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Abstract. High energy laser propagation through an absorbing fluid is examined via numerical
simulation. In contrast to typical thermal blooming studies, both the laser and fluid dynamics are
simulated. The beam propagation is modeled with the paraxial equation. The fluid medium is
modeled with the incompressible Navier-Stokes equations. The Boussinesq approximation is used to
couple the temperature to density variations. In this context, the interplay between laser-induced
convection and refraction is observed. The fluid is taken to be initially homogeneous and quiescent;
scintillation due to background fluctuations is ignored.
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1. Introduction

This article considers self-induced thermal effects on the propagation of contin-
uous wave High Energy Lasers (HEL). The understanding of laser propagation is
important in an ever increasing array of applications including targeting, wireless
communication, energy transfer, remote sensing, cooling of Bose-Einstein condensate,
measuring gravity-waves, and many more [1, 2, 3, 4]. For applications involving at-
mospheric propagation, continuous wave lasers exist with powers in the kilowatts [5],
a number which is certain to increase with time. In laboratory settings, pulse lasers
have been developed with powers reaching the staggering petawatts [6, 7]. In this
paper, we develop a framework to numerically simulate the propagation of continu-
ous wave HEL coupled with the fluid dynamics of the propagation medium, to study
laser-induced convection and the resulting beam refraction.

It is unreasonable to directly simulate the dynamics of a fluid medium at both
the scale of laser wavelengths and distance of beam propagation, as these typically
differ by many orders of magnitude. The conventional approach is to use an envelope
equation for the beam propagation, for example the paraxial equation [8, 9, 10], and
a statistical description of the small scale fluctuations in the atmosphere, typically at
a discrete sequence of phase-screens [11]. We will also use an envelope equation, but
will include volumetric effects from the atmosphere by directly simulating the fluid
flow.

Temperature fluctuations are the most common fluid quantity tracked in laser
simulations. As the beam heats the fluid, changes in temperature result in changes
to the refractive index. These changes in refractive index feed back upon the beam,
resulting in an effect known as thermal blooming. Thermal blooming is a well doc-
umented phenomenon [10, 12, 13, 14|, whose relevance to laser propagation in the
atmosphere gains importance as lasers become more powerful. In this work, we con-
sider a regime in which the laser heating is large enough to dominate any background
temperature fluctuations or wind shear, but not so large as to cause molecular changes
in the gas (i.e. to ionize or create a plasma as in [15]). Such a regime corresponds
to rather high power densities when considered in atmospheric propagation scenarios,
but relatively small power densities compared to the lasers often used in a labora-
tory or industrial setting. When such an approximation is valid depends not only

*Department of Mathematics and Statistics, Air Force Institute of Technology, WPAFB, OH,
(Benjamin.Akers@afit.edu).
TDepartment of Mathematics, US Naval Academy, Annapolis, MD.

1



on the beam power and initial state of the fluid, but also on the laser frequency and
absorbivity of the medium. In contrast to previous studies [16], we consider the prob-
lem on a convective timescale and include the action of buoyancy transverse to the
beam (horizontal propagation). To date, all studies of thermal blooming consider the
fluid wvelocity to be prescribed, either statistically or deterministically [12, 17, 18]. In
contrast, we use a model wherein the fluid motion is a dynamic variable, solved for
with the beam in a coupled system. The resulting model is numerically simulated to
study the effect of laser-induced convection on thermal blooming.

The remainder of the paper is organized as follows. In section 2, we present the
models used for simulation of the coupled beam and atmospheric dynamics. In section
3, we present the numerical methods and simulation results, including temperature
and beam dynamics in time, the effect of varying Richardson number, and both
spatial and temporal convergence studies. In section 4, we conclude and present
future research areas.

2. Formulation In this section, we present the model equations used to study
HEL propagation through the a dynamically heated fluid. These equations are the
paraxial equation for the beam propagation, coupled with the incompressible Navier-
Stokes equations for temperature and velocity fields of the fluid. The density is
assumed to be near constant, with changes in density coupled to temperature fluctu-
ations via the Bousssinesq approximation [19)].

The physical setup for this problem has a separation of scales. The beam trav-
els long distances (and varies slowly) in the propagation direction (z coordinate) but
has a short pulse width in the transverse directions (x,y coordinates). In such cir-
cumstances, the paraxial equation can be derived as an approximation to Maxwell’s
equations [9], written below in scaled coordinates

o _
0z

<2kzn0AHin1ka>V, (2.1)
where, ng is the mean refractive index, ny is a small correction to the refractive index,
k is the wavenumber of the beam, « is loss due to absorption, and Ay is the Laplacian
in the transverse xy-plane. This equation has been numerically simulated previously
using, for example, the Fourier-split step method [20, 21, 22, 23, 24] or recently using
finite volume method coupled with the Madelung transform in [25].

