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Abstract: This research investigates laser-induced convection through a stream function-vorticity
formulation. Specifically, this paper considers a solution to the steady Boussinesq Navier–Stokes
equations in two dimensions with a slip boundary condition on a finite box. A fixed-point algo-
rithm is introduced in stream function-vorticity variables, followed by a proof of the existence of
steady solutions for small laser amplitudes. From this analysis, an asymptotic relationship is demon-
strated between the nondimensional fluid parameters and least upper bounds for laser amplitudes
that guarantee existence, which accords with numerical results implementing the algorithm in a
finite difference scheme. The findings indicate that the upper bound for laser amplitude scales by
O(Re−2Pe−1Ri−1) when Re� Pe, and by O(Re−1Pe−2Ri−1) when Pe� Re. These results suggest
that the existence of steady solutions is heavily dependent on the size of the Reynolds (Re) and
Peclet (Pe) numbers, as noted in previous studies. The simulations of steady solutions indicate the
presence of symmetric vortex rings, which agrees with experimental results described in the literature.
From these results, relevant implications to thermal blooming in laser propagation simulations are
discussed.

Keywords: convection; Navier–Stokes; steady state; existence

1. Introduction

In this article, we investigate steady Boussinesq fluid convection driven by a laser
source. More precisely, we present and interrogate a solution to the steady-state case of a
buoyancy-driven fluid with a forcing term due to heat transfer from a laser. The Boussi-
nesq approximation is highly accurate for such buoyancy-driven flows and is common-
place in laser propagation studies, especially those involving thermal blooming [1]. This
phenomenon of thermal blooming plays an important role in dictating the behavior of
laser-fluid interaction within the context of laser propagation, and especially in domains
such as manufacturing, remote sensing, directed energy, imaging, and several others [2–4].
Motivated by the applications in these respective fields, we will consider steady-state
laser convection within a 2D setting. Several authors have elucidated the means by which
laser-induced convection, both in steady and unsteady regimes, can be applied to en-
gineering and applied science problems. For example, Vela [5] describes a method to
manipulate micro-beads at mesoscale velocities within a convection chamber. In a simi-
lar analysis, Flores–Flores [6] considers microparticle transport driven by laser-induced
convective currents in gas at microscale velocities. In nanofluids, Mourad et al. [7] and
Jamshed et al. [8] consider the thermal characteristics of fluid flow undergoing natural
convection. At larger fluid velocities, Masoomi [9] considered steady-state convective heat
transfer from lasers in the context of additive manufacturing, and Rennie [10] has dis-
cussed the impact laser-induced convection can have on material heating times in directed
energy applications.
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In treating the steady-state laser convection problem, we introduce an iterative nu-
merical method to simulate steady solutions over a 2D finite grid. We provide a proof of
existence of steady solutions for small enough laser amplitudes and we give a theorem to
describe the scaling between nondimensional fluid parameters and a least upper bound
for laser amplitude which permits computable solutions. There exist several papers in the
relevant literature that prove convergence of iterations in weak and strong formulations for
the Navier–Stokes equations. Work has already been done [11,12] to prove the existence
of weak solutions in the 2D and 3D steady Navier–Stokes equations with a Boussinesq
approximation and slip boundary conditions, but all in the primitive variable setting and
without an implementable iteration to find the solutions. Other studies each considered
an unforced problem or a problem with forcing along the boundary of the considered
domain [13,14]. By choosing an appropriate function space, convergent iterations exist in at
least two dimensions for steady and unsteady cases [15–18]. The iteration presented in this
work, however, is unique in that it provides solutions to an internally forced convection
problem. In our formulation, we establish a fixed-point iteration with existence in Sobolev
spaces in two dimensions. From this iteration, we implement a finite-difference numerical
algorithm to compute solutions over a grid. Previous work surrounding the simulation of
laser-induced convection has included discussions about free versus forced convection [19],
difficulties with nondimensional scaling [20], difficulties with deriving proper boundary
conditions [21], and several other associated problems. Similar finite difference algorithms
do exist [22,23] along with methods that implement finite elements [24] and radial basis
functions [25]; however, these algorithms do not consider a convection problem with inter-
nal forcing. Furthermore, in our analysis of the induced finite-difference scheme, we give
particular consideration to the asymptotic scaling of the nondimensional fluid parameters.

Since the Navier–Stokes equations may be represented in either primitive variables
(temperature, velocity, pressure), or in stream function-vorticity form, the chosen for-
mulation informs on the techniques used to analyze potential solution methods. Both
representations have their benefits. The stream function-vorticity formulation, however, is
advantageous in that it implicitly guarantees divergence-free flow without the requirement
of a pressure-correction term. In numerical implementations of the primitive Navier–Stokes
equations, this pressure correction term often leads to solution inaccuracies arising from
inappropriate choices in pressure boundary conditions [26]. With the stream function-
vorticity formulation, the choice of boundary conditions for each fluid variable is thus
simplified. We consider here a no-friction slip condition in stream function-vorticity vari-
ables with homogeneous Dirichlet conditions for temperature. The slip condition is easily
manifested in stream-function vorticity form as a homogeneous Dirichlet condition on the
fluid stream function and vorticity. This condition allows for free tangential movement
along the boundary, allowing for the development of vortex rings within the domain.

