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Abstract
Periodic traveling waves at the interface of two incompressible, inviscid fluids subject
to gravity and surface tension are studied. We focus on the case in which the lineariza-
tion about the quiescent state has a two-dimensional kernel. We prove the existence
of sheets of traveling waves in this circumstance. We also compute Wilton ripples in
which the leading term has a (1:2) harmonic resonance, the triad ripple configuration.
Global branches of waves are computed, terminating in three types of self-intersecting
waves.

Keywords Traveling waves · Vortex sheets · Wilton ripples · Lyapunov–Schmidt
decomposition

1 Introduction

We study the question of existence of spatially periodic traveling waves at the interface
between two irrotational, incompressible, immiscible fluids. The interface divides R

2

into two regions, with the upper region occupied by the upper fluid and the lower
region occupied by the lower fluid. The fluids are each of infinite vertical extent, and
we consider the horizontally periodic case. Each fluid has its own constant density;
these densities are non-negative and not both zero. If one density equals zero then this
is the single-fluid case, for which all of our results also apply. In the single-fluid case,
the boundary curve is not an “interface” per se, but we will still describe the free fluid
boundary as an interface throughout the work, for convenience. The interface height
may be multi-valued, i.e., we do not restrict to the case in which the curve separating
the two fluid regions is a graph with respect to the horizontal coordinate. The fluid
velocity in each phase is subject to the Euler equations, accounting for the effects of
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gravity and surface tension. In this setting, we both prove that traveling waves exist
as well as compute them. In the present work we focus on the case in which the
linearized equations of motion have a two-dimensional kernel; the one-dimensional
case has been treated previously by the authors and collaborators in [4, 12].

We utilize a traveling wave formulation in which the height of the interface is
not assumed to be single-valued; this framework was developed by the authors and
Wright in [1]. This formulation will be detailed in Sect. 2 below, but we now describe
it briefly. The usual traveling wave formulation for a function f , say, is to make the
ansatz that f (x − ct) is a solution of the evolution equation under consideration. We
do not use this ansatz, and instead consider a parameterized curve (x, y) traveling with
velocity (c, 0), so that (x, y)t = (c, 0). We then need a second equation to complete
the traveling wave ansatz, and we do this by taking another time derivative of this
equation. Other authors have treated the possibility of waves with multi-valued height
in two-dimensional fluids bymeans of a conformalmapping [17, 28], for example. The
present approach, however, has the advantage that it is amenable to three-dimensional
problems as well [8, 9].

In addition to its use in the above-mentionedworks, the authors andWright used this
formulation for the extension of the theory of Crapper waves (which are pure capillary
waves) to allow for small effects of gravity [7]. The authors and Sulon have also used
this formulation for the study of interfacial periodic traveling waves in the presence
of hydroelastic effects [5, 6]. Of these papers, the most similar to the current works
are [12] and [6]. In [12], the traveling wave equations for the system being studied at
present were developed. It was shown there that the kernel of the linearized operator
is always either one-dimensional or two-dimensional. Existence of traveling waves in
the case of one-dimensional kernels was developed there by use of an “identity-plus-
compact” form of a global bifurcation theorem. The paper [5] extended this theory
for the one-dimensional kernel case to the presence of hydroelastic effects, as in the
models developed by Plotnikov and Toland [26].

The most interesting case of traveling waves originating from a two-dimensional
kernel are theWilton ripples. The existence and character of ripples has been studied in
a variety of contexts. In a family of weakly nonlinear models, resonant Wilton ripples
have been shown to exist and be parametrically analytic in amplitude [2, 3]. Branches
of traveling ripples when the linearization about the flat state has two dimensional
kernel have been shown to exist in the Whitham equation [19, 24]. In the water wave
problem, Wilton ripples have been shown to exist in the presence of vorticity [25].
While most studies of the resonant case focus on the triad ripple, higher frequency
ripples have been computed [23]. Gravity-capillary ripples have been calculated in the
presence of magnetic fields [30]. Resonant triad ripples have been computed in a two-
fluid internal wave system absent surface tension but with two free boundaries [27].
Triad resonances in the gravity-capillary problem have also been used to generalize
Wilton ripples to three dimensions [16].

The proof of existence of traveling waves with two-dimensional kernels in the
present work follows the arguments of the prior work of the authors and Sulon [6].
There, a two-dimensional family ofwaveswas found to exist,with the parameters taken
to be the wave speed and the surface tension coefficient. In the hydroelastic setting
of [6], this surface tension parameter was a lower-order parameter, as surface tension
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arises in the evolution equations as a second-derivative term while the leading-order
hydroelastic term has four derivatives. We again use the surface tension coefficient as
the second parameter; thus, a difference with the prior work is that in this case, this
bifurcation parameter corresponds to the leading-order termof the evolution equations.
As in [6], the case of two-dimensional kernels further subdivides into two more cases,
those of non-resonant wave interactions and the resonant case. In both cases we make
a Lyapunov–Schmidt decomposition and apply the implicit function theorem first to
the resulting infinite-dimensional system and then to the remaining finite-dimensional
system. In analyzing the finite-dimensional systems we follow ideas of the works
[15] and [18]. This is especially relevant for the resonant case, as we study the two-
dimensional system in polar coordinates, as in [18].

In our numerical results, we find the Wilton ripples originating from a two-
dimensional kernel in the resonant case, with both the surface tension coefficient
and the spatial period of the wave held constant. In our analytical results, while we do
treat the resonant case of the two-dimensional kernel, our surface tension coefficient is
allowed to vary, as in the prior works [6, 18]. Other prior analytical work allowed the
spatial period to vary [19]. Allowing variations in the surface tension or spatial period
in some ways ameliorates the worst of the resonance; specifically, the Wilton ripples
occur at specific values of the Bond number, and by varying the surface tension or the
spatial period, the Bond number is changed from the most strongly resonant situation.

