angle the interface forms with the horizontal, and the arclength

element. Since curvature and arclength are fundamental to the models of Frankel and

Sivashinsky [7], we find that the HLS formulation applies. This formulation, when

combined with IMEX timestepping, yields a nonstiff method for the propagation of

flame fronts.

Coordinate-free models specify the normal velocity of the flame front; denoting the

normal velocity by U and the curvature of the front by κ, one model presented in [7] is

− U = 1 + (α − 1)κ +

(

1 +
α2

2

)

κ2 +

(

2α + 5α2 −
α3

3

)

κ3 + α2(α + 3)κss. (1.1)

With α near unity, and neglecting small terms, another model was derived from (1.1)

in [7]:

− U = 1 + (α − 1)κ + 4κss. (1.2)

The term κss is the second derivative of curvature with respect to arclength. The

parameter α allows the lower-order term κ to be destabilizing at low wavenumbers/long

wavelengths if α > 1. For interfaces which are functions of the spatial coordinate,

with α ≈ 1 and small, slowly varying data, these models are approximated by the KS

equation

yt + (α − 1)yxx + 4yxxxx +
1
2
(yx)2

= 0. (1.3)

Frankel and Sivashinsky [7] introduced the coordinate-free models that we study

in the case of two spatial dimensions. Other related work includes the extension

to three spatial dimensions [8] and the introduction of temperature effects [6]. The

numerical simulations conducted in these studies are fully explicit and use finite

differences. Of course, fully explicit methods for fourth-order equations have severe

stiffness constraints; as mentioned above, we introduce here a pseudo-spectral method

using semi-implicit timestepping. Our method is therefore highly accurate without

significant timestep constraints. We develop and validate the numerical method in

Section 3.

Along with the development of the coordinate-free models in [7], the KS equation

is derived as a weakly nonlinear model starting from these coordinate-free models.

One may naturally ask, then, as to the validity of the approximations involved in such

a derivation. In Section 4, we implement our numerical method to demonstrate the

asymptotic validity of the KS equation as an approximation to the coordinate-free

models in the appropriate regime. The second author, along with Hadadifard and
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[3] Coordinate-free models of flame fronts 3

Wright, has also demonstrated this validity fully rigorously [3]. A related work is [5],

in which solutions of two different weakly nonlinear models related to coordinate-free

models of flame fronts are shown to remain close over time; one of these weakly

nonlinear models is the KS equation. It is explicitly stated in [5] that the weakly

nonlinear models are to be preferred because of the ease of numerical simulation; we

demonstrate here that by our method, the full coordinate-free model may be simulated

at essentially the same cost.

Another advantage of using the fully nonlinear coordinate-free models which we

simulate is that there is no assumption that the interface is a graph with respect to

one variable; weakly nonlinear models such as the KS equation inherently have this

restriction to graphs. In Section 4, we present an example of a simulated interface with

multi-valued height, which is thus beyond the reach of the weakly nonlinear models.

The KS equation has a quite elaborate phase space, including travelling waves,

time-periodic waves and chaotic solutions [12]. The chaotic solutions occur for

large α or large domain size (or both). In Section 4, we present simulations of the

coordinate-free models in the chaotic regime. In one such simulation we observe

chaotic trajectories in all three models; in another KS is chaotic, the weakly-nonlinear

coordinate-free model evolves to a self-intersecting trajectory, and the fully-nonlinear

coordinate-free model has neither chaos nor overturning.

2. Problem formulation

Let a curve (x(σ, t), y(σ, t)) be evolving in R2; then, we define the arclength element

sσ and the tangent angle the curve forms with the horizontal, θ, as

sσ =

√

x2
σ + y2

σ, θ = tan−1(yσ/xσ).

In terms of these quantities, the curvature of the interface is

κ =
θσ

sσ
. (2.1)

We denote a frame of normal and tangent vectors at each point of the curve as

n̂ =
(−yσ, xσ)

sσ
, t̂ =

(xσ, yσ)

sσ
.

We let U denote the normal velocity of the interface and V the tangential velocity:

(x, y)t = Un̂ + V t̂.

In terms of U and V , we may infer evolution equations for sσ and θ, which are

sσt = Vσ − θσU, θt =
Uσ + Vθσ

sσ
. (2.2)
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4 B. F. Akers and D. M. Ambrose [4]

We take x and y to be spatially periodic in the following sense:

x(σ + 2π, t) = M + x(σ, t), y(σ + 2π, t) = y(σ, t),

for a fixed M > 0. Then θ is also 2π-periodic: θ(σ + 2π, t) = θ(σ, t) for all σ and t.

