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Abstract: A radial basis function-finite differencing (RBF-FD) scheme was applied to the initial value
problem of the Benjamin–Ono equation. The Benjamin–Ono equation has traveling wave solutions
with algebraic decay and a nonlocal pseudo-differential operator, the Hilbert transform. When posed
on R, the former makes Fourier collocation a poor discretization choice; the latter is challenging
for any local method. We develop an RBF-FD approximation of the Hilbert transform, and discuss
the challenges of implementing this and other pseudo-differential operators on unstructured grids.
Numerical examples, simulation costs, convergence rates, and generalizations of this method are
all discussed.

Keywords: radial basis functions; finite difference methods; traveling waves; non-uniform grids

1. Introduction

In this paper we use the benjamin–ono equation as a test-bed for new radial basis
function-finite differencing (RBF-FD) simulations of nonlocal wave equations on non-
uniform grids. The Benjamin–Ono equation presents the numerical challenges of numerical
stiffness, a nonlocal pseudo-differential operator, and localized traveling solutions with
slow decay. The equation

ut−Huxx+uux = 0, (1)

in whichH is the Hilbert transform, has many known exact solutions. For example, on R,
Equation (1) supports traveling solitary waves solutions:

u(x,t)=
4

(x− t)2+1
.

The Benjamin–Ono equation is known to be well-posed [1] and integrable. It can be
solved with inverse scattering, and many exact solution profiles are known [2,3]. It has
been numerically simulated many times, both in the periodic setting [4] and on R [5,6].

In this work we develop an RBF-FD scheme for the Benjamin–Ono equation. Common
practice for the simulation of (1) on R is to use periodic boundary conditions, allowing for
Fourier collocation, on a large spatial domain [7]. Global radial basis functions (RBFs) have
been used as a basis set for simulation of Benjamin–Ono [8]; instead, this work is the first
example of the application of RBF-FD to this model. In many cases, RBFs allow for high
orders of accuracy while taking advantage of non-uniform spacing in the node set when
approximating linear operators. There are an increasing number of texts discussing the use
of RBFs in the approximation of differential operators (see, e.g., [9,10]) while presenting
much of their history and theory in detail. Recently, the concept of RBF-FD has been further
extended to the approximation of definite integrals—first over smooth surfaces [11–13]
and then over the volume of the ball [14]. In this paper we look at an extension of RBF-FD
now to pseudo-differential operators. The method presented in this paper utilizes as a
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basis for approximation the so-called polyharmonic spline RBF augmented by shifted
monomials. In this case, reference [15] explains that if the shifted monomials up to degree
m are included in the basis for approximation, then all of the terms in the Taylor series
up to degree m will be handled exactly for the function being interpolated. Therefore,
for functions with rapidly decaying terms in the Taylor series, the linear operator will be
applied to an approximation with O(∆xm) accuracy on a node set with step size ∆x.

RBF-FD simulation of the Benjamin–Ono equation presents the challenge of creating
a local approximation of a non-local pseudo-differential operator—the Hilbert transform.
The process used herein is generalizable to other pseudo-differential operators, but is the
primary cost of the method as it requires diagonalization of an RBF-FD differentiation
matrix. Further, the spectrum of the RBF-FD differentiation matrix, particularly when
constructed on non-uniform spaced node sets, can often include spurious eigenvalues (for
example, with a positive, real part when approximating an operator with pure imaginary
spectrum), similar to those observed in [16,17]. We observe that these spurious eigenvalues
are the result of floating point errors due to the conditioning of the RBF-FD discretization
of the linear operators.

Another complication is the slow decay of the solution as |x| increases. To deal with
this complication and with a localized steep gradient in the solutions, we increase the
point density where the wave amplitude is large and decrease point density in the far field.
This allows for increased accuracy over uniform grids with the same number of nodes.
Consideration of non-uniform node sets is a key advantage of RBF based approximations.
Even in the context of approximating a non-local operator with local approximations and
slowly decaying solutions, we demonstrate O(∆xm) accuracy where ∆x is the smallest
spacing between adjacent points in a node set. We report errors based on this smallest step
size, rather than the largest or the number of nodes as in [18,19], because the mapping
we use to refine the node set both decreases the step size near important features of the
solution and increases the large step sizes elsewhere while keeping the total number of
nodes fixed. To further illustrate this method, we present a brief example in another model
equation [20].