We make a classical choice, modelling the small corrections to the refractive index,
ni, in terms of p; the small density fluctuations from a mean density pg, using the
Gladstone-Dale relationship [26]

P1
nlz(no—l)—. (2.2)
Po
Equation (2.2) is further simplified with the Boussinesq approximation for ideal gasses
[19], which relates density fluctuations to temperature fluctuations as
p_ Ty
po To’
in which Tj is the reference temperature, from which 77 is a small fluctuation. The

result is a linear coupling between refractive index fluctuation and temperature fluc-
tuation

ny=(no—1)=. (2.3)



F1G. 2.1. A schematic of the numerical setup is depicted. The fluid is evolved according to (2.4)
on slices at a sampling of z values. Volumetric fluid quantities are obtained by interpolation between
slices. The paraxial equation is then coupled to the volumetric temperature field via the refractive
index. The beam deforms due to differences in refractive index (temperature-based), and both heats
less further down the path, due to absorption, and heats at a different location, due to defraction.

The temperature fluctuations are evolved in the incompressible Navier-Stokes equa-
tions, presented below in non-dimensional form.

1
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These equations have been non-dimensionalized using a beam width as the character-
istic lengthscale L, a velocity scale U, a convective time scale 7= %, a temperature
scale Ty, a beam intensity scale of Vj, and a pressure scale of Py=poU?. The vector
€3=1(0,1) is the unit vector in the vertical direction; this term is the manifestation
of gravity in the Boussinesq regime. The variable T is the normalized temperature
fluctuations T = %; in the numerical results section we report Ty =TT, so that our
reported temperatures have the more intuitive units, degrees K. The fluid length and
velocity scales are measured against g, v and p, the force due to gravity, the kine-
matic viscosity and thermal diffusivity respectively, typical choices in non-dimensional
fluid simulations. The non-dimensional numbers which are introduced are the classic
Reynolds (Re), Peclet (Pe), and Richardson (Ri), as well as the less common Stanton
number (St) [27], all defined below,
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The last number tells the extent to which heat is concentrated, as it compares
the rate of heat deposition by the beam to the rate of convective heat transfer in the
fluid. The Stanton number is the one which grows with the energy of the laser (as
well as with the absorbivity of the medium). We will consider flows with Stanton
number St = %. This corresponds to a continuum of beam sizes, power densities and
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absorbivities. We prefer to consider the size of the Stanton number as a statement
about the fluid flow, rather than the laser power; however, we recognize that there is a
community of scientists for whom the laser power is of primary interest. As a concrete
example of such a Stanton number, consider a laser at 1.045 pym, with a 8 for dry,
clear air at 10*9KT“12, and a lem beam diameter at 300K with g=981cm/sec?. A
Stanton number of % and a Richardson number of 10* corresponds to a power density
of V@ = 313%. The value of the absorbivity, 5, varies significantly based on the fluid

medium, for example still at 1.045um in air, it may be as high as 10_5KTm2 due to
W

aerosol content, which results instead in a power density of 3_ 5. The measurement
and calculation of 3, as well as total extinction coefficient, is non-trivial and an
important current research field [24, 18, 28].

Although volumetric effects of the fluid are included in the beam equation, we do
not solve (2.4) in three dimensions. The paraxial equation comes with an assumption
of a separation of scales between the transverse, x and y, and the longitudinal, z,
dependence of the beam amplitude, i.e. that if V, =O(e) then V, =0O(€?). In terms
of this scale separation, the paraxial equation approximates Maxwell’s equations to
O(€?), and neglects higher order terms. To the same order of accuracy, the fluid
flow is two dimensional (in x and y) and has no flow in the longitudinal coordinate
u=(uy,us,0).

This study neglects the effect of scintillation due to small scale background fluc-
tuations in the fluid medium. Scintillation often dominates the dynamics of laser
propagation. For initially quiescent flows, or those where the energy transfer (mea-
sured by the Stanton number) are large, the thermal effects can dominate those of
scintillation. An asymptotic study of the interplay between small turbulent fluctua-
tions and large laser induced-convection is being pursued separately.

Our system is an example of a wave optics model, including a key novel feature
relative to historical models. Early wave optics efforts included simulation of
temperature dynamics, both in static fluids and prescribed fluid velocities, e.g.
sidewinds and beam slewing [29, 26, 14, 30]. It is well known that, for low power or
long propagation distance, even small turbulent fluctuations play an important role
in beam dynamics. Modern models for these turbulent fluctuations are statistical,
using prescribed realizations of fluid quantities[18, 31]. The fundamental difference
between these wave optics models and the system in work is that rather than
prescribing the fluid wvelocities, we solve for them as dynamic variables; the velocity
is an unknown in our system, rather than a parameter. Laser propagation, including
the effects of thermal blooming, are also often modeled with scaling laws [32, 33].
Scaling laws can be thought of an approximation the the results of a wave optics
simulation, and thus the results of this work could be used in the future for the
development of a scaling law including the effect of convective thermal blooming.