The novel findings from this study will include the existence of solutions arising from
a numerically implementable iteration, as well as the asymptotic relationship between
nondimensional fluid parameters and a maximum laser amplitude. In the following
chapters, we discuss the relationship between the physical problem and the stream function-
vorticity representation, we introduce and prove convergence of an iteration to solve the
Boussinesq Navier–Stokes equations, and we conclude with results and a discussion on
the asymptotic scaling of nondimensional fluid parameters with respect to convergence.
Following this analysis, we provide numerical solutions to the steady-state and we examine
the applications to laser beam propagation.

2. Formulation

We now introduce our approach to mathematically describing the laser-fluid inter-
action of interest. We consider a model for laser-fluid interaction on a finite, 2D domain
such that this domain represents a rectangular cross section along the propagation path (z
coordinate) of the laser beam. That is, the domain will be a rectangular subsection of the xy
plane where we assume the Gaussian laser intensity profile is centered on the origin of the
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domain. This assumption would be most valid when considering thermal blooming at the
laser aperture. We denote the domain as Ω and the boundary of the domain as ∂Ω, where
we begin by considering a square domain Ω = [−2, 2]× [−2, 2] as depicted in Figure 1.

Figure 1. The above figure provides a visualization of the fluid boundary and domain with laser
forcing centered on the origin. Both the x and y coordinates range from −2 to 2.

Several assumptions on the fluid and laser properties must be imposed in the pur-
suit of governing equations which dictate fluid behavior. We assume an incompressible,
Newtonian fluid which is governed by the Boussinesq approximation for buoyancy-driven
flows. This Boussinesq model assumes that variations in fluid density have a linear rela-
tionship with temperature. Further, we assume a representation of the normalized laser
irradiance as a function defined over the domain Ω such that the laser heats the fluid and
induces temperature variations. We first introduce the governing equations for fluid flow
in primitive variables where we seek the functions

T : Ω→ R, p : Ω→ R u : Ω→ R2

representing the nondimensional temperature fluctuation, pressure, and velocity field of
the fluid which obey the incompressible, Boussinesq Navier–Stokes equations undergoing
forcing [27]:

ut + (u · ∇)u = ∇p +
1

Re
∆u + RiTe2, (1a)

∇ · u = 0, (1b)

Tt + (u · ∇)T =
1

Pe
∆T + F, (1c)

where F : Ω → R represents the laser forcing and e2 represents the unit vector in the
vertical y direction. For a characteristic length scale L, characteristic velocity scale U, force
due to gravity g, kinematic viscosity ν, and thermal diffusivity µ, the Reynolds, Peclet,
and Richardson numbers are respectively defined as

Re =
UL
ν

, Pe =
UL
µ

, Ri =
gL
U2 . (2)

We seek steady-state solutions such that all temporal variation is negligible and each
ut = Tt = pt = 0. In two dimensions, it is often easier to consider the stream function-
vorticity form of the Boussinesq equations. This formulation reduces the total number
of fluid variables by one, and often allows for easier treatment of boundary conditions.
The transformation from the primitive form to the stream function-vorticity form is a well



Fluids 2021, 6, 425 4 of 17

established procedure, where the two representations are equivalent for valid boundary
data [28]. We state the equivalent stream function-vorticity form of the steady Boussinesq
equations below:

∆T = Pe
(
ψyTx − ψxTy − F

)
, (3a)

∆ω = Re
(
ψyωx − ψxωy

)
+ RiReTx, (3b)

∆ψ = ω, (3c)

where ω is the vorticity and ψ is the stream function of the fluid. Like the primitive
formulation, we may interpret the system as a type of vector-valued, nonlinear Poisson
equation over the domain Ω.

In this study, we consider a slip boundary condition on a finite box corresponding to
zero shear stress along the boundary. This slip condition enforces boundary impermeability
and assumes that the coefficient of friction between the fluid and the boundary is zero.
That is, the normal component of velocity at the boundary vanishes but the tangential
component is unrestricted. This boundary condition is useful in investigating laser-fluid
interaction as it localizes the fluid within a finite domain without having to consider
boundary layer effects. In primitive variables, where u = (u, v), this is satisfied through
the condition 

v = 0, (x, y) ∈ ∂Ωtop & bottom,
∂u
∂y = 0, (x, y) ∈ ∂Ωtop & bottom,

u = 0, (x, y) ∈ ∂Ωleft & right,
∂v
∂x = 0, (x, y) ∈ ∂Ωleft & right.

(4)

Based on the definitions for the stream function

∂ψ

∂y
= u,

∂ψ

∂x
= −v, (5)

and the definition for vorticity

ω =
∂v
∂x
− ∂u

∂y
, (6)

we may transform the primitive slip condition into an equivalent condition on the stream
function and vorticity. First, if v = 0 on the top and bottom and u = 0 on the left and right,
then

ψx = 0, (x, y) ∈ ∂Ωtop & bottom

and
ψy = 0, (x, y) ∈ ∂Ωleft & right

which is satisfied by taking ψ = 0 on all of ∂Ω. For the vorticity, if uy = 0 on the top
and bottom, then ω = vx = 0 on the top and bottom. Similarly, if vx = 0 on the left
and right, then ω = uy = 0 on the left and right. It thus follows that the slip condition
in primitive variables is equivalent to a homogeneous Dirichlet condition on the stream
function and vorticity. For simplicity, we impose a homogeneous Dirichlet condition on
the temperature, but a Neumann condition can also yield useful results. The slip condition
in stream function-vorticity form is thus stated as

ω(x, y) = 0, (x, y) ∈ ∂Ω,
ψ(x, y) = 0, (x, y) ∈ ∂Ω,
T(x, y) = 0, (x, y) ∈ ∂Ω.