The plan of the paper is as follows. In Sect. 2, we give the travelingwave formulation
for a parameterized interface. In Sect. 3, we state our main theorem (Theorem 4) and
we prove it; this includes both the non-resonant and resonant cases. We present our
computational results in Sect. 4. We briefly give some concluding remarks in Sect. 5.
Finally, Appendix A and Appendix B give some calculations needed for the proofs of
Sect. 3.

2 Equations of Motion and Formulation

We consider a parameterized curve (x(α, t), y(α, t)) which is the interface at time t
between the upper and lower fluids. Each fluid is of infinite vertical extent. The curve
is horizontally periodic, meaning that for a fixed M > 0, we have

x(α + 2π, t) = x(α, t) + M, y(α + 2π, t) = y(α, t),

for allα and all t .Rather than consider the curve (x, y)directly,wewill frequentlywork
with the tangent angle, θ(α, t), that the curve formswith the horizontal. This is defined
as θ = tan−1(yα/xα). The parameter, α, along the curve can be chosen in a variety of
ways, and we will take a normalized arclength parameterization. This means that we
will take α proportional to arclength, with α ∈ [0, 2π ]. The length of one period of the
curve will be L(t), so that if s denotes arclength, then sα(α, t) = sα(t) = L(t)/2π.

The curve is taken to have normal and tangential velocities U and V , respectively, so
that

(x, y)t = U n̂ + V t̂, (1)



B. F. Akers, D. M. Ambrose

where n̂ and t̂ are the usual frame of normal and tangential vectors, respectively, i.e.,

t̂ = (xα, yα)

sα
, n̂ = (−yα, xα)

sα
.

The normal velocity, U , is determined from the fluid dynamics, and specifically will
be the normal component of the Birkhoff–Rott integral. The tangential velocity, V ,

will be chosen to enforce our normalized arclength parameterization.
More specifically, if we complexify the position of the curve (x, y) as z(α, t) =

x(α, t) + iy(α, t), then the Birkhoff–Rott integral isW = (W1,W2), which satisfies

W1 − iW2 := B[z]γ = 1

2iM
PV

∫ 2π

0
γ (α′, t)cot

(
1

2
(z(α, t) − z(α′, t))

)
dα′.

The normal velocity is then U = W · n̂. The function γ (α, t) appearing inside the
Birkhoff–Rott integral is the vortex sheet strength, and is the derivative with respect to
α of the jump in velocity potential across the free surface. As such, γ encodes much
of the information about the fluid velocity; indeed, knowing γ and the interface posi-
tion (x, y) is enough information to allow the fluid velocity field to be reconstructed
everywhere. The evolution equation for γ can be found by considering the Bernoulli
equation for the velocity potential in the interior of each fluid region and taking the
jump across the interface, as in [14]. Full details of the calculation can be found there
or in [11], and the result is the equation

γt = τθαα

|zα| + ((V − W · t̂)γ )α

|zα|

−2A

(
Wt · t̂
|zα| + 1

8

(
γ 2

)
α

|zα|2 + gyα − (V − W · t̂)(Wα · t̂)
)

. (2)

The parameters are τ, the positive coefficient of surface tension, the constant accel-
eration due to gravity, g, and the Atwood ratio, A = ρ1−ρ2

ρ1+ρ2
. Here, ρ1 and ρ2 are the

constant densities of the lower and upper fluid, respectively. If A = 1 or A = −1,
this indicates the absence of one of the fluids; the theory still applies in this case, but
the boundary curve is not an interface but instead is just the boundary of the one fluid
which is present.

The tangential velocity, V , is found by differentiating the equation sα = L(t)/2π
with respect to time. As in any of the prior works by the authors and collaborators such
as [5], inspired by the work of Hou, Lowengrub, and Shelley [21, 22], this implies that
the tangential velocity satisfies

Vα(α, t) = θαU − 1

2π

∫ 2π

0
θαU dα. (3)

The tangential velocity, V , then, may be taken as any antiderivative of this. We will
specify a specific antiderivative shortly.
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A typical traveling wave formulation is to declare the unknowns to be functions
of the horizontal spatial variable adjusted for a translation in time. However, our
unknowns are not functions of the horizontal spatial variable but are rather functions
of the normalized arclength, α.We instead use the traveling wave ansatz as introduced
in [1] and further developed in [12]. If we let c ∈ R be the speed of the traveling
wave, then our development of the traveling wave equations for a parameterized curve
begins from the equation

(x, y)t = (c, 0). (4)

We note that (4) is clearly a traveling wave ansatz, in that it specifies that a curve,
(x, y), translates rigidly with speed c. It also fixes parameterization, in that a point at
time (x(α, 0), y(α, 0)) on the curve at time zero will at other times be at the position
(x(α, t) + ct, y(α, t)); thus, we are specifying that all of the points on the curve also
are translating with speed c. Of course, using a Lagrangian parameterization which
tracks material points, one would not expect the individual material points to all move
with the wave speed. However, we are using an artificial tangential velocity, V , which
keeps the curve parameterized by arclength at all times. This choice of tangential
velocity also fixes the parameterization so that all points on the curve translate with
the wave speed.

Substituting (1) into (4) yields the following system of equations:

−U sin(θ) + V cos(θ) = c,

U cos(θ) + V sin(θ) = 0.

The solution of these equations is

U = −c sin(θ), (5)

as well as V = c cos(θ). In light of the normalized arclength parameterization
requirement (3), however, these two equations are redundant. That is, if we have
U = −c sin(θ), then

θαU = −cθα sin(θ) = ∂α(c cos(θ)) = Vα.

Notice that since θαU is the derivative of a periodic function, it has zero mean, and
thus (3) is satisfied.

To complete the traveling wave formulation, we still need a second equation. That
is, if we find a curve (x, y) and vortex sheet strength γ which satisfy (5) at an instant,
it may not be satisfied at subsequent times. Thus we also differentiate (5) with respect
to time, requiring

Ut = −cθt cos(θ).