3. Numerical Results

To simulate the fluid equations, we solve (2.4) on transverse two-dimensional
slices at a discrete series of locations, then interpolate between these slices. The
resulting volumetric fluid quantities are used to determine the refractive index for
the entire path of the beam in the paraxial equation. The resulting system has
a quasi-two-dimensional cost for the fluid simulations, but still includes volumetric
effects in the beam propagation. The quasi-two-dimensionality of the fluid system
is a direct consequence of the paraxial scaling of the beam, as discussed earlier. A
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Fi1G. 3.1. The temperature fluctuations T' (top) and the intensity field |V| (bottom) are depicted
with laser-induced convection, results of simulations of equations (2.1) and (2.4). The simulations
are at a distance of z=2800, at a sampling of times, from left to right t=0.1, 0.2 and 0.3. The
temperature fluctuations are reported in dimensional units, degrees Kelvin. For these simulations
10 = 1.0003,To = 300K,k =10%,=10"5,St= % x 1071, Ri=5x 104, Re= 103, Pe=103.

diagram of the numerical setup is in figure 2.1, wherein two-dimensional slices of
fluid are depicted, with a beam propagating in the transverse direction. These slices
represent the locations where the fluid is evolved; between the slices fluid quantities
are interpolated. The numerical methods for the evolution of this system, including
discretization, convergence, and time solvers, are discussed in detail at the conclusion
of this section.

We simulated the paired equations (2.1) and (2.4) in a regime where buoyancy
plays a dominant role in the fluid flow, Ri~10%, with quiescent initial conditions,
so that the beam heating drives any fluid motion. The choice of St= % models a
moderately large rate of energy deposition by the laser relative to the fluid’s rate of
thermal transport. The beam profile at the aperture, z=0, is held temporally fixed

as a gaussian with constant phase,
V(2,,0,t) =exp (—(2* +y)).

Both the fluid and laser equations are solved in the domain (z,y)€[—2m,27) X
[—27,27) (although our figures typically report subsets of this domain). The temporal
dynamics of one such simulation in this parameter regime are depicted in Figure 3.1.

An example of the temperature dynamics are in depicted in the top row of figure
3.1. Initially, for small heating, the beam has small refractive effects, and the temper-
ature distribution is nearly radially symmetric (top left panel of figure 3.1). Radially
symmetric temperature dynamics are typical of historical thermal blooming studies
in which fluid velocities are neglected [14]. As time progresses, the warmer fluid rises
and the beam deforms due the resulting asymmetry in the refractive index (center
top panel of figure 3.1). At longer times, the heat rises convectively, leading to an
increasingly mushroom shaped temperature distribution (top right panel of figure 3.1
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F1G. 3.2. The temperature fluctuations T' (top) and the intensity field |V| (bottom) are depicted
with a uniform cross wind, results of simulations of (2.1) and(2.4) but with prescribed vertical
cross wind u=(0,10). The simulations are at a distance of z=800, at a sampling of times, from
left to right t=0.1, 0.2 and 0.3. The temperature fluctuations are reported in dimensional units,
degrees Kelvin. For these simulations no=1.0003,Ty =300K,k=105,=10"5 St= % x10~1 Ri=
5x 104, Re =103, Pe=105.
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and the bottom right panel of figure 3.3).

As the temperature evolves so does the intensity of the beam. Asymmetric tem-
perature fields cause the beam to deform asymmetrically (as has been observed many
times in thermal blooming studies with specified wind [13, 25, 29, 30]), forming a
crescent shape in the downwind direction. In contrast to a uniform wind, the velocity
profile here varies on the scale of the beam spot size, resulting in a deformed crescent
(bottom right panel of figure 3.1). The signature of the temperature field is evident in
these deformations: the rounded holes at the tips of the crescent in the bottom right
panel of figure 3.1, and the pinched corners of the crescent in the top right panel of
figure 3.3 .

Asymmetric thermal blooming is commonly studied with a prescribed cross wind.
To illustrate the qualitative differences between this experiment and laser-induced
convection, we have included simulations of with a fixed uniform vertical cross wind
of u=(0,10). No uniform cross wind can exactly correspond to the non-uniform and
circulating currents induced by the laser heating. We choose the magnitude of the
wind so that the shape and location of the beam spot was comparable on the time
scale of our simulations. The results of these simulations are in figure 3.2. Notable
differences are the earlier onset of the crescent shape (bottom left panel of figure 3.2),
due to the fact the the cross wind instantly reaches at its maximum intensity; in the
convective experiment the magnitude of the velocity field increases with time. Also,
with a uniform cross wind the tips of the crescent become increasingly pointed in
time; in the convective experiment stagnation zones occur in the vicinity of the tips
of the crescent, creating more structure (the bottom right panel of figure 3.1).