(7)

With the stream function-vorticity formulation posed as a system of coupled Poisson
boundary value problems, we now define T̂, ω̂, and ψ̂ as the exact temperature fluctuation,
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vorticity, and stream function, respectively. We restate Equation (3) for the steady Navier–
Stokes equations in the Boussinseq approximation as

∆T̂ = Pe
(
ψ̂yT̂x − ψ̂x T̂y − F

)
, (8a)

∆ω̂ = Re
(
ψ̂yω̂x − ψ̂xω̂y

)
+ RiReT̂x, (8b)

∆ψ̂ = ω̂, (8c)

We then introduce the fixed-point iteration for n > 1 as

∆T̂n = Pe
(

∂ψ̂n−1

∂y
∂T̂n−1

∂x
− ∂ψ̂n−1

∂x
∂T̂n−1

∂y
− ε f

)
, (9a)

∆ω̂n = Re
(

∂ψ̂n−1

∂y
∂ω̂n−1

∂x
− ∂ψ̂n−1

∂x
∂ω̂n−1

∂y

)
+ RiRe

∂T̂n

∂x
, (9b)

∆ψ̂n = ω̂n. (9c)

where the laser irradiance takes the form of an amplitude ε scaled by a normalized Gaus-
sian f

F(x, y) = εe−c(x2+y2) = ε f (x, y), (10)

and we initialize the solution as

∆T̂0 = −Pe(ε f ), (11a)

∆ω̂0 = RiRe
∂T̂0

∂x
, (11b)

∆ψ̂0 = ω̂0. (11c)

This initialization is the linearization of the system of equations and thus should serve
as a strong initial guess for small amplitude solutions. We show in the following section
that unique, convergent solutions exist for this iteration when laser amplitude ε is small.

In the numerical implementation of this iteration, we employ a finite difference scheme
to successively solve the Poisson equations in each fluid variable at each step n. We proceed
by uniformly discretizing the domain Ω with step size h, and we utilize a second order,
centered difference approximation to discretize the Laplacian

(∆u)ij =
ui+1,j + ui−1,j − 4ui,j + ui,j+1 + ui,j−1

h2 +O(h2). (12)

For an N × N discrete grid, the solution to the discrete Poisson equation solution
can be found in O(N2 log N2) flops [29]. Since this represents the most computationally
expensive step in the iteration, we thus conclude that the scheme (9) has an asymptotic cost
of O(N2 log N2) when it converges to a unique solution. In a MATLAB implementation,
we establish stopping criteria based on the Cauchy error of successive iterations. That is,
the algorithm terminates when the numerical solutions converge based on the criterion

‖Tn − Tn−1‖2 + ‖ωn −ωn−1‖2 + ‖ψn − ψn−1‖2 < p (13)

using vector 2-norms for some appropriately small p. The following section is dedicated to
demonstrating that these convergent solutions exist for small enough laser amplitudes.

3. Existence Proof

Recall that the iteration (9) was constructed so that its fixed points are steady solutions
of (8), so this convergence of the scheme gives existence of solutions. We state this result as
a theorem:
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Theorem 1 (Convergence of Steady Solutions to the Stream Function-Vorticity Form of the
Boussinesq Navier–Stokes equations). The iteration defined in (9) and (11) converges to unique
solutions for small forcing and Dirichlet boundary conditions.

Proof. We begin by stating a definition from Brezis [30] and two lemmas which assist in
our analysis:

Definition 1 (Sobolev Spaces). Let Ω ⊂ RN and let p ∈ R with 1 ≤ p ≤ ∞. If m ≥ 2 is an
integer, then the Sobolev space Wm,p(Ω) is defined for all α with |α| ≤ m,

Wm,p(Ω) = {u ∈ Lp(Ω)|∃gα ∈ Lp(Ω) :
∫

Ω
uDα ϕ = (−1)|α|

∫
Ω

gα ϕ ∀ϕ ∈ C∞
c (Ω)}, (14)

where we employ the multi-index notation α = (α1, α2, ..., αN) such that

|α| =
N

∑
i=1

αi, Dα ϕ =
∂|α|ϕ

∂xα1
1 ∂xα2

2 ...∂xαN
N

. (15)

We assign the gα = Dαu. The space Wm,p(Ω) equipped with the norm

‖u‖Wm,p = ∑
|α|≤m

‖Dαu‖Lp (16)

is a Banach space and we define the space

Hm(Ω) = Wm,2(Ω) (17)

originally defined by Sobolev in [31,32].

Lemma 1 (Hs is an algebra). Let Ω ⊂ Rd. Suppose s1, s2 ≥ s and s1 + s2 > s + d/2. Then
u ∈ Hs1(Ω) and v ∈ Hs2(Ω) gives that (uv) ∈ Hs(Ω), and that

‖uv‖Hs ≤ M‖u‖Hs1 ‖v‖Hs2

where M depends only on s1, s2 and d.
See [33] for proof.

Lemma 2 (Elliptic Estimate). If F ∈ Lp(Ω) then there exists a unique solution to

∆u = F x ∈ Ω = [a, b]× [c, d]

with
u|∂Ω = 0,

And that solution satisfies ‖u‖W2,p(Ω) ≤ C‖F‖Lp(Ω) where C = C(a, b, c, d, p) is a posi-
tive constant.