In the process of simulating the Benjamin–Ono equation, we present a simple frame-
work for using RBF-FD to approximate pseudo-differential operators. The procedure
extends the applicability of RBF methods beyond the purely differential equations previ-
ously simulated (see [16,21]) to a host of other pseudo-differential model equations—e.g.,
Whitham [22], Akers-Milewksi [20], and many more [23–25]. Many of these pseudo-
differential equations exhibit coherent structures which are computed with quasi-Newton
iteration [26,27]. The simulation of the dynamics near these coherent structures is the appli-
cation where we believe this method will be most useful. The diagonalization cost required
to approximate the pseudo-differential operators in our simulations (a pre-processing step)
is comparable to the cost of the quasi-Newton iteration already being done to compute
these waves [28].

The paper is organized as follows. Section 2 describes the RBF-FD based numerical
method for simulating the Benjamin–Ono equation. This includes a discussion of RBF-FD,
a node placement strategy, the approximation of a pseudo-differential operator, and the
time-stepping scheme. Then, Section 3 presents numerical results when applying the
method to both the Benjamin–Ono equation and the Akers–Milewski equation. Finally,
Section 4 draws some conclusions about the use of these methods for approximation
pseudo-differential operators.

2. Numerical Method

The numerical method begins in the familiar way of partitioning an interval using
N subintervals. The endpoints of these subintervals are the sets of points SN = {xk}N

k=1.
In this paper periodic boundary conditions on a large domain are imposed as a proxy for
the slow decay of the solution as |x|→∞. To implement these boundary conditions, the
method creates two periodic images of the set SN . These are defined by S±N =

{
x±k
}N

k=1 :=
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{xk±L}N
k=1, where the signs each define a separate set and L is the period. Considering

a point xk ∈SN , define N n
k =

{
xk,j

}n

j=1
to be the set of n points in SN

⋃S+N ⋃S−N nearest

to xk. The proposed method approximates the application of a linear operator L to u :
R 7→R by interpolating u over the points in N n

k and then applying the linear operator
to the interpolant. Traditional finite difference methods are defined in this way, where a
polynomial interpolant of degree n−1 is constructed over the set xk and n−1 prescribed
neighbors, and the linear operator is applied to the interpolant. The method proposed here,
however, utilizes local RBF interpolation. RBF interpolation has been used successfully
in the approximation of differential operators over subsets of scattered data through the
concept of RBF-FD in, for instance, [10,29–31].

2.1. RBF-FD Weight Calculations for Linear Operators

For the simplicity of discussion, consider approximating L applied to u at a point
xk ∈SN . That is, consider

Lk(u) :=Lu(x)|x=xk .

Following common RBF/RBF-FD procedures, the interpolant is constructed via

sk(x) :=
n

∑
j=1

ck,jφ
(
|x−xk,j|

)
+

m

∑
l=0

dk,l(x−xk)
l

with φ being function dependent only on the distance from the point xk,j. Note that the
shift in the monomial terms is included for numerical stability when inverting the matrix
Ak in what follows. The interpolation coefficients ck,j, j=1,2, . . . ,n, and dk,l , l =0,1, . . . ,m,
are chosen to satisfy the interpolation conditions s(xk,j)=u(xk,j), j=1,2, . . . ,n, along with
constraints ∑n

j=1 ck,j(xk,j−xk)
l =0, for l =0,1, . . . ,m. By applying L to the interpolant and

then evaluating at xk, we wish to reduce the desired approximation to

Lk(u)≈
N

∑
i=1

wk,iu(xk,i). (2)

A simple derivation can be carried out to show that the weights can be found by
solving the system of linear equations Akvk =bk. This system of equations includes the
(n+m+1)× (n+m+1) matrix

Ak =

[
ΦT

k Pk
PT

k 0

]
,

where Φk,ij =φ
(
|xk,i−xk,j|

)
and Pk,il =(xk,i−xk)

l , for i, j=1,2, . . . ,n and l =0,1, . . . ,m
([10], Section 5.1.4). The right-hand side is the length n+m+1 column vector

bk =
[
Lk(φ(|x−xk,1|)) Lk(φ(|x−xk,2|)) · · · Lk(φ(|x−xk,n|)) Lk(π0) Lk(π1) · · · Lk(πm)

]T .