Since the traveling wave is of permanent form, however, we have θt = 0. Using the
definition of U as U = W · n̂, and again the fact that n̂t = 0 because the wave is of
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permanent form, we find

Ut = Wt · n̂ = 0. (6)

Using the complexified form of W, and using that zt (α, t) = zt (α′, t) = c, we see
that (6) can be expressed as

Ut = Wt · n̂ = Re

{
(W1 − iW2)t

(
i zα
sα

)}

= Re

{
zα

2msα
PV

∫ 2π

0
γt (α

′, t) cot
(
1

2
(z(α, t) − z(α′, t))

)
dα′

}
= 0.

We show in [12] that this is satisfied if and only if

γt = 0. (7)

To summarize our formulation so far, we state the following proposition proved in
[12].

Proposition 1 (i) Suppose that (x(α, t), y(α, t)) and γ (α, t) solve (1), (2), and more-
over there exists c ∈ R such that (5), (7) are satisfied, for all α and t . Then
(x(α, t), y(α, t)) and γ (α, t) constitute a traveling wave solution with speed c.

(ii) If (x̌, y̌) and γ̌ constitute a traveling wave solution with speed c of (1), (2), then
there exists a reparameterization which maps ((x̌, y̌), γ̌ ) �→ ((x, y), γ ), where
(x(α, t), y(α, t)) and γ (α, t) satisfy (5), (7) for all α and t .

In principle, therefore, our traveling wave formulation is (5), (7). However we need
to further develop these equations before using them analytically.

We will be reconstructing the curve, z, from its tangent angle. If we knew that θ is
the tangent angle associated to the curve z, we would have that zα = sαeiθ , and we
could then find z by taking the antiderivative of this. We define the average values

cos(θ) = 1

2π

∫ 2π

0
cos(θ(β)) dβ, sin(θ) = 1

2π

∫ 2π

0
sin(θ(β)) dβ.

Integrating zα = sαeiθ over one period, and using our periodicity assumptions, we
would have

M = z(2π, t) − z(0, t) =
∫ 2π

0
zα(α, t) dα = sα

∫ 2π

0
cos(θ) + i sin(θ) dα.

Therefore, we see that ideally,

sα = M

2πcos(θ)
, sin(θ) = 0.
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Unfortunately not all 2π -periodic tangent angles give rise to an appropriately periodic
curve. As such, when reconstructing a curve from θ,we need to introduce corrections.
To this end, assuming cos(θ) �= 0, we introduce a curve associated to θ, which we
call Z̃ :

Z̃ [θ ](α) = M

2πcos(θ)

(∫ α

0
eiθ(β) dβ − iαsin(θ)

)
,

This curve, Z̃ [θ ], then, does satisfy our periodicity assumption,

Z̃ [θ ](α + 2π, t) = Z̃ [θ ](α, t) + M,

for all α and t . The normal and tangent vectors, T̃ and Ñ , to this curve Z̃ [θ ], are

T̃ [θ ] = ∂α Z̃ [θ ]
|∂α Z̃ [θ ]| , Ñ [θ ] = i∂α Z̃ [θ ]

|∂α Z̃ [θ ]| .

Note that if sin(θ) = 0, then we have T̃ [θ ] = eiθ and Ñ [θ ] = ieiθ .
Since the mean of γ is constant through the evolution, we decompose γ as γ =

γ̄ + γ1, with γ̄ constant and with the mean of γ1 equal to zero. We also at this time
introduce the periodic Hilbert transform,

H f (α) = 1

2π
PV

∫ 2π

0
f (α′) cot

(
1

2
(α − α′)

)
dα′.

Two relevant properties of the Hilbert transform are that for any constant d, we have
Hd = 0, and if f is a periodic function with mean zero, then H2 f = − f . The
relevance of the Hilbert transform for the problem under consideration is that the
Birkhoff–Rott integral can be well-approximated by an appropriate Hilbert transform.
We introduce an operator K [z] which will be the remainder from making this approx-
imation; the definition of K [z] is

K [z] f (α) = B[z] f (α) − 1

2i zα(α)
H f (α). (8)

If we determine W and n̂ from Z̃ , then (5) becomes

Re
{
B[Z̃ [θ ]](γ )Ñ [θ ]

}
= −c sin(θ).

Further rewriting this equation using γ = γ̄ + γ1 and also using (8) yields

Hγ1 + 2|∂α Z̃ [θ ]|Re
{
(K [Z̃ ](γ̄ + γ1))Ñ [θ ]

}
+ 2c|∂α Z̃ [θ ]| sin(θ) = 0. (9)
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Applying the Hilbert transform to (9), and substituting θ = 
(θ, γ1; c) (with 
 to be
defined), we find the equation γ1 − �(θ, γ1; c) = 0, where

�(θ, γ1; c)
= 2H

(
|∂α Z̃ [
(θ, γ1; c)]|Re

{
(K [Z̃ [
(θ, γ1; c)]](γ̄ + γ1))Ñ [
(θ, γ1; c)]

}

+c|∂α Z̃ [
(θ, γ1; c)]| sin(
(θ, γ1; c))
)

.

After these considerations, the equation γt = 0 becomes τ(θαα + �̃) = 0, where

�̃(θ, γ ; c) = 1

τ
∂α((c cos(θ) − Re(B[Z̃ [θ ]]γ T̃ [θ ]))γ )

− A

τ

(
πcos(θ)

2M
∂α(γ 2) + gM

πcos(θ)
(sin(θ) − sin(θ))

+ M

2πcos(θ)
∂α

(
(c cos(θ) − Re{B[Z̃ [θ ]]γ T̃ [θ ]})

))
.

Before defining our final operator for the θ equation, we must introduce an inverse
derivative operator. We define ∂−1

α to be the mean zero antiderivative which acts on
mean zero periodic functions. For a mean zero periodic function f with Fourier series

f (α) =
∑
k �=0

f̂ (k)eikα,

we define ∂−1
α f to be

∂−1
α f =

∑
k �=0

f̂ (k)

ik
eikα.