(see [34] for proof. A similar result also exists for inhomogeneous and Neumann boundary
conditions for boundary data which satisfy compatibility conditions as described in [35,36].)

We now introduce the small amplitude assumption on the dynamics, where each
T̂, ω̂, ψ̂ is represented by a perturbation from the resting fluid case:

T̂ = εT, (18a)

ω̂ = εω, (18b)

ψ̂ = εψ. (18c)
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The key result of the proof involves constructing the equation for the difference
between two iterations Tn and Tm (and similarly ωn and ωm, ψn and ψm) by applying the
representation in (18) and subtracting (9) at the two indices m and n:

∆(Tn − Tm)

= εPe
[(

∂ψn−1

∂y
∂Tn−1

∂x
− ∂ψn−1

∂x
∂Tn−1

∂y

)
−
(

∂ψm−1

∂y
∂Tm−1

∂x
− ∂ψm−1

∂x
∂Tm−1

∂y

)]
,

(19a)

∆(ωn −ωm)

= εRe
[(

∂ψn−1

∂y
∂ωn−1

∂x
− ∂ψn−1

∂x
∂ωn−1

∂y

)
−
(

∂ψm−1

∂y
∂ωm−1

∂x
− ∂ψm−1

∂x
∂ωm−1

∂y

)]
+ RiRe

(
∂Tn

∂x
− ∂Tm

∂x

)
,

(19b)

∆(ψn − ψm) = ωn −ωm. (19c)

We proceed by investigating the form of Equation (19a) first. Define

FT(n, m) = εPe
[(

∂ψn−1

∂y
∂Tn−1

∂x
− ∂ψn−1

∂x
∂Tn−1

∂y

)
−
(

∂ψm−1

∂y
∂Tm−1

∂x
− ∂ψm−1

∂x
∂Tm−1

∂y

)]
(20)

where we manipulate the form of the equation to arrive at a more convenient expression:

FT(n, m) = εPe
[(

∂ψn−1

∂y
∂Tn−1

∂x
− ∂ψn−1

∂x
∂Tn−1

∂y

)
−
(

∂ψm−1

∂y
∂Tm−1

∂x
− ∂ψm−1

∂x
∂Tm−1

∂y

)]
=

εPe
2

[(
∂ψn−1

∂y
− ∂ψm−1

∂y

)(
∂Tn−1

∂x
+

∂Tm−1

∂x

)
+

(
∂ψn−1

∂y
+

∂ψm−1

∂y

)(
∂Tn−1

∂x
− ∂Tm−1

∂x

)
−
(

∂ψn−1

∂x
− ∂ψm−1

∂x

)(
∂Tn−1

∂y
+

∂Tm−1

∂y

)
−
(

∂ψn−1

∂x
+

∂ψm−1

∂x

)(
∂Tn−1

∂y
− ∂Tm−1

∂y

)]
.

(21)

We now prove that the function FT(n, m) ∈ L2(Ω) such that the norm ‖FT‖L2(Ω) < ∞
by showing that each Tn, ωn, ψn ∈ H2(Ω) for n, m ≥ 0.

Lemma 3 (Sobolev Inclusion). Let f (x, y) be a laser forcing such that f ∈ L2(Ω). Then for all
n, m ≥ 0, each Tn, ωn, ψn ∈ H2(Ω) and FT(n, m) ∈ L2(Ω) as defined in (20).

Proof. Suppose that f (x, y) ∈ L2(Ω). By recalling the initialization (11), we apply Lemma 2
to see that T0 ∈ H2(Ω). By the definition of the Sobolev space (14), it follows that
D1T0 ∈ L2(Ω) and thus by applying Lemma 2 again it follows that ω0 ∈ H2(Ω) and
similarly ψ0 ∈ H2(Ω). We now hypothesize for induction that each Tn, ωn, ψn ∈ H2(Ω).
The base case was just shown. Based on the iteration (9) and by applying the small
amplitude assumption (18), we see that

∆Tn+1 = εPe
[(

∂ψn

∂y
∂Tn

∂x
− ∂ψn

∂x
∂Tn

∂y

)
− f

]
.

Since ψn and Tn ∈ H2(Ω) by assumption, we apply Lemma 1 with s = 0 and s1 = 1
on the Tn derivatives and s2 = 1 on the ψn derivatives to see that the right hand side is
an L2(Ω) function such that Tn+1 ∈ H2(Ω) from Lemma 2. A similar argument holds for
each ωn+1, ψn+1 so we conclude that Tn, ωn, ψn ∈ H2(Ω). Based on this Sobolev inclusion,
we may again apply Lemma 1 to the terms in the expression for FT(n, m) to see that
FT(n, m) ∈ L2(Ω).
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We now apply the triangle inequality to the norm of the expression (21) which yields

‖FT‖L2(Ω) ≤
εPe
2

[
‖
(

∂ψn−1

∂y
− ∂ψm−1

∂y

)(
∂Tn−1

∂x
+

∂Tm−1

∂x

)
‖L2

+ ‖
(

∂ψn−1

∂y
+

∂ψm−1

∂y

)(
∂Tn−1

∂x
− ∂Tm−1

∂x

)
‖L2

+ ‖
(

∂ψn−1

∂x
− ∂ψm−1

∂x

)(
∂Tn−1

∂y
+

∂Tm−1

∂y

)
‖L2

+ ‖
(

∂ψn−1

∂x
+

∂ψm−1

∂x

)(
∂Tn−1

∂y
− ∂Tm−1

∂y
)

)
‖L2

]
.