The system of linear equations is uniquely solvable in our present context ([32],
Theorem 8.21) and the weights wk,i, i=1,2, . . . ,n are the first n entries of the solution
vector vk.

It is typical to approximate the action of L on u at each point in SN simultaneously
through the product Du, where D is an N×N matrix and

u=
[

u(x1) u(x2) · · · u(xN)
]T .

The entries of D are found row by row (something that is easily parallelized), so that
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Dki =

{
wk,j if xk,j = xi or xk,j = xi±L

0 otherwise
;

that is, entry i of row k is nonzero only if xi (one of the points in SN) or one of its periodic
images, xi±L, appears in the set N n

k of the points nearest xk.

2.2. Node Placement

To construct node sets With non-uniform spacing that take advantage of the features
of the solution, we first create a spatial node set with equal spacing x̃ on the domain
[−L/2, L/2]. We then apply a nonlinear transformation:

x= x̃
(

1+ a/L2(x̃−L/2)(x̃+L/2)
)

. (3)

The parameter a dictates the variation in step size in this transformation. For a=0,
the node set has uniform spacing; for a= 4 the transformation degenerates by making the
step size near the origin equal to zero. The transformation in Equation (3) is designed
to preserve the overall domain length. It is by no means the only transformation which
places a larger density of points near the origin and fewer far from the origin. We also ran
experiments with the generalization

x= x̃
(

1+ a/L2(x̃−L/2)(x̃+L/2)
)p

. (4)

for p= 2,3,4. Increasing either p or a causes increased node density near the origin; however,
it also leads to issues with the spectrum of the approximation of the linear operators, as we
discuss in next section. For the numerical results presented in this work, we used only (3);
examples of step-sizes for a sampling of a values in Equation (3) are in Figure 1.

-200 -100 0 100 200

x

0

5

10

15

20

25

 x

Figure 1. The step sizes from (3) as a function of x. The horizontal equi-spaced case is a=0.
The step size becomes increasing variable as a ascends through the samples a=1,2,3, and 3.5 (the
extreme graph). The step size near the origin vanishes as a→4. The domain has length L=512,
with N = 64 points.
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2.3. Approximating the Hilbert Transform

In this work we use degree seven polyharmonic splines as the radial basis functions,
complemented with polynomials as described above, so that

φ(r)= r7.

These are a common choice for RBF-FD [10], but make the computation of pseudo-
differential operators such as the Hilbert transform less straightforward than some other
RBFs [8]. The classic procedure to approximate a linear operator using RBFs includes a step
where the linear operator is exactly applied to the basis function. This has been done in a
previous RBF-based numerical study of the Benjamin–Ono equation using gaussian basis
functions on which the Hilbert transform can be exactly calculated [8]. For polyharmonic
splines, an exact formula for the Hilbert transform is unavailable. Instead, we use ideas
motivated by the Fourier transform definition of the Hilbert transform:

Ĥu=−i sign(k)û.

The Fourier transform definition reveals a relationship between the spectrum of the
derivative operator, λ∂x = ik, and the spectrum of the Hilbert transform λH=−isign(k),
so that

λH=−i sign(Im(λ∂x)). (5)

Using this relationship, if the spectrum of the derivative operator is known, then the
spectrum of the Hilbert transform can be computed by an algebraic transformation of
the spectrum of the derivative. We use this transformation to compute an approximation
to the Hilbert transform by first computing a matrix which approximates the derivative,
as described in Section 2.1. Next we diagonalize this matrix using QR iteration to get
its eigenvalues λ∂x and eigenvectors. The Hilbert transform can then be approximated
using the same eigenvectors and Equation (5) applied to the computed λ∂x to get its
eigenvalues. This computation of the Hilbert transform, a pre-processing step, costs O(N3)
flops, where N is the number of spatial points. The time-stepping portion of the RBF-
FD method is O(N2) flops per step, due to the full matrix that approximates the Hilbert
transform. The resulting method however, allows for non-uniform point spacing, so that
larger domains can be accurately simulated with a fixed number of points. We expect this
method to be competitive only in cases where there are fine local features of interest and
slow decay to a remote boundary, as in the Benjamin–Ono solitary wave on R. We admit
that the Benjamin–Ono equation has special properties, i.e., integrability, which make
other simulation methods such as inverse scattering available [3]. The above algorithm
makes no use of integrability, and thus can be trivially extended to other equations with
pseudo-differential operators, such as the intermediate-long wave [25], Whitham [22], and
Akers–Milewski equations [20].