While U is specified by (1.1) or (1.2), the tangential velocity, V , may be chosen

to enforce a preferred parameterization of the front. We take a normalized arclength

parameterization. Letting L(t) be the length of one period of the curve, we require sσ
to satisfy sσ = L/2π. We see then, using the sσt equation in (2.2) together with the

requirement that sσ be independent of σ, that

Lt = −
∫ 2π

0

θσU dσ. (2.3)

With this normalized arclength parameterization, formula (2.1) becomes

κ =
2πθσ

L
. (2.4)

We may then write the second derivative of curvature with respect to arclength as

κss =
κσσ

s2
σ

=
θσσσ

s3
σ

=
(2π)3θσσσ

L3
. (2.5)

We introduce the projection P, which removes the mean of a periodic function:

Pf = f −
1

2π

∫ 2π

0

f (σ) dσ.

The normalized arclength parameterization requires sσt = Lt/2π, but we also have the

equation for sσt in (2.2). This gives us the tangential velocity

V = ∂−1
σ P(θσU),

where ∂−1
σ is the operator on mean-zero periodic functions which returns an antideriva-

tive with mean zero. In the numerical section that follows, we evolve (2.3) and

θt =
2π

L
(Uσ + θσ∂

−1
σ P(θσU)) (2.6)

with U defined as either the fully nonlinear (1.1) or the weakly nonlinear (1.2).

In Section 4, we compare the asymptotics of evolution for small-amplitude, slowly

varying data with these two models with those for the same data with the KS equation

(1.3), essentially testing the effectiveness of KS as an approximate model. We also

simulate initial data outside the regime where the models approximate one another for

comparison purposes.

3. Numerical method

3.1. Specification of the method In this section we discuss the numerical method

and simulations of the coupled system of (2.3) and (2.6) (using either closure (1.1) or

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1446181121000079
Downloaded from https://www.cambridge.org/core. IP address: 65.189.50.46, on 29 Apr 2021 at 13:25:25, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1446181121000079
https://www.cambridge.org/core


[5] Coordinate-free models of flame fronts 5

(1.2), coupled with curvature formulas (2.4) and (2.5)). This system is numerically

approximated using Fourier collocation for spatial derivatives (as well as for the

integral in equation (2.3)). To approximate the time evolution of the discretized

system we follow HLS, and implement the fourth-order IMEX scheme of Ascher et

al. [4]. This timestepper is designed for an ordinary differential equation of the form

ut = f (u) + g(u) (typically one chooses f (u) to be linear and g(u) as the nonlinearity).

It updates as

1

∆t

(

25

12
un+1 − 4un

+ 3un−1 −
4

3
un−2
+

1

4
un−3
)

= f (un+1) + 4g(un) − 6g(un−1)

+ 4g(un−2) − g(un−3). (3.1)

This scheme is not self starting, and one needs to use another scheme for the first

three steps. We compare three potential initializations: direct implementation of a

fourth-order Runge–Kutta (RK4), an RK4 scheme supplemented with integrating

factors (as in [13, 14]), and a third-order Richardson extrapolation of the following

first-order IMEX scheme:

un+1 − un

∆t
= f (un+1) + g(un). (3.2)

All three initializations result in a fourth-order accurate scheme, whose stability

restriction is dictated by that of (3.1) in the limit of a small timestep. In practice, the

stability restrictions of the initialization manifest when one is far outside their stability

region, causing the numerical trajectories to overflow their storage type in the early

steps. We present these phenomena in Figures 1 and 2. The linear stability region of

RK4 is well known, and we observe that integrating factors do little to ameliorate

this stability restriction in this problem. Linear stability analysis on the scheme (3.2),

applied to the test problem f = uσσσσ and g = auσ, gives a scheme which is stable

for ∆t ≤ O(1/a2) (independent of the number of points in space). This is precisely

the behaviour we observe numerically when using the Richardson extrapolation of

equation (3.2) as an initialization method for (3.1); the resulting scheme’s stability

properties appear to be independent of spatial resolution.

3.2. Stability of the method As shown in Figure 1, we evaluated the convergence

and stability of each initialization method. In the left panel of Figure 1, we fix the

number of points in space as Nσ = 16 and observe that each initialization gives the

promised fourth-order accuracy. In the right panel of this figure, we observe that when

Nσ = 32, there is a maximum timestep for which one can use the RK4-based initializa-

tions (marked with vertical dashed lines in this panel). The Richardson-extrapolated

IMEX1 initialization had no observed timestep restriction when creating these plots.

All three methods are ultimately fourth order and stable for a sufficiently small

timestep.