(22)

Recall that we can define the Sobolev space

H2(Ω) = { f ∈ L2(Ω) : Dα f ∈ L2(Ω)∀|α| ≤ 2}.

The norm for f ∈ H2(Ω) is then

‖ f ‖H2(Ω) = ∑
|α|≤2
‖Dα f ‖L2(Ω).

By this definition, it then follows that

∂ψn−1

∂x
,

∂ψm−1

∂x
,

∂ψn−1

∂y
,

∂ψm−1

∂y
,

∂Tn−1

∂x
,

∂Tm−1

∂x
,

∂Tn−1

∂y
,

∂Tm−1

∂y
∈ L2(Ω).

Hence, by applying Lemma 1 with s = 0 and s1 = s2 = 1, we can establish the
following inequalities on the norms:

‖
(

∂ψn−1

∂y
− ∂ψm−1

∂y

)(
∂Tn−1

∂x
+

∂Tm−1

∂x

)
‖L2(Ω)

≤M‖∂ψn−1

∂y
− ∂ψm−1

∂y
‖H2(Ω)‖

∂Tn−1

∂x
+

∂Tm−1

∂x
‖L2(Ω),

‖
(

∂ψn−1

∂y
+

∂ψm−1

∂y

)(
∂Tn−1

∂x
− ∂Tm−1

∂x

)
‖L2(Ω)

≤M‖∂ψn−1

∂y
+

∂ψm−1

∂y
‖H2(Ω)‖

∂Tn−1

∂x
− ∂Tm−1

∂x
‖L2(Ω),

‖
(

∂ψn−1

∂x
− ∂ψm−1

∂x

)(
∂Tn−1

∂y
+

∂Tm−1

∂y

)
‖L2(Ω)

≤M‖∂ψn−1

∂x
− ∂ψm−1

∂x
‖H2(Ω)‖

∂Tn−1

∂y
+

∂Tm−1

∂y
‖L2(Ω),

‖
(

∂ψn−1

∂x
+

∂ψm−1

∂x

)(
∂Tn−1

∂y
− ∂Tm−1

∂y

)
‖L2(Ω)

≤M‖∂ψn−1

∂x
+

∂ψm−1

∂x
‖H2(Ω)‖

∂Tn−1

∂y
− ∂Tm−1

∂y
‖L2(Ω).

Note that by definition of the norm (16) in the Sobolev space H2(Ω) for some ϕ ∈
H2(Ω), we can establish the inequality

‖∂ϕ

∂x
‖L2(Ω), ‖

∂ϕ

∂y
‖L2(Ω) ≤ ‖ϕ‖H2(Ω).
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Finally, by applying Lemma 2 to the Equation (19a), we see that for ‖FT(n, m)‖L2(Ω) <

∞, Tn − Tm ∈ H2
0(Ω) with ‖Tn − Tm‖H2(Ω) ≤ C‖FT‖L2(Ω). We now establish the inequality

on ‖Tn − Tm‖H2(Ω) by:

‖Tn − Tm‖H2(Ω) ≤ εPeCM
(
‖(ψn−1 − ψm−1)‖H2(Ω)‖(Tn−1 + Tm−1)‖H2(Ω)

+ ‖(ψn−1 + ψm−1)‖H2(Ω)‖(Tn−1 − Tm−1)‖H2(Ω)

)
.

(23)

With a similar approach, we provide the equivalent inequalities for ω and ψ:

‖ωn −ωm‖H2(Ω) ≤ εReCM
(
‖(ψn−1 − ψm−1)‖H2(Ω)‖(ωn−1 + ωm−1)‖H2(Ω)

+ ‖(ψn−1 + ψm−1)‖H2(Ω)‖(ωn−1 −ωm−1)‖H2(Ω)

)
+ RiReC‖Tn − Tm‖H2(Ω)

(24)

‖ψn − ψm‖H2(Ω) ≤ C‖ωn −ωm‖H2(Ω) (25)

With a bound established on the difference between two terms in the iteration, we
now show that for small enough ε the entire sequence remains in a small ball.

Lemma 4 (Bounded Sequence). There exists ε1 > 0 and R(ε1) < ∞ for which the sequence
defined by the iteration (9) with initialization (11) is bounded in a ball for all n.

Proof. We show by strong induction that the sequence (9) is bounded by the ball B0(R)
centered at zero with radius R. Hence, let R(ε1) be defined such that

‖T0‖H2 , ‖T1‖H2 , ‖ω0‖H2 , ‖ω1‖H2 , ‖ψ0‖H2 , ‖ψ1‖H2 ≤
R
2

,

where we say

R = 2 max{‖T0‖H2 , ‖T1‖H2 , ‖ω0‖H2 , ‖ω1‖H2 , ‖ψ0‖H2 , ‖ψ1‖H2 , 1}

to keep R sufficiently large where each H2 norm is measured over the domain Ω. This
establishes the base case for induction. Now, we hypothesize by induction that each