With this in mind, we define the mapping 
 by


(θ, γ1; c) = −∂−2
α �̃(θ, γ̄ + γ1; c),

where we observe that our application of ∂−2
α is valid because �̃ does indeed have

mean zero. Our final traveling wave formulation is then

θ − 
(θ, γ1; c) = 0, γ1 − �(θ, γ1; c) = 0. (10)

We let μ = (c, τ ), and then we can restate (10) as

F(θ, γ1;μ) = 0.
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We need to know the mapping properties of (
, �). We will work in spatially
periodic Sobolev spaces, namely subsets of H1 and H2. The spaces H2

even and H2
odd

denote the subspaces of H2 of even and odd functions, respectively (i.e., functions
with cosine expansions and functionswith sine expansions). Furthermore, we let Ḣ2

even
be the homogeneous Sobolev H2 restricted to even functions, which is the same as
saying that it is the subspace of H2

even consisting of functions with zero mean.
We must address non-self-intersection of solutions as well. We do so by means of a

chord-arc condition, which has been used in many works on initial value problems for
free-surface flows, such as [10, 29]. We also must have that the mean value of cosine
be nonzero. We therefore define the open set Ub,h to be the subset of H1 × Ḣ1 × R

such that (θ, γ1; c) ∈ Ub,h if and only if θ is odd, γ1 is even, cos(θ) > h, and Z̃ [θ ]
and Z̃ [
(θ, γ1; c)] both satisfy the chord-arc condition,

∣∣∣∣∣
Z̃(β) − Z̃(β ′)

β − β ′

∣∣∣∣∣ > b, ∀β, β ′.

The following result on the mapping properties of (
, �) was proved in [12].

Theorem 2 For all b > 0 and h > 0, the pair (
, �) is a smooth, compact map from
Ub,h into H2

odd × Ḣ2
even. If (θ, γ1; c) solves (10), then (θ, γ1) correspond to a spatially

periodic, symmetric traveling wave solution of (1), (2) with speed c and period M .

The position of this traveling wave is given by Z̃ [θ ](α) + ct, and the vortex sheet
strength for this traveling wave is γ̄ + γ1(α).

3 Existence of TravelingWaves via Bifurcation with a
Two-Dimensional Kernel

As developed in [12], the linearized mapping is

L(c, τ )

[
θ̌

γ̌

]
=

[
θ̌ − D


γ̌ − D�

]
=

[
L11 L12
L21 L22

] [
θ̌

γ̌

]
,

where the operators Li j are given by

L11 = 1 + πγ̄

M

(
γ̄

τ
− cAM

πτ

)
∂−1
α H − AgM

πτ
∂−2
α P,

L12 = −
(
Aγ̄ π

τM
− c

τ

)
∂−1
α P,

L21 = −γ̄ c

(
γ̄

τ
− cAM

πτ

)
∂−1
α P − cM2Ag

π2τ
∂−2
α H ,

and

L22 = 1 − c

(
Aγ̄

τ
− cM

πτ

)
∂−1
α H .
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We can express this spectrally, for k �= 0, through the formulas

L̂11 = 1 − πγ̄

M

(
γ̄

τ
− cAM

πτ

)
|k|−1 + AgM

πτ
k−2,

L̂12 = i

(
Aγ̄ π

τM
− c

τ

)
k−1,

L̂21 = i γ̄ c

(
γ̄

τ
− cAM

πτ

)
k−1 − i

cM2Ag

π2τ
· 1

k|k| ,

and

L̂22 = 1 + c

(
Aγ̄

τ
− cM

πτ

)
|k|−1.

For k = 0, we have L̂i j = δi j , i.e., the identity matrix.
Note that L(c, τ ) is of the form “identity plus compact;” that is, all of the non-

identity terms comprising L involve negative powers of derivatives, and are therefore
smoothing and thus compact. More specifically, recall the function spaces used to
describe the nonlinear mapping in Theorem 2. In this functional setting, we consider
L(c, τ ) as a bounded linear mapping from H1

odd × Ḣ1
even to H1

odd × Ḣ1
even. Upon

subtracting the identity, we see that L − I is a bounded linear mapping from H1
odd ×

Ḣ1
even to H

2
odd×Ḣ2

even.ByRellich’s theorem, this gain of regularity implies themapping
L− I is compact. As such, L(c, τ ) has closed range. We will see below that the kernel
of L(c, τ ) and the kernel of its adjoint are finite-dimensional. This implies then that
L(c, τ ) is Fredholm.

The following proposition on the spectrum of L(c, τ ) was proved in [12].

Proposition 3 The spectrum of

L(c, τ ) : H1
odd × Ḣ1

even → H1
odd × Ḣ1

even

is {1} ∪ {λk(c, τ ) : k ∈ N}, where

λk(c, τ ) = 1 + 2γ̄ cAMπ − M2c2 − γ̄ 2π2

Mπτ
k−1 + gAM

πτ
k−2.

Each eigenvalue of L(c, τ ) has equal geometric and algebraic multiplicity, which we
denote

Nλ(c, τ ) = {k ∈ N : λk(c, τ ) = λ}.

The associated eigenspace is

Eλ(c, τ ) = span

{[−(π/cM) sin(kα)

cos(kα)

]
: k ∈ N with λk(c, τ ) = λ

}
.
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Let the polynomial R(k; τ) be given by

R(k; τ) = π2γ̄ 2A2k2 + πτk3M − π2k2γ̄ 2 + k AgM2. (11)

For a given k, if R(k; τ) ≥ 0, then the values of c ∈ R for which λk(c, τ ) = 0 are

c±(k, τ ) = πγ̄ A

M
± 1

kM

√
R(k; τ),

and this zero eigenvalue has multiplicity equal to either 1 or 2. For a given k, the
multiplicity is equal to 2 (i.e., N0(c±(k, τ ), τ ) = 2) if and only if the single root
�(k) = AgM

πτk of the affine polynomial

p(�, k; τ) = πτ�k − AgM (12)

is a positive integer not equal to k.

We will need to define another quantity before proceeding. We let Q denote this
quantity, defined as follows:

Q(k, �, τ, A, g, M, γ̄ )

= τM +
(
k + �

k�

) (
c2M2

π
+ γ̄ 2π − 2cM γ̄ A

)
−

(
k2 + �k + �2

k2�2

)
M2Ag

π
.