2.4. Time Stepping

For the time evolution of the system of differential equations induced by the RBF-FD
spatial discretization of (1), we use a second order IMEX method [33],

3uq+1−4uq+uq−1

2∆t
= 2 f (uq)− f (uq−1)+g(uq+1), (6)

in which f (u) is the nonlinear term (explicitly treated) and g(u) is the linear term (implicitly
treated). This method is sometimes called SBDF [33], or extrapolated GEAR [34]. The linear
stability region for this scheme is exterior to an egg-shaped region in the right half plane; it
is unconditionally stable for wave equations—such as the Benjamin–Ono equation—that
have pure imaginary linear spectra. We chose this method over the competing IMEX
scheme CNAB (Crank–Nicholson Adams–Bashforth) so that small, real perturbations of
the pure imaginary spectrum do not leave the stability region (as is the case for the CNAB).
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As we will see later, floating point errors due to the condition number of the matrices
involved in RBF-FD discretization of the linear operators can cause changes in the spectrum
of the approximation of the linear operators involved. We chose (6) to be as robust as
possible to such errors.

The method we used to approximate the linear operators begins with an eigenvalue
calculation. As such, other numerical time steppers are available—for example, exponen-
tial time differencing (ETD) [35] and integrating factors (IF) [36]. Since the equation is
nonlinear, after diagonalizing the linear part, both ETD and IF methods require full matrix
multiplications to evaluate the nonlinearity at each time step. The IMEX method used here
has the inversion of a full matrix (for the implicit linear term); however, this can be done
as a pre-processing step, so it also has a cost which scales like a full matrix multiplication
per time step (and thus is comparable with ETD or IF). We chose the IMEX scheme due
to its unconditional stability, to ameliorate the stiffness of this equation in explicit time
steppers and to be robust to perturbations of the spectrum off the imaginary axis. In future
work we plan to explore other time steppers, including higher order IMEX methods with
unbounded stability regions [33].

3. Results

In this section, the numerical method described herein is evaluated via a number
of numerical tests. We show the effects of the numerical discretization and truncation
error, and the effect of truncating R to finite length. Errors are measured as a function the
minimal step size of our non-uniform parameterization. The effect of the non-uniform step-
size on the spectrum of approximation to the linear operator is also discussed. Example
simulations of algebraically decaying Benjamin–Ono solitary waves are shown, along with
an oscillatory exponentially decaying wave in the Akers–Milewski equation.

In Figure 2, we display an example of a simulation of the Benjamin–Ono solitary wave:

u(x,t)=
4

1+(x)2 . (7)

The simulation was computed in a frame which travels with the wave so that the wave
appears stationary. As is common practice, a large domain size with periodic boundary
conditions was used as a proxy for R [7] since the solution decays as |x|→∞. The crest of
the wave profile, in the left panel, is marked with a solid black line, to highlight the lack of
oscillation in time. The initial profile is also marked with a solid black line for highlighting
purposed. The right panel shows the step sizes used for this simulation, which range over
an order of magnitude with ∆x∈ [0.125,1.25]. The node spacing is concentrated near the
origin, where the wave (and its derivatives) is largest; the largest spacing occurs for large x,
where the wave is small. This allows for increased accuracy for the same number of points
as compared to uniform step sizes.

In Figure 3, we study the accuracy of the spatial discretization of the linear operator

Lu=Huxx+ux, (8)