‖Tn−1‖H2 , ‖Tn−2‖H2 , ..., ‖ωn−1‖H2 , ‖ωn−2‖H2 , ...., ‖ψn−1‖H2 , ‖ψn−2‖H2 , .... < R

where we seek to show that ‖Tn‖H2 , ‖ωn‖H2 , ‖ψn‖H2 < R. Thus, by the inequality (23), it
follows that

‖Tn − T1‖H2 ≤ 2εPeCM(‖(ψn−1 − ψ0)‖H2‖(Tn−1 + T0)‖H2

+ ‖(ψn−1 + ψ0)‖H2‖(Tn−1 − T0)‖H2).
(26)

By applying the definition of R and the inductive hypothesis it follows that ‖ψn−1 −
ψ0‖H2 ≤ 3R

2 , ‖ψn−1 + ψ0‖H2 ≤ 3R
2 , ‖Tn−1 − T0‖H2 ≤ 3R

2 , and ‖Tn−1 + T0‖H2 ≤ 3R
2 . Hence,

we can apply the inequality

‖Tn − T1‖H2 ≤ 2εPeCM
((

3R
2

)(
3R
2

))
where we select εT such that for ε < εT , ‖Tn − T1‖H2 < R

2 . Hence, let

εT =
1

9PeCMR
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and it follows that if ‖Tn − T1‖H2 < R
2 then by the reverse triangle inequality

|‖Tn‖H2 − ‖T1‖H2 | ≤ ‖Tn − T1‖H2 <
R
2

so
‖Tn‖H2 <

R
2
+ ‖T1‖H2 < R.

We now proceed by finding the similar terms εω and εψ such that each respective term
stays within the ball of radius R. From the inequality (24):

‖ωn −ω1‖H2 ≤ εReCM(‖(ψn−1 − ψ0)‖H2‖(ωn−1 + ω0)‖H2

+ ‖(ψn−1 + ψ0)‖H2‖(ωn−1 −ω0)‖H2)

+ RiReC‖Tn − T1‖H2

(27)

We recall that ‖Tn − T1‖H2 ≤ 9εPeCMR2

2 and we then apply a similar analysis to obtain:

‖ωn −ω1‖H2 ≤
9
2

ReCMεR2 + CRiRe
9εPeCMR2

2
.

To force ‖ωn −ω1‖H2 < R
2 , we then pick

εω =
1

(9ReCM + 9C2RiRePeM)R
.

From the inequality (25), we have:

‖ψn − ψ1‖H2 ≤ C‖ωn −ω1‖H2 (28)

So from applying the result for εω, we obtain

εψ =
εω

C
=

1
(9ReC2M + 9C3RiRePeM)R

.

We now let ε1 = inf{εT , εω, εψ} where for all ε < ε1,

‖Tn‖H2 , ‖ωn‖H2 , ‖ψn‖H2 < R

so we conclude by induction that there exists ε1 such that the sequence remains bounded
in a ball of radius R.

Theorem 2 (Contraction Mapping). The iteration defined by (9) and (11) is a contraction
mapping.

Proof. From the above lemma, we establish by the triangle inequality that each

‖Tn + Tm‖H2 , ‖ωn + ωm‖H2 , ‖ψn + ψm‖H2 ≤ 2R.

Hence, by the inequality (23) for ‖Tn − Tm‖H2 , we have:

‖Tn − Tm‖H2 ≤ 2εPeCMR(‖(ψn−1 − ψm−1)‖H2 + ‖(Tn−1 − Tm−1)‖H2).

Similarly, the other variables satisfy

‖ωn −ωm‖H2 ≤ εR
(

2ReCM + 2PeRiReC2M
)
‖ψn−1 − ψm−1‖H2

+ 2εReCMR‖ωn−1 −ωm−1‖H2

+ 2εPeRiReC2MR‖Tn−1 − Tm−1‖H2 ,
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‖ψn − ψm‖H2 ≤ εCR
(

2ReCM + 2PeRiReC2M
)
‖ψn−1 − ψm−1‖H2

+ 2εReC2MR‖ωn−1 −ωm−1‖H2

+ 2εPeRiReC3MR‖Tn−1 − Tm−1‖H2 .

We now consider the space S = H2(Ω)× H2(Ω)× H2(Ω) consisting of triples X =
(X1, X2, X3) of H2(Ω) functions with metric defined by:

d(X, Y) = ‖X1 −Y1‖H2 + ‖X2 −Y2‖H2 + ‖X3 −Y3‖H2 ∀X, Y ∈ S.

Thus, for our set of fluid variables, we establish a new inequality for the sum of
differences of index:

‖Tn − Tm‖H2 + ‖ωn −ωm‖H2 + ‖ψn − ψm‖H2 ≤

2εCMR
[
(Pe + PeRiReC + PeRiReC2)‖Tn−1 − Tm−1‖H2

+ (Re + ReC)‖ωn−1 −ωm−1‖H2

(Pe + Re + ReC + PeRiReC + PeRiReC2)‖ψn−1 − ψm−1‖H2

]
.

Now, define
A = Pe + Re + ReC + PeRiReC + PeRiReC2

such that

‖Tn − Tm‖H2 + ‖ωn −ωm‖H2 + ‖ψn − ψm‖H2 ≤
6AεCMR(‖Tn−1 − Tm−1‖H2 + ‖ωn−1 −ωm−1‖H2 + ‖ψn−1 − ψm−1‖H2)

(29)

where we note that A . PeRiRe. Setting ε < 1
6ACMR and defining F : S → S by

F(X(n−1)) = X(n) for functions X ∈ S then ensures the Lipschitz condition such that
for X(n) = (Tn, ωn, ψn):

d(F(X(n−1)), F(Y(n−1))) = d(X(n), Y(n)) ≤ d(X(n−1), Y(n−1)). (30)

Hence, the iteration is a contraction mapping.