In Figure 2, we estimate the Courant–Friedrichs–Lewy (CFL) condition for these

schemes by running each scheme at a sampling of Nσ and tracking the largest timestep
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FIGURE 1. Convergence rate of the IMEX4 method (3.1). The markers denote three choices of initializa-

tion method. Direct RK4 initialization is marked with stars; RK4 with integrating factors is marked with

circles; Richardson-extrapolated IMEX1 is marked with triangles. A solid line at fourth-order accuracy

is also shown for comparison purposes. The left panel has Nσ = 16 spatial points; the right panel has

Nσ = 32 spatial points. The stiffness of this system manifests as a maximum timestep (marked with

dashed vertical lines), at which the schemes with RK4 initialization give finite output (the schemes

give infinite output to the right of this dashed line). We did not observe any timestep restriction for

the Richardson-extrapolated IMEX1 initialization.
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FIGURE 2. Stability of the different initializations of the IMEX4 method. The left panel shows the

observed timestep restriction as a function of total spatial points (Nσ) As in Figure 1, the stars correspond

to direct RK4 initialization and the circles are the integrating factor RK4 initialization. We did not observe

any timestep restriction when initializing with the Richardson-extrapolated IMEX1 scheme (thus, there

are no triangles marking its maximum timestep in the left panel). We ran simulations with number

of spatial points, Nσ, of up to 216
= 65536 and observed stable computations with ∆t = 0.1 with this

initialization over long times; this simulation is shown in the right panel. The same initial data were used

for the simulations shown in the left panel, but with t < 1/4.

for which the scheme is stable. For the purposes of this simulation, we call the scheme

unstable if it has a solution with ‖θ‖∞ > 10 before t = 1/4; the resolved solution we

tested on had ‖θ‖∞ < π/2. We observe that both RK4-based initializations have a

CFL condition which scales like ∆t ≤ C(∆σ)4 (the solid line in the left panel). The

Richardson-extrapolated IMEX1 initialization had no observable timestep restriction;
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[7] Coordinate-free models of flame fronts 7

successful simulations were conducted with the scheme with Nσ = 216
= 65536 and

∆t = 0.1; see the right panel of Figure 2.

4. Results

4.1. Asymptotic comparison of the models As an application of the numerical

method, we compare the evolution of initial data

y(x) = ǫ sin(
√
ǫx), α = 1 + ǫ, (4.1)

with the KS equation, as well as with the coordinate-free models of Frankel and

Sivashinsky which use the normal velocities given in (1.1) and (1.2). To initialize the

coordinate-free models, we construct the tangent angle and curve length using

θ = tan−1(yx), L =

∫

√

1 + y2
x dx.

As the weakly nonlinear coordinate-free model, using (1.2), and the KS equation are

approximations of the fully nonlinear coordinate-free model, using (1.1), we consider

the fully nonlinear model as the truth and compare the other two models against it.

The differences in the evolutions of the initial data (4.1) for the three model equations

appear in Figure 3, in which the weakly nonlinear models are denoted as yM and the

fully nonlinear model is denoted as yF.

The derivation of the KS equation from coordinate-free models in [7] considers data

scaled as in (4.1) and keeps terms of size O(ǫ3) or smaller. The natural expectation

would be for the errors created in this approximation to be asymptotically small

compared with O(ǫ3) for an O(1) time interval. We observe the infinity-norm-based

error for a fixed time interval, which scales as O(ǫ4). The asymptotics of the infinity

norm and the two-norm of the difference yF − yM at both fixed and asymptotically

long times are reported in the four panels of Figure 3. These rates match those in [3],

suggesting that their rigorous bound has an exponent which is sharp.

4.2. Evolution of an overturned interface The coordinate-free solver discussed

here has the same asymptotic cost as the KS equation (all of the equations can be

evolved in O(Nσ log Nσ) flops per timestep, owing to the Fourier collocation-based

spatial discretization). The coordinate-free models have the advantage of being able

to evolve initial data for which the interface displacement is not a function of the

horizontal coordinate but rather a general parameterized curve. In Figure 4 we present

such simulations. For the simulations in Figure 4 we use initial data

θ(σ) = A sin(σ), α = 0.1. (4.2)

For fixed θ, the curve length, L, and spatial period, M, are related as

M = L

(

1

2π

∫ 2π

0

cos(θ) dσ

)

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1446181121000079
Downloaded from https://www.cambridge.org/core. IP address: 65.189.50.46, on 29 Apr 2021 at 13:25:25, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1446181121000079
https://www.cambridge.org/core


8 B. F. Akers and D. M. Ambrose [8]

10
-2

10
-1

Amplitude, 

10
-10

10
-8

10
-6

10
-4

10
-2

Coordinate Free WNL

Kuramoto-Sivashinsky

O(
4
)

10
-2

10
-1

Amplitude, 

10
-8

10
-6

10
-4

10
-2

Coordinate Free WNL

Kuramoto-Sivashinsky

O(
3.75

)

10
-2

10
-1

Amplitude, 

10
-5

10
-4

10
-3

10
-2

10
-1

Coordinate Free WNL

Kuramoto-Sivashinsky

O(
2
)

10
-2

10
-1

Amplitude, 

10
-4

10
-3

10
-2

10
-1

Coordinate Free WNL

Kuramoto-Sivashinsky

O(
1.75

)

FIGURE 3. Differences in the evolutions of the approximate models, KS (1.3) and the coordinate-free

system with weakly nonlinear closure (1.2), and the full coordinate-free model, where the normal velocity

closure is (1.1) with initial data (4.1). The top row compares solutions at fixed time; in the bottom row the

time is scaled as O(ǫ−2).

or

L = M

(

1

2π

∫

cos(θ) dσ

)−1

.