(13)

In the following theorem, we will need to assume that the parameters are such that
Q �= 0. We note that this can sometimes be verified. In particular, for the choices
k = 1, � = 2, τ = A, g = 1, M = 2π, and γ̄ = 0, we have Q = 4πτ �= 0.
This parameter set includes all the waves computed in the numerical section, thus the
theorem applies to all of the computations. Note that Q is a continuous function of
its (continuous) arguments, so if Q is nonzero at a certain choice of parameter values,
it will be nonzero for nearby choices of these arguments as well. So, for example, in
the above specific choice of parameters, if we vary γ̄ to make γ̄ �= 0, then Q is still
nonzero.

Recall that we consider the operator L to be a map from H1
odd × Ḣ1

even to itself. In
the next theorem, statements about the kernel and range of L, and of its adjoint, and
associated projections, are to be understood in this context.

Theorem 4 Define the polynomials p and R as in (11) and (12). Let the quantity Q
be as in (13). Let b > 0 and h > 0 be arbitrary, and let k and � be positive integers
such that k < � and such that for some τ∗ > 0, the following hold:

(1) p(�, k; τ∗) = 0,
(2) R(k, τ∗) > 0, and
(3) Q(k, �, τ∗, A, g, M, γ̄ ) �= 0.
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Given μ∗ = (c±(k, τ∗), τ∗), let

V = Ker(L(μ∗)), R = Range(L(μ∗)),
V† = Ker(L†(μ∗)), R† = Range(L†(μ∗)).

(Here, L†(c, τ ) is the Hermitian adjoint of L(c, τ ).) Let �V† and �R denote the
projections onto the given spaces. Let the basis elements of V be given as

v j (α) =
[− π

c±(k,τ∗)M sin( jα)

cos( jα)

]
, j ∈ {k, �}.

Non-resonant case. Suppose �
k /∈ N. There exist a neighborhood Nt ⊆ R

2 of (0, 0),
a neighborhoodNμ ⊆ R

2 of μ∗, a neighborhoodNV ⊂ V of 0, and a neighborhood
NR† ⊆ R† ∩ Ub,h of 0, and there exist smooth functions μ̄ : Nt → Nμ and ȳ :
NV × Nμ → NR† , such that

μ̄(0, 0) = μ∗,

and

F(t1vk + t2v� + ȳ(t1vk + t2v�, μ̄(t1, t2)); μ̄(t1, t2)) = 0,

for all (t1, t2) ∈ Nt .

Resonant case. Suppose �
k ∈ N. Given δ > 0, there exist a neighborhood Nr ⊆ R

+
around 0, a neighborhood Nμ ⊆ R

2 around μ∗, a neighborhood NV ⊆ V of 0,
and a neighborhood NR† ⊆ R† ∩ Ub,h of 0, and there exist smooth functions μ̄ :
Nr × ((δ, π − δ) ∪ (−π + δ,−δ)) → Nμ and ȳ : NV × Nμ → NR† , such that for
all β satisfying δ < |β| < π − β, and for all r ∈ Nr ,

μ̄(0, β) = μ∗,

and

F(r cos(β)vk + r sin(β)v� + ȳ(r cos(β)vk + r sin(β)v�, μ̄(r , β)); μ̄(r , β)) = 0.

Proof By Proposition 3, the kernel of L(μ) is two-dimensional at μ = μ∗. We have
noted above that L(μ) is a Fredholm operator, and thus we may make the decompo-
sitions

X = V† ⊕ R, Ub,h = V ⊕ (R† ∩Ub,h).

For each w ∈ Ub,h, we therefore may decompose w as

w = v + y,
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with v ∈ V and y ∈ R† ∩Ub,h . As we are attempting to solve the problem

F(w;μ) = 0,

we see that we may equivalently solve the system

�V†F(v + y;μ) = 0, (14)

�RF(v + y;μ) = 0. (15)

We begin by considering the solvability of (15). We let G : V × R† → R be the
mapping given by G(v, y) = �RF(v + y;μ∗). Denoting the Frechet derivative of
G with respect to y as Gy, we have Gy(0, 0) = �RL(μ∗). For any y ∈ R† ∩ Ub,h,

we have Gy(0, 0)y = �RL(μ∗)y = L(μ∗)y, since L(μ∗)y is of course in the range
of L(μ∗). Thus Gy(0, 0) is surjective onto R. Furthermore, for any nonzero y ∈
R† ∩ Ub,h, we have that y /∈ V = ker(L(μ∗)), and thus Gy(0, 0)y = L(μ∗)y �= 0.
Thus we see that Gy(0, 0) is also injective.

Since G(0, 0) = 0, we apply the implicit function theorem to G, finding the
existence of neighborhoodsNV of 0 ∈ V,Nμ ofμ∗ ∈ R

2, andNR† of 0 ∈ R†∩Ub,h,

and a smooth function ȳ : NV × Nμ → NR† , such that for all (v, μ) ∈ NV × Nμ,

we have

�RF(v + ȳ(v, μ);μ) = 0.

This function ȳ satisfies ȳ(0, μ) = 0 for all μ ∈ Nμ (since ȳ is unique and
since F(0, 0;μ) = 0 for all μ). This immediately implies that ∂c ȳ(0, μ) = 0 and
∂τ ȳ(0, μ) = 0 for all μ ∈ Nμ as well. Finally, we show that ȳv(0, 0)v = 0 as well.
Differentiating G(v, ȳ(v, μ)) = 0 with respect to v at v = 0, we find

Gv(0, 0)v + Gy(0, 0)ȳv(0, μ)v = 0.

Since Gv(0, 0)v = �RL(μ∗)v and v ∈ KerL(μ∗), we have that Gv(0, 0)v = 0.
Thus

Gy(0, 0)ȳv(0, μ)v = 0.

Since we have previously established the bijectivity of Gy(0, 0) and since v was
arbitrary, this implies ȳv(0, μ) = 0.