Since F : S→ S is a contraction mapping, we thus conclude by the Banach fixed-point
theorem that F converges to a unique fixed-point X∗ such that the sequence X(0), X(1), ..., X(n)
→ X∗. It then follows that this X∗ is the steady solution to the stream function-vorticity
formulation of the Boussinesq Navier–Stokes equations for small amplitude forcing.

Since the sequence X(0), X(1), ..., X(n) is a convergent, Cauchy sequence, it follows that
the inequality of the form (30) is equivalent to the inequality

d(X(n+1), X∗) ≤ d(X(n), X∗) (31)

which implies linear convergence to the unique solution X∗ for ε which satisfies the Lips-
chitz condition. From this result, we conclude that the iteration defined by (9) guarantees
linear convergence for a sufficiently small amplitude forcing. The following section consid-
ers the relationship between the laser amplitudes for convergent solutions and the Re, Ri,
and Pe numbers.

4. Numerical Results
4.1. Maximum Laser Amplitude

Based on the condition that the laser amplitude must be small enough for the iteration (9)
to converge, we are motivated to find the relationship between the maximum allowable
laser amplitude and the nondimensional fluid parameters Re, Ri, and Pe. We first consider
a lemma which describes the asymptotic size of solutions as a function of these numbers.
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Lemma 5 (Asymptotic Size of Solutions). Let ‖ · ‖ be the H2(Ω) norm and let f be normalized
such that ‖ f ‖L2 = 1. If Re� Pe, then for n ≥ 1,

‖ωn‖ = O
(

Re2n+1−1Pe2n
Ri2

n
ε2n−1

)
, (32a)

‖Tn‖ = O
(

Re2(2n−1)−nPe2n+nRi2
n−1ε2n−1

)
. (32b)

Similarly, if Pe� Re, then

‖ωn‖ = O
(

Re2n
Pe2n+1−1Ri2

n
ε2n−1

)
, (33a)

‖Tn‖ = O
(

Re2n−1Pe2n+1−1Ri2
n−1ε2n−1

)
. (33b)

Proof. The proof proceeds by a simple inductive argument on the iteration (9).

We now introduce a theorem which identifies an upper bound for laser amplitude as
an asymptotic of the Re, Ri, Pe numbers.

Theorem 3 (Upper Bound for Laser Amplitude). Let E be the set of all amplitudes ε such that
the iteration (9) converges. If Re� Pe, then

εsup = sup E = O
(

Re−2Pe−1Ri−1
)

. (34)

Similarly, if Pe� Re, then

εsup = sup E = O
(

Re−1Pe−2Ri−1
)

. (35)

Proof. Recall from Theorem 2 that for the fixed-point iteration to converge, we require

ε < O
(

A−1R−1
)

for an R(ε) such that the entire sequence of solutions stay bounded in a ball of size R.
A least upper bound for the allowable laser amplitude, then, may be determined by finding
a greatest lower bound for R such that the sequence of solutions stays bounded. This Rinf
will thus be a least upper bound for solutions in the H2(Ω) norm for a given ε. Suppose
that Re � Pe. Then from the above lemma, we observe that the size of the nth iteration
may be bounded by the asymptotic O

(
Re2n+1−1Pe2n

Ri2
n
ε2n−1

)
. Then for the supremum of

the amplitude,

εsup = O
(

A−1R−1
inf

)
= inf

n∈N
O
(

Re−1Pe−1Ri−1
(

Re2n+1−1Pe2n
Ri2

n
ε2n−1

sup

)−1
)

= inf
n∈N
O
(

Re2n+1
Pe2n+1Ri2

n+1ε2n−1
sup

)
,−1 so

ε2n

sup = O
(

Re−2n+1
Pe−2n−1Ri−2n−1

)
and thus

εsup = inf
n∈N
O
(

Re−2Pe−
2n−1

2n Ri−
2n−1

2n
)
= O

(
Re−2Pe−1Ri−1

)
.

Now, suppose that Pe� Re. By again applying Lemma 5, we observe that the size
of the nth iteration may now be bounded by the asymptotic O

(
Re2n

Pe2n+1−1Ri2
n
ε2n−1

)
.

Then for the supremum of the amplitude,



Fluids 2021, 6, 425 13 of 17

εsup = O
(

A−1R−1
inf

)
= inf

n∈N
O
(

Re−1Pe−1Ri−1
(

Re2n
Pe2n+1−1Ri2

n
ε2n−1

sup

)−1
)

= inf
n∈N
O
(

Re2n+1Pe2n+1
Ri2

n+1ε2n−1
sup

)
,−1 so

ε2n

sup = O
(

Re−2n−1Pe−2n+1−1Ri−2n−1
)

and thus

εsup = inf
n∈N
O
(

Re−
2n−1

2n Pe−2Ri−
2n−1

2n
)
= O

(
Re−1Pe−2Ri−1

)
.