In the equation (2.4), the time units are 7= %, so the Ri= % can be thought
6
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F1G. 3.3. Top Row: Beam intensities at z=800, t=0.35, from left to right with Ri=10%,
Ri=5x10% and Ri=10%. Bottom Row: Corresponding temperature fluctuations from To=300K,
reported in degrees, again reported at z=3800. All other parameters are the same as in Figure 3.1.

of as measuring how long the experiment is observed, as compared to the natural
gravitational timescale. We consider large Ri, long times relative to this gravitational
timescale, with Ri € [10%,10°]. The effects of varying Richardson number with fixed
Stanton number are portrayed in figure 3.3. As one should expect, larger Richard-
son number results in larger convection. From left to right the temperature fields in
the bottom row of Figure 3.3 have more time to rise, resulting in increasingly mush-
room shaped temperature fields. The corresponding beams spots become increasingly
crescent shaped (top row of Figure 3.3).

The numerical methods used here utilize Fourier-collocation to approximate trans-
verse, x and y, spatial derivatives and the sixth order Runge-Kutta of Luther [34] for
evolution variables. In the paraxial equation (2.1), longitudinal distance, z, is the
evolution variable; in the fluid equations (2.4), t is the evolution variable. A time
splitting-scheme is used, allowing alternating evolution of the paraxial and Boussi-
nesq equations. This alternation is done within a second order predictor-corrector
method, whose operation over one time-splitting interval Ats we now describe. Over
one time interval, a fixed beam intensity from the previous time step, V(z,y,z,t,), is
used as the forcing in the fluid time solver to generate a predicted temperature field
halfway though the splitting interval, denonted T'(x,y,z,t, +Atg/2). This predicted
temperature field is then input to the paraxial equation to generate a beam intensity
corresponding to the temporal midpoint of the splitting interval, V(z,y, z,t, + Atg/2).
The fluid quantities are then evolved from ¢,, to t,, + Atg using a temporally constant
beam, which was sampled at the midpoint of the time interval. The final temperature
field T(x,y,z,t, + Atg) is then passed to the paraxial equation to generate the inten-
sity at the next time step V' (z,y,2,t, + Atg). The resulting method is second order
in Atg. A convergence study in this parameter was conducted; the convergence rate
is depicted in center panel of Figure 3.4.
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Fi1G. 3.4. Numerical evidence of the convergence rate and spatial accuracy of the numerical
method are presented. The left panel shows second order accuracy in the length of the cells over
which the temperature field is interpolated Az ep. The center panel shows second order accuracy in
the splitting time step between which the Boussinesq and Paraxial equations are alternately solved,
Atg. The right panel shows the logarithm of the Fourier spectrum of the intensity at distance z =800
at t=0.3, which is localized in the frequency domain.

There are a number of numerical parameters which contribute to errors of the
numerical method, to varying degrees. Effectively all of these are truncation errors,
from either the discretization of the evolution variables, from the splitting scheme,
or from the interpolation of the temperature between fluid slices. The evolution of
the Boussinesq equation uses a time step of At=0.5x 1074, the paraxial equation
with Az=1. Due to the highly accurate (sixth order Runge-Kutta) methods used
for the evolution of the beam and fluid equations, these time-steps don’t contribute
significantly to the error. The truncation errors due to splitting are second order;
the convergence in the time splitting parameter At is depicted in the center panel
of Figure 3.4. The truncation errors due to interpolating the temperature between
fluid slices, of cell length Az, was also carefully monitored. The temperature field
was linearly interpolated over these cells, thus the convergence rate in cell length is
theoretically second order. A convergence study in cell length, Az..;; was conducted,
verifying the theoretical prediction, and is depicted in the left panel of Figure 3.4.

4. Conclusions and future research The interaction of beam-induced con-
vection and refraction are studied via numerical simulation. The numerical procedure
is developed specific to this application, allowing for observation of new phenomena.
The influence of this convection creates qualitatively different beam spots from those
observed in a slewed beam. Scintillation is neglected, however as the difference in
the spot shape is qualitative, it can be expected to persist through the influence of
small scintillation. The authors are currently pursuing an asymptotic study of the
effects of small scintillation in this setting. The authors are also studying the effects
of the alternate boundary conditions for the fluid solver, which currently limits
the time of simulation, for example the free space boundary condition of Fornberg [35].
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