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A model for 10.6 µm high energy laser beam interaction with a uniform, monodisperse cloud of water droplets
is developed. The model includes droplet and vapor heating as well as droplet shattering in the “fast regime” as
defined in Appl. Opt. 28, 3671 (1989). The cloud dynamics feed back on the laser via changes in the complex
refractive index. In one space dimension, the model is solved exactly, including an explicit formula for the front of
the cleared channel. Numerical simulations are conducted for the axisymmetric three-dimensional case. Model
predictions and limitations are discussed. ©2020Optical Society of America
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1. INTRODUCTION

Laser–atmosphere interactions are important in a host of appli-
cations including targeting, wireless communication, energy
transfer, remote sensing, the measurement of gravity waves, and
many more [1–4]. As a result, the propagation of lasers through
the atmosphere has been modeled extensively [5–9]. In the
optical regime, clouds form an obstacle to laser propagation,
lowering the effectiveness of these applications [10–12].

When a high energy laser propagates through a cloud, the
possibility exists for the beam to alter the physical properties of
the drops (temperature, diameter, shape, etc). The interaction
of high energy radiation and water droplets has been studied
experimentally [13–18], as well as via modeling and simulation
[5–9,19–23]. The physics of laser droplet interaction is com-
plex and depends on droplet geometry, wavelength, potential
impurities, and relative droplet size. The primary response of
the incoming field may be to scatter off the droplet, to heat the
surface, or to heat the interior [24]. In this work, we consider
monodisperse, uniform fields of water droplets with diameter
of 10 µm, an average drop size in a typical cloud [25], and a
10.6 µm laser. This beam and drop combination results in
an order of one Mie size parameter, where the primary effect
of droplets on the beam will be volumetric absorption, with
corresponding droplet heating.

In this heating regime, inhomogeneities form in the heating
source function and lead to the development of hot spots within
the droplet [26–28]. Irradiated, pure water droplets do not
change phase at 100◦C, instead droplets spontaneously nucleate
at a critical temperature of Tc ≈ 305◦C [29,30]. We model
droplets that are exposed to intense background radiation, with
responses falling in the “fast” regime, as described in [19]. In this

regime, heating ultimately results in explosive destruction of
droplets [15,31–33]. In the “slow” regime, evaporation balances
heating [34–37]. We consider 10 µm droplets, in which regime
fluid viscosity dominates convective motion within the drop; for
larger millimeter (mm) size droplets, this convection may play
an important role [24,38]. We approximate an exploded droplet
as being replaced by heated water vapor (dynamics related to
smaller pieces of shattered droplets, which may be created via a
destruction event are neglected).

In addition to depositing energy in water droplets, the laser
will also lose energy into the propagation medium. For near
to stagnant backgrounds, this heating feeds back on the beam
propagation, leading to thermal blooming [39–42]. Thermal
blooming has a long history of study, in circumstances where
the fluid propagation medium is prescribed (either fixed or
described statistically) [43–47]. Recently, as laser power con-
tinues to increase, efforts have been made to couple the fluid
flows induced by the laser heating (for example buoyancy driven
convection) on the beam’s thermal blooming [48]. This work
is essentially a first step toward including suspended particles
in the model of [48]. It also extends the model for static lasers
in [15] by including beam dynamics, to evaluate long distance
propagation potential (both distance and timing), and comple-
ments [5] by considering the high power regime. The shattering
of monodisperse droplets was studied in [49], where droplet
heating and shattering was simulated with a prescribed laser
field. The dynamics of both the laser and a monodisperse uni-
form field of small drops (as model for fog) were modeled in
the slow regime (low power) in [50]; we adopt a similar cloud
model, but operate in the fast regime (high power), where
droplets explode rather than evaporate. Although there is a
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long history of modeling and simulation of laser and droplet
interactions, this is the first work, to the best of our knowledge,
to model and simulate both the droplet and laser dynamics in
the high power regime. We also include thermal blooming of the
background vapor.

In this work, we study the problem of pulsed, high irradiance
laser propagation through a simple cloud model. This model
includes droplet heating (during the pulse), cooling (between
pulses), and explosive vaporization. The beam propagation is
modeled by the paraxial equation, [39,51,52], in which the
refractive index is coupled to both background gas tempera-
ture and droplet concentration. The model assumes a cloud
to be composed of an initially uniform distribution of water
droplets suspended in background gas approximated as only
containing water vapor. We consider lasers of sufficiently high
irradiance (|A|crit ≈ 104 W

cm2 ) such that heating happens on a
time scale (1.41 µs [53]), for which droplet explosion is the
dominant fluid response; our model neglects evaporation and
convective fluid motions. We also restrict the power window
from above, to avoid plasma formation and self-focusing; these
regimes are of separate interest and have their own history of
study [19,54–59]. These combined effects of suspended water
droplets and background vapor on blooming and dissipation are
included. For the wavelength in question, water vapor is more
absorbing than dry air, thus it will lead to increased blooming
(and decreased clearing). We approximate the background gas
as all water vapor (resulting in the most conservative possible
clearing estimates). The effects of scattering are acknowledged
as important, but neglected for this analysis, as they are small
for the wavelength and droplet size choices. In the context of
this model, we observe the potential for laser-induced cloud
clearing.