Based on the relationships defined in Theorem 3, we expect the maximum computable
amplitude in a numerical implementation of the iteration to adhere to an asymptotic
relationship in these dimensionless parameters. By considering the homogeneous Dirichlet
boundary condition in the stream function-vorticity formulation, we run the algorithm for
increasing laser amplitudes until the iteration diverges to determine the max amplitude
within an error of 1%. Figures 2 and 3 provide these numerical results with a comparison
to the expected asymptotic relationship.

Figure 2. These figures provide a log-log plot of maximum amplitude as a function of R = Re =

Ri = Pe on the left and as a function of Ri with Re = Pe = 100 on the right. Based on the asymptotic
relationship, we expect the max amplitude to scale by R−4 on the left figure and by Ri−1 on the right
figure, both of which are seen here.

Figure 3. These figures provide a log-log plot of maximum amplitude as a function of Re with
Pe = Ri = 100 on the left and as a function of Pe with Re = Ri = 100 on the right. Based on the
asymptotic relationship, we expect the max amplitude to scale by Re−1 when Re � Pe and Re−2

when Re� Pe on the left figure and by Pe−1 when Pe� Re and Pe−2 when Pe� Re on the right
figure. This is observed for both cases since the asymptotic relationship changes when Re ≈ Pe.

From these results, we observe that the convergence analysis gives accurate predic-
tions for the maximum laser amplitude as computed in the numerical algorithm. This
is significant, since we see that the maximum allowable laser amplitude scales by the
inverse square of the Reynolds number or Peclet number depending on their relative size.
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For physical laser-fluid setups, this result suggests that the computation of steady solutions
is particularly sensitive to fluid viscosity and fluid thermal diffusivity. Physical intuition
suggests that this is true, since less viscous flows with lower rates of heat transfer will have
a more elusive steady state. Hence, finding convergent solutions for both large amplitude
laser forcing and large Reynolds and Peclet numbers proves difficult.

4.2. Numerical Simulations

We now consider the convergent solutions found through a numerical implementation
of the iteration (9) in the slip boundary condition. First, we specify the Re, Ri, Pe numbers
to appropriately characterize fluid flow. Akers and Reeger [1] provide a discussion on the
relationship between these parameters and the fluid behavior in thermal blooming. For the
normalized laser forcing f (x, y) = e−c(x2+y2), we pick c = 5 to represent rapid Gaussian
decay from the origin towards the boundary of the domain. This parameter, however,
can also be changed based on the exact laser specifications. We assign Re = Pe = 10 and
Ri = 100 with a grid spacing of h = 1

50 and a laser amplitude of ε = 10−3. Figure 4 provides
a streamline plot to the left and a plot of the temperature fluctuation to the right for the
steady-state solution to the slip boundary condition.

Figure 4. These figures provide a streamline and temperature plot for the no-slip boundary condition.
We see that the streamlines imply a symmetric circulation of the flow which extends to the boundary
of the domain. The peak temperature fluctuation is shifted upwards in the domain due to the
gravitational convection of the fluid.

We can clearly see here the result of the buoyancy driven convection within the
domain. Fluid heated by the laser in the center of the domain rises until it contacts the
top, then travels along the boundary to satisfy the slip condition. Steady vortex rings are
formed to the left and right of center, which are centered horizontally at the halfway point
between the middle and the edge of the domain. The vertical center of the vortex rings
shift with the peak temperature fluctuation, which occurs just above the domain center
due to the heated fluid rising in a buoyancy driven flow. Figure 5 provides a plot of the
temperature fluctuation along the x = 0 line as a function of the vertical position.

Due to the influence of gravity in the steady-state, the temperature fluctuation exhibits
asymmetry in the vertical direction. The peak temperature is shifted slightly upwards in
the domain before asymmetric decay in temperature forces temperature to zero along the
boundary.
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Figure 5. This figure provides the normalized steady-state temperature fluctuation along the line
x = 0 as a function of the vertical position. The peak temperature fluctuation is shifted upwards and
experiences asymmetric decay due to the influence of gravity.

5. Conclusions

This study considered the existence of solutions to a 2D steady, Boussinesq fluid flow
problem in a stream function-vorticity formulation. Motivated by the fact that thermal
blooming often plays an immense role in the simulation of laser propagation, the algorithm
introduced in this paper provides a rapid numerical method for computing the steady-state
of a buoyancy driven fluid while heated by a laser. For a small enough laser amplitude,
we showed with a fixed-point argument that steady solutions indeed exist in an appro-
priate function space. The threshold which determines how small this amplitude must
be is related to the nondimensional fluid parameters Re, Ri, Pe through an established
asymptotic relationship. The theoretical derivation of this relationship was corroborated by
numerical simulations, with a key result being that high amplitude convergent solutions
are difficult to find for large Re and Pe numbers. We showed that the slip boundary condi-
tion for fluid velocity is equivalent to a homogeneous Dirichlet condition on the stream
function and vorticity based on their respective definitions. The numerical simulations of
these steady solutions described the existence of symmetric vortex rings in the left and
right sides of the domain, implying that the fluid heated by the laser rises in a circulatory
fashion before being recirculated within the domain. The peak temperature fluctuation was
shifted upwards in the domain due to the same convective behavior, which prognosticates
asymmetric laser propagation when slip boundary conditions are imposed in a finite box.
In building upon this work, the authors are seeking to couple the presented fluid iteration
with a laser propagation model to determine how buoyancy driven thermal blooming
impacts on-target laser irradiance. Included in this pursuit is the investigation of more apt
boundary conditions around the domain for a free-space laser propagation setup.
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