We chose to initialize the spatial period, using the latter formula to initialize L.

That the coordinate-free formulation allows for evolution of overturned interfaces

means there is a larger simulation space, including allowing for the evolution of

self-intersecting interfaces. Self-intersecting interfaces are non-physical, but they do

not create a singularity in the parametrically described equation (unlike in some other

coordinate-free models such as vortex sheets [1, 2]). An example of the evolution of a

multiply self-intersecting interface is shown in the right panel of Figure 4.

4.3. Chaotic solutions It is well known that for large domains (or large α) the KS

equation exhibits chaotic trajectories [15, 16]. These chaotic trajectories arise from a

range of unstable wavenumbers in the linearization of the KS equation about y = 0,

which cause small solutions to first become large and then evolve chaotically. The
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FIGURE 4. The evolution of overturned initial data (4.2) with A = −11/17π, L ≈ 48.7, M = 10 is shown in

the left (time evolution) and centre panels (profile near intersection at t = 2). The evolution of an example

of self-intersecting initial data, with A = −7π/10, L ≈ 56.6, M = 2π, is shown in the right panel.

phase space of KS is quite elaborate (including travelling waves, periodic solutions

and chaos [12]); we do not seek to classify the phase space of coordinate-free models

presented here. However, two examples of the chaotic regime are included.

As a first example of a simulation in the chaotic regime, we choose α = 1.3 and

L = 250. This value of α is not so far from one, and the initial data for this simulation

are small and slowly varying:

y(x, 0) = 0.1 cos

(

2π

250
x

)

+ 0.1 cos

(

4π

250
x

)

;

thus, one should expect reasonable agreement among the three models. In this

simulation, all three models (KS, weakly nonlinear coordinate-free and fully nonlinear

coordinate-free) exhibit chaotic trajectories. This regime is depicted in Figure 5. The

long-time, chaotic solutions are no longer small, nor do they satisfy the scaling

required for the asymptotic equivalence of KS to the fully nonlinear problem. That

they are even qualitatively similar could be seen as a victory for KS as an approximate

model.

As a second example, we chose α = 9, L = 50, far from the regime where KS

approximates the fully nonlinear problem. Here, the KS equation is still chaotic. The

weakly nonlinear coordinate-free model exhibits overturning, which leads to pinch-off

in finite time. The solution to the full model has neither chaos nor pinch-off but
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FIGURE 5. Top left: a chaotic trajectory of the KS equation with L = 250,α = 1.3, depicted in space

time. Top right: a chaotic solution of the fully nonlinear coordinate-free model with L = 250,α = 1.3,

depicted in space time. Bottom: the solutions at t = 6000 from all three models are compared (the red

dotted line indicates KS, dashed blue indicates fully nonlinear coordinate-free, and solid black indicates

weakly nonlinear coordinate-free). (Colour available online.)

smoothly decays. These solutions are depicted in Figure 6 and have initial data

y(x, 0) = 0.1 cos

(

2π

50
x

)

+ 0.1 cos

(

4π

50
x

)

.

5. Conclusion

In this work, we present a numerical method for the simulation of coordinate-free

models for flame fronts. A coordinate-free model can be simulated at similar expense

to the weakly nonlinear KS equation but without the restrictions of small initial data.

We use this solver to simulate both weakly and fully nonlinear models, comparing the

solutions in a regime where they approximate one another. We also provide simulations

outside this regime, where coordinate-free models allow for overturned solutions and

pinch-off. The KS equation is well known to have parameter regimes that exhibit
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FIGURE 6. Left: a chaotic trajectory of the KS equation with L = 50,α = 9. Right: the solutions to KS

(red dotted curve), the weakly nonlinear coordinate-free model (1.2) (black solid curve) and the fully

nonlinear model (1.1) (blue dashed curve) at t = 4.75, just before the weakly nonlinear coordinate-free

solution (solid black curve) self-intersects. (Colour available online.)

travelling waves, periodic solutions and chaotic trajectories; future applications of this

method include characterizing these parameter regimes for coordinate-free models.

This methodology could also be applied to the higher (2D+1)-dimensional problem

[8], which has not been extensively studied.
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