when applied to the solitary wave (7). There are two competing parameters which deter-
mine the spatial accuracy, the domain size L, and the minimal space step ∆x. We present
two experiments, one where the domain size is varied for a sampling of parameterizations
(left panel of Figure 3) and one where the parameterization is varied for a fixed domain
size (right panel of Figure 3). In the left panel, all discretizations show an initial decrease in
error as the domain size increases, scaling like O(L−4), up to a point where the truncation
error of the discretization of the linear operator grows to be larger than the domain dis-
cretization error. For each discretization, including Fourier, there is a length L for which the
method is most accurate (for a fixed number of points). All of the RBF-FD discretizations,
based on (3), are able to give a more accurate discretization than a Fourier discretization
(with the best observed improvement at a= 3.5). That these methods outperform a Fourier
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discretization on the Benjamin–Ono solitary wave is natural, since a periodic tiling of this
wave has a discontinuous first derivative at the boundary, limiting the accuracy of a Fourier
discretization. The variable space step RBF-FD is not limited by this discontinuity, even
with an approximation that assumes more than one continuous derivative at the boundary.
The accuracy of the RBF-FD discretization of the linear operator as a function of minimal
step size (controlled by the parameter a) is depicted in the right panel of Figure 3, in which
we observe O(∆x8) accuracy. Given that the approximation of the linear operator was
formed by applying the linear operator to an interpolant with a basis set of polynomials
terms up to degree eight and polyharmonic splines of r7, it is not surprising to see O(∆x8)
accuracy since the interpolation procedure provides for at least that order of accuracy [15].

-200 -100 0 100 200
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(a) (b)

Figure 2. (a) The soliton solution propagated on a domain x∈ [−256,256]. (b) The step-sizes used for the RBF-FD
discretization used in the left simulation.
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Figure 3. The infinity norm of the error of the numerical approximation of the linear operator, LNu, against the exact Lu on
the solitary wave u(x)= 4/(1+x2) is depicted. (a) The error’s dependence on domain size, L, is compared for the RBF-FD
discretization using the spatial points in (3) with a= 2 (red triangles), a= 3 (blue circles), and a= 3.5 (black squares), and an
equi-spaced Fourier discretization (green stars). All of these computations use N =512. (b) The error dependence on the
minimal step size for N =1024,L=800, altering the step size with the parameter “a”. The numerical results are marked
with triangles; the continuous line marks O(∆x8).
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The method used here to discretize the linear operator in Equation (8) is based on a
diagonalization of a RBF-FD differentiation matrix. First we compute an RBF-FD approxi-
mation of a derivative matrix. Next we compute the eigenvalues and eigenvectors of this
matrix. As we knew the exact spectrum of the derivative and the Hilbert transform in the
infinite dimensional problem from Fourier analysis,

∂̂x = ik and Ĥ=−isign(k),

we constructed eigenvalues of the discrete Hilbert transform by applying the same rela-
tionship to the discrete problem. If λDx is an eigenvalue of the differentiation matrix, then
the eigenvalues of the discretized Hilbert transform λH are defined to satisfy

λH= isign(imag(λDx)).

Eigenvalue manipulation based on the above definition is used to find all the eigen-
values of the approximation to (8); the eigenvector matrix (and its inverse) of the RBF-FD
differentiation matrix is then multiplied by diagonal matrices with this approximate spec-
trum to get an approximation for (8). Although the eigenvalues were constructed to be
pure imaginary, as is the spectrum of the exact problem, the result of the matrix multi-
plication (by the matrix of eigenvectors and its inverse) can perturb the spectrum due to
machine precision errors. These errors scale with the condition number of the matrix of
the eigenvectors of the RBF-FD differentiation matrix. As is the case for classic polynomial
interpolation, the condition number of this matrix grows as the points get closer together.
This increase in condition number results in a corresponding increase in the size of spurious
real eigenvalues of the discretized linear operator (which poses a stability problem for
numerical time stepping algorithms). To observe this phenomenon, after creating the
approximate linear operator Lk, we apply a QR iteration to compute the eigenvalues of this
matrix. That these computed eigenvalues differ at all from the desired spectrum is a direct
result of the conditioning of the eigenspace of RBF-FD differentiation matrix. An example
of the computed spectrum of the matrix Lk used to evolve the Benjamin–Ono solitary wave
in Figure 2 is in the left panel of Figure 4. This spectrum includes spurious eigenvalues with
a real part as large as 10−9. In the right panel of Figure 4, we observe the dependence of
the eigenvalue with the largest real part as a function of the parameter a from Equation (3).
The match between the size of the eigenvalues and the condition number of the matrix of
eigenvectors, F, times the machine precision, is displayed in the right panel of Figure 4.
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Figure 4. (a) The spectrum of the linear operator used for the evolution depicted in Figure 2. (b) The condition number and
the maximally real eigenvalue of the approximation of the linear operator as a function of the step-size parameter “a” in
Equation (3), marked with xs, is compared to the condition number of eigenvector matrix, F, of the RBF-FD differentiation
matrix times the machine precision, ε, marked with circles.
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Examples of the discretized eigenfunctions are plotted in Figure 5. These eigenfunc-
tions were all computed on a domain of length L=800; the panels each show different
subsets of the computational domain. As the discretization becomes coarser near the
boundary (a→4), globally supported eigenfunctions are more poorly resolved. This is
natural, as a trade-off for better resolution near the origin. The exact relationship between
the resolution of the eigenfunctions and the errors in the argument of the corresponding
eigenvalues is unknown. This does, however, point to a possible explanation for the ill-
conditioning of the eigenspace of the differentiation matrix. Poor resolution of globally
supported eigenfunctions could be the cause; the ill-conditioned eigenspace could be due
to some points being too far apart, rather than too close together (as is typical in polynomial
interpolation matrices).
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7
0
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Figure 5. The real part of three sample eigenfunctions is depicted. These eigenfunctions have eigenvalues with “spurious”
real parts Re(λ100)≈10−9,Re(λ450)≈10−8, and Re(λ700)≈10−6 respectively. These values were computed with a=3.9,
N = 1024, and L= 800.