We next turn to consideration of (14). For any v ∈ V, we may write

v(α) = t1

[− π
c±(k,τ∗)M sin(kα)

cos(kα)

]
+ t2

[− π
c±(k,τ∗)M sin(�α)

cos(�α)

]
= t1v1 + t2v2.

We thus may represent v ∈ V with a pair (t1, t2) ∈ R
2. With this in mind, we define

�(t1, t2, μ) = �V†F(v + ȳ(v, μ);μ).
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Inspection of the formula for L(μ∗) indicates that its adjoint L†(μ∗) also has a two-
dimensional kernel, with one basis element in wavenumber k and one basis element
in wavenumber �; we denote these basis elements as φk(·, μ∗) and φ�(·, μ∗). See
Appendix A for the detailed expression for these basis elements. We then let �k be
the projection onto φk and �� be the projection onto φ�. To solve �(t1, t2, μ) = 0
then is equivalent to solving the system

�k(t1, t2, μ) = �k�(t1, t2, μ) = 0,

��(t1, t2, μ) = ���(t1, t2, μ) = 0.

We can show that for any t2 and any μ, we have �k(0, t2, μ) = 0. Indeed, so
far we have been considering functions with 2π -periodicity. If instead we considered
2π
�
-periodicity, we could repeat the above arguments and find the existence of ȳ� such

that �R�
F(t2v2 + ȳ�(t2v2, μ)) = 0, where R� is the new range of the linearization.

However, as the new set of periodic functions is a subset of the previous set, and since
the function ȳ we demonstrated to exist previously was unique, we must have that ȳ�
coincides with ȳ when the domain is restricted to 2π

�
-periodic functions. Thus we see

that t2v2 + ȳ(t2v2, μ) is 2π
�
-periodic, as is F(t2v2 + ȳ(t2v2, μ)). Since k < �, when

we project this onto φk (which, again, is a pair of functions in wavenumber k), we get
zero. Thus �k(0, t2, μ) = 0.

In the non-resonant case (so �
k /∈ N), we also have ��(t1, 0, μ) = 0 for all t1 and

μ. This condition may not hold in the resonant case, however.
We now define � = (�k, ��), with

�k(t1, t2, μ) =
∫ 1

0
∂t1�k(xt1, t2, μ) dx,

��(t1, t2, μ) =
∫ 1

0
∂t2��(t1, xt2, μ) dx .

As in [6] and [15], solving �k = �� = 0 is equivalent to solving �k = �� = 0,
and furthermore, �k and �� are smooth. We therefore will apply the implicit function
theorem to solve

0 = �k(t1, t2, μ) = ��(t1, t2, μ).

To apply the implicit function theorem, we want the matrix

[
∂c�k(0, 0, μ∗) ∂τ�k(0, 0, μ∗)
∂c��(0, 0, μ∗) ∂τ��(0, 0, μ∗)

]
(16)

to be non-singular. This matrix is equal to

[
∂2t1,c�k(0, 0, μ∗) ∂2t1,τ�k(0, 0, μ∗)
∂2t2,c��(0, 0, μ∗) ∂2t2,τ��(0, 0, μ∗)

]
.
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Since we have established above that Dȳ(0, μ) = 0, this matrix becomes

[
�k∂cL(μ∗)v1 �k∂τ L(μ∗)v1
��∂cL(μ∗)v2 ��∂τ L(μ∗)v2

]
. (17)

See [6] for full details of the equivalence of the nonsingularity of (16) and (17). What
we must show is that the determinant of this matrix is nonzero. Using the formulas
developed in Appendix B, we have the following calculation of the determinant of this
matrix:

π3

〈φk, φk〉〈φ�, φ�〉
(−Aγ̄ π + cM

cMτ

)
(� − k)Q(k, �, τ, A, g, M, γ̄ ).

The first factor on the right-hand side is clearly positive, and the second is nonzero by
assumption (since R > 0), the third is nonzero since k �= �, and the fourth is nonzero
by the assumption that Q �= 0. Applying the implicit function theorem, we find the
neighborhoods Nt and Nμ, and the desired function μ̄. This completes the proof in
the non-resonant case.

We now return to the resonant case. We still have �k(0, t2, μ) = 0 for all t2 and
μ, but we may not have ��(t1, 0, μ) = 0. We therefore define alternate auxiliary
quantities, �̃k and �̃�, and we do so making use of polar coordinates. These new
functions are

�̃k(r , β, μ) =
∫ 1

0
∂t1�k(xr cos(β), r sin(β), μ) dx,

�̃�(r , β, μ) =
∫ 1

0

(
∂t1��(xr cos(β), xr sin(β), μ) cos(β)

+∂t2��(xr cos(β), xr sin(β), μ) sin(β)

)
dx .

Analogously to the non-resonant case, we wish to solve

0 = �̃1(r , β, μ) = �̃2(r , β, μ),

whenever r cos(β) �= 0. The functions �̃k and �̃� are again smooth, and so we wish
to apply the implicit function theorem by demonstrating that the appropriate matrix is
nonsingular.

The relevant matrix can be seen to be
[

�k∂cL(μ∗)vk �k∂τ L(μ∗)vk
sin(β)��∂cL(μ∗)v� sin(β)��∂τ L(μ∗)v�

]
. (18)

Again, see [6] for full details as to the equivalence of the nonsingularity of (18) and
the analog of (16) for the resonant case. This matrix is non-singular if sin(β) �= 0 and
if the matrix (17) is nonsingular; of course, we have already concluded that under the
hypotheses of the current theorem, the matrix (17) is indeed nonsingular. For fixed,
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Fig. 1 Examples of small amplitude Wilton ripple waves with β = −1 at τ = 0.5 (left) and β = 1 at
τ = 0.1 (right)

small δ > 0 and considering the possible set of β as [δ, π − δ] ∪ [−π + δ,−δ], we
avoid the possibility of sin(β) = 0. We again are able to apply the implicit function
theorem, resulting in existence of the relevant neighborhoods and the function μ̄. This
completes the proof of the theorem. ��

4 Computations

In addition to establishing the existence of resonant Wilton ripples and non-resonant
waves, global branches ofWilton ripples are computed. Such ripples are computed for
a discrete sampling of density ratios A ∈ (0, 1). The surface tension is restricted as τ =
A to ensure a two-dimensional null space in the linearization between wavenumber
k = 1 and � = 2, referred to as the triad ripple [2, 3, 23]. The domain width is set
at M = 2π and the mean shear γ̄ = 0. Small amplitude ripples are asymptotically
approximated as

θ = εθ1 + ε2θ2 + O
(
ε3

)
,

γ = εγ1 + ε2γ2 + O
(
ε3

)
,

c = c0 + εc1 + O
(
ε2

)
.

The amplitude scale ε is defined to normalize the Fourier coefficient of θ at k = 1 so
that

θ1 = sin(α) + β sin(2α).
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Fig. 2 Examples of extreme Wilton ripples with β = −1 at τ = 0.5 (left), β = 1 at τ = 0.1 (center), and
β = 1 at τ = 0.3 (right). These profiles were computed with Nα = 2048 points per period

Following the same procedure as in [6], the O(ε) corrections are computed. The
leading order speed correction comes from linear theory,

c0 = ±
√

τ |k|
2

+ Ag

|k| .

The first nonlinear correction gives

c1 = ±1

2
Ac20, and β = ±1. (19)

The coefficient β is the ratio of the amplitude of the Fourier harmonics at k = 1
and � = 2. This value is used as a switch for the quasi-Newton method, to start the
continuation procedure on one branch or the other. Examples of small amplitudewaves
with both choices of β are in Fig. 1. Note, these waves are computed with fixed surface
tension, for which there is only one choice of β. Theorem 4 proves that other choices
of β are possible if the surface tension is allowed to vary with amplitude.

The equations of motion are approximated spectrally, using Fourier collocation
for the spatial derivatives and an alternating point trapezoid rule for the Birkhoff–Rott
integral [13, 20]. The projected equations are then solved via quasi-Newton iteration, as
in [1]. The curves are parameterized by pseudo-arclength (i.e., normalized arclength),
with α ∈ (0, 2π) (so that L

2π α is the arclength). The computations presented here used
equally spaced points to discretize α. Small amplitude solutions are computed using
the above asymptotics as an initial guess. Larger amplitude solutions are computed
via continuation in total displacement, h = max(y) − min(y).

Global branches of waves, from small amplitude up to a maximal, apparently self-
intersecting, wavewere computed for τ = A ∈ (0, 1).Waves are considered to be near
self-intersection if the distance between any pair of points is less than 90% of the grid
spacing, at which point computations are halted to avoid non-physical self-intersecting
profiles. Note, this criteria cannot occur between adjacent points, as the grid spacing
is uniform in arclength; it happens only when two non-adjacent grid points approach
one another (as in self-intersection). The boundaries of the regions in Fig. 3 where
waves are reported to exist are the adaptively computed amplitudes where waves first
satisfy the near self-intersection threshold.
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Fig. 3 Diagrams depicting the regions where traveling resonant triad ripples were computed. Waves were
computed in the blue-shaded regions. The left panel depicts triad ripples with β = −1; the right panel
depicts triad ripples with β = 1. The waves in Fig. 2 are marked: (β = −1, τ = 0.5) with the red star in
the left panel, (β = 1, τ = 0.1) with the magenta square in the right panel, and (β = 1, τ = 0.3) in the
right panel. Examples of small amplitude waves of each type are in Fig. 1

Figure2 depicts examples of extreme waves. For β = −1 the extreme resonant
ripple on each branch, at each resonant τ = A ∈ (0, 1), has a single self-intersecting
trough. These waves resemble extreme water waves with surface tension, e.g., the
Crapper waves. One such wave is in the left panel of Fig. 2. For β = 1 there are
two different types of extreme waves. For small τ = A, the extreme waves self-
intersect at a single crest (as in the center panel of Fig. 2); for large τ = A, the
extreme waves self-intersect at two separate, symmetric troughs (as in the right panel
of Fig. 2). The continuation procedure to compute branches of waves was conducted
with Nα = 512 points. Once the near self-intersecting waves were found, the largest
wave was interpolated to Nα = 2048 points and recomputed as a resolution check.
The differences between the resolutions are indistinguishable at the scale of the figures
presented here.

The extreme wave types were explored by computing the regions in the τh-plane
in which traveling waves exist, like a phase diagram. For β = −1, the diagram was
computed by continuing in h from small amplitude for each τ . The observed extreme
wave locations were a monotonic function of h. In the left panel of Fig. 3, the blue
region denotes the (h, τ ) pairs for which waves with β = −1 were computed.

For β = 1 there are two qualitatively different extreme waves at which branches of
ripples terminate. Moreover the boundary of where waves exist in the (h, τ ) plane is
not a smooth function of τ . To trace this boundary, the boundary-tracing continuation
procedure developed in [4] was employed. This procedure begins with a single global
branch of traveling waves, computed with continuation in amplitude from zero up to
the self-intersection threshold. For Fig. 3 the first branch is τ = 0.01. Continuation is
then employed in both h and τ simultaneously on small circular paths inside the region
where waves exist, here counterclockwise, using the extreme wave as the center of the
circle. The step angles of this continuation procedure are adaptively chosen; each arc
ends at an extreme wave. The location of the new extreme wave is used as the center
of the next small circle, the intersection of the previous path and the new circle is used
as the initial guess for the first point on the new circle. The radius of the leftmost circle
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radius is set to correspond to �τ = 0.01, the method adaptively decreases the change
in τ when necessary (�τ decreases to is �τ = 3 × 10−5 in the computation of the
corners of the boundary in the right panel of Fig. 3.)