A few references have studied the behavior of eigenvalue stability with regard to node
placement. This includes [16] which investigates special node distributions that improve
eigenvalue stability for global RBF methods, and [37–42] which investigate the effects of
using mapped nodal sets on the accuracy and eigenvalue stability of finite-difference and
pseudo-spectral methods. These works may provide the framework for future research
avenues which resolve the relationship between node placement the ill-conditioning of the
eigenspace of differential operators.

The method presented here and error analysis are presented in the context of the
Benjamin–Ono equation, where the combination of algebraic decay of the solitary wave
and nonlocal nature of the Hilbert transform make a challenging testbed for a numerical
scheme. The same ideas generalize easily to other nonlocal equations; it is trivial to
apply this method to the Whitham equation [22] or the Akers–Milewski equation [20,43].
The Akers–Milewski equation,

ut+Hu−Huxx+uux = 0, (9)

supports traveling, wavepacket-type solitary waves [44]. These waves decay exponentially
in space, and thus do not present the same challenges for numerical simulation, (Fourier
collocation is spectrally accurate) as the Benjamin–Ono solitary wave (7). As evidence of
the ease of generalizing this approach, we include an example of the evolution of such a
wave using RBF-FD discretization a non-uniform grid in Figure 6.
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Figure 6. (a) An example of the evolution of a traveling wavepacket-type solitary wave in the Akers–Milewski Equation (9).
(b) The step sizes used for this simulation.

Although the method is presented in one spatial dimension with periodic boundary
conditions, its application is not exclusive to either. The exact methodology can be directly
applied for higher dimensional problems (for example, the two-dimensional solutions of
Akers–Milewski [20]). In order to consider different boundary conditions, one needs a rela-
tionship between the spectrum of the derivative operator and that of the pseudo-differential
operator with the new boundary conditions. This relationship may be simple to determine
(for example, the relationship for homogeneous Dirichelet boundary conditions agreeing
with that of the periodic case), in which case the definition of the pseudo-differential
operator is unchanged and the boundary conditions may be implemented with standard
RBF-FD methods. For general boundary conditions the relationship between the deriva-
tive’s spectra and the pseudo-differential operator’s spectra should be investigated before
applying the method.

4. Conclusions

In this paper an RBF-FD implementation of the Benjamin–Ono equation was presented.
This required the development of an RBF-FD implementation of the Hilbert transform.
An approximation of the Hilbert transform was built by manipulating the spectrum of
a differentiation matrix. This approach generalizes simply to other pseudo-differential
operators, but incurs an O(N3) pre-processing cost, meaning that this method is expensive
compared to a Fourier implementation. The approach, however, allows for arbitrary
boundary conditions and non-uniform grids. We expect it to be most useful in problems
where an O(N3) pre-processing cost is already being paid, for example, in the evolution of
a coherent structure which was computed via quasi-Newton iteration. A future avenue
for research is in the relationship between the node placement and the conditioning of
the eigenspace of the differentiation matrix; we observe that this plays a key role in the
accuracy of the approximation of the spectrum of the linear operator.
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