This method was employed to trace the boundary of the region in the (h, τ ) plane
where ripples with β = 1 exist and is depicted in the right panel of Fig. 3. This
boundary appears in three smooth arcs. On the leftmost arc, on which there is marked
a single magenta square, the extreme waves self-intersect at a single central peak.
On the rightmost arc, marked with a green triangle in Fig. 3, the extreme waves self
intersect at two troughs per period. These two arcs are connected by a third arc, where
the extreme waves are not near self-intersection. The corners on this boundary are
likely the result of a folding of the surface of traveling waves by our projection into
the (h, τ ) plane. The waves above the third arc are observed not to be connected to
the flat state for fixed values of τ and A.

5 Conclusion

In this work, existence of traveling internal capillary waves which bifurcate from a
two dimensional kernel is established. Both the resonant and non-resonant cases are
handled. The key step of the existence proof, which employs a Lyapunov–Schmidt
decomposition and two uses of the implicit function theorem, requires that a certain
matrix must have non-zero determinant. Ripples were also computed for the density
ratio/surface tension pairs at which the linear problem has two dimensional kernel.
Global branches of traveling ripples were computed, ending in three types of self-
intersecting profiles.

Appendix A: The Kernel of L†(�∗)

In this appendix, we carry out some calculations relating to L†(μ∗). These are used
in the proof of the main theorem above.

The adjoint of L̂(μ)( j) is

L̂†(μ)( j) =
[

ϒ11 ϒ12
ϒ21 ϒ22

]
,

where the matrix entries are given by

ϒ11 = 1 − πγ̄

M

(
γ̄

τ
− cAM

πτ

)
|k|−1 + AgM

πτ
k−2,

ϒ12 = −i γ̄ c

(
γ̄

τ
− cAM

πτ

)
k−1 + i

cM2Ag

π2τ
· 1

k|k| ,

ϒ21 = −i

(
Aγ̄ π

τM
− c

τ

)
k−1,
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ϒ22 = 1 + c

(
Aγ̄

τ
− cM

πτ

)
|k|−1.

Note that this has the same determinant as L̂(μ)( j), so one of these is singular if and
only if the other is. Therefore we see that the kernel of L†(μ∗) has basis elements

with wavenumbers k and � only. Considering L†(μ∗)
[
f1
f2

]
= 0, we see that (using

the equation from the second row of the matrix) that

(
Aγ̄ π

τM
− c

τ

)
∂−1
α P f1 +

(
1 − c

(
Aγ̄

τ
− cM

πτ

)
∂−1
α H

)
f2 = 0.

We see that we can take f1 and f2 as

[
f1
f2

]
=

[ (
τ jM + cM

(
Aγ̄ − cM

π

))
sin( jα)

(−cM + Aγ̄ π) cos( jα)

]
.

Note that this is nontrivial, since −cM + Aγ̄ π can be expressed in terms of the
polynomial R, and this is nonzero by assumption. When j = k we call this vector φk,

and when j = � we call it φ�.

Appendix B: Calculations of Matrix Entries in (17)

We compute the derivatives of L(μ) with respect to c and τ, finding

∂cL(μ) =
[ − γ̄ A

τ
∂−1
α H 1

τ
∂−1
α P(

− γ̄ 2

τ
+ 2γ̄ cAM

πτ

)
∂−1
α P − M2Ag

π2τ
∂−2
α H

(
− Aγ̄

τ
+ 2cM

πτ

)
∂−1
α H

]

and

∂τ L(μ) =
⎡
⎣−πγ̄

M

(
γ̄

τ 2
− cAM

πτ 2

)
∂−1
α H + AgM

πτ 2
∂−2
α P

(
Aγ̄ π

τ 2M
− c

τ 2

)
∂−1
α P

γ̄ c
(

γ̄

τ 2
− cAM

πτ 2

)
∂−1
α P + cM2Ag

π2τ 2
∂−2
α H c

(
Aγ̄

τ 2
− CM

πτ 2

)
∂−1
α H

⎤
⎦ .

For ∂τ L(μ), however, it is perhaps more helpful to note the equality

∂τ L(μ) = −1

τ
(L(μ) − Id) .

Since we know that L(μ∗)vi = 0 for i ∈ {1, 2}, this tells us immediately that

∂τ L(μ∗)vi = 1

τ
vi .
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We next compute ∂cL(μ)vi , and letting j ∈ {k, �} be as appropriate,

∂cL(μ)vi =
⎡
⎣

(−γ̄ Aπ+cM
jτcM

)
sin( jα)

−
(

γ̄ 2π
τcM j − 2γ̄ A

τ
· 1
j − MAg

cπτ
· 1
j2

− Aγ̄
τ

· 1
j + 2cM

πτ
· 1
j

)
cos( jα)

⎤
⎦ .

Then, taking the projection, we have

�k∂cL(μ∗)v1 = π

〈φk, φk〉
((

τkM + cM

(
Aγ̄ − cM

π

)) (−γ̄ Aπ + cM

cMτk

)

+
(−Aγ̄ π + cM

cMτk

)(
γ̄ 2π − 3cM γ̄ A − M2Ag

πk
+ 2c2M2

π

) )

= π

〈φk, φk〉
(−Aγ̄ π + cM

cMτk

)

×
(

τkM + c2M2

π
+ γ̄ 2π − M2Ag

πk
− 2cM γ̄ A

)
.

Similarly, we have

��∂cL(μ∗)v2 = π

〈φ�, φ�〉
(−Aγ̄ π + cM

cMτ�

)

×
(

τ�M + c2M2

π
+ γ̄ 2π − M2Ag

π�
− 2cM γ̄ A

)
.

We next compute

�k∂τ L(μ∗)v1

= π

〈φk, φk〉
((

− π

τcM

) (
τkM + cM

(
Aγ̄ − cM

π

))
+ 1

τ
(−cM + Aγ̄ π)

)

= π

〈φk, φk〉
(

−πk

c

)
,

and the corresponding formula

��∂τ L(μ∗)v2

= π

〈φ�, φ�〉
((

− π

τcM

)(
τ�M + cM

(
Aγ̄ − cM

π

))
+ 1

τ
(−cM + Aγ̄ π)

)

= π

〈φ�, φ�〉
(

−π�

c

)
.
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