The paper is organized as follows. Section 2 presents the
problem formulation and modeling assumptions. An exact
one-dimensional solution, including an explicit formula for
the depth of the cleared channel, is derived in Section 3. The
numerical method and results follow in Section 4. A discussion
of predictions, limitations, and usefulness of the presented
model are in Section 5. We conclude and present opportunities
for future research in Section 6.

2. FORMULATION

In this section, we present a model for high energy laser propa-
gation through a cloud. The cloud is approximated as a uniform
distribution of water droplets suspended in a background
gas. The model takes the form of a system of coupled differ-
ential equations for the droplet temperature, background gas
temperature, and beam intensity.

The beam dynamics are modeled using the paraxial approxi-
mation to Maxwell’s equations:

Az =

(
−1

2ik(η0 + iβ0)

(
∂2

∂r 2
+

1

r
∂

∂r

)
+ ik(η1 + iβ1)

)
A.

(1)

In the paraxial equation, Eq. (1), the variable A is the enve-
lope of the electric field. The radial coordinate r accounts
for the transverse direction, while z represents the propaga-
tion direction. The variables η0 and β0 are, respectfully, the

leading-order approximations to real and imaginary parts of the
index of refraction. In the derivation of the paraxial equation,
a separation of scales is assumed between the longitudinal and
transverse directions; the refractive index is also assumed to
have fluctuations that are asymptotically small when measured
relative to this aspect ratio. The parameters η1 and β1 are the
first corrections to the mean refractive index, which correspond
to small fluctuations due to changes in the medium’s physical
state (e.g., temperature changes). The index of refraction of the
mixed media, a combination of water droplets and background
vapor, is represented by

n = P nw + (1− P )nv, (2)

as in [60] according to the rule of mixtures. In Eq. (2), the sub-
script w corresponds to the index of refraction of liquid water;
the subscript v corresponds to the index of refraction of the
approximated background gas, pure water vapor. The real and
imaginary terms, the leading-order terms, and the first-order
fluctuations of the index of refraction are all taken to satisfy
the rule of mixtures in equations, analogous to Eq. (2). The
numerical values for these constants can be found in Table 1.
The mixing ratio P is defined as

P = 10−6 D
D0
, (3)

where 10−6 is the droplet concentration in the cloud (the ratio
of the volume of the droplets to the volume of the vapor) and
equivalent to 2000 droplets per cm3 as in [25], D0 is the initial
droplet diameter (10µm), and the diameter of the drop, D, as a
function of space and time is defined by

D(r , z, t)=
{

10 µm T(ξ) < Tc

0 T(ξ)≥ Tc
, (4)

where Tc is the critical temperature at which droplets sponta-
neously nucleate and subsequently explode. Equation (4) is the
simplest possible model for droplet dynamics that still accounts
for droplet shattering. The droplet diameter is assumed to be
either constant or absent, as droplet explosion is essentially a
threshold process [61]. This approximation makes sense only
for fast time scales with high power lasers, in which slower
dynamics, e.g., evaporation, are neglected [19,62].

The temperature in individual water droplets is tracked and
used to determine time and location explosive vaporization
events. The presence, or absence, of droplets feeds back on
the laser via the complex refractive index as above. The beam
diameter is assumed to be large relative to the droplets, such
that the droplets feel a uniform intensity field, which is incident
from a uniform spatial direction. We do not solve for the beam
intensity within the droplet, but instead assume an interior
heating profile based on those reported in [19]. The resulting
temperature equation is

cρTt =∇ · (K∇T)+
4πη0,wβ0,w

λ0
S(ξ)I , (5)

with

S(ξ)=

√
3

2π
exp

(
−9

2
(ξ − 0.9)2

)
+ 0.8.
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Table 1. Numerical Values of Physical Parameters Used for Simulations with References
a

Parameter Description Value Units Source

λ0 Wavelength 10.6× 10−6 m Model choice
k Wavenumber 2π/λ0 = 5.9× 105 m−1 Model choice
ρ Density of Water 103 kg

m3 [19]

c Specific Heat of Water 4.1855× 103 J
kg·◦C [19]

K Thermal Conductivity of Water 5.187× 10−2 J
s·m·◦C [19]

c v Specific Heat of Vapor 1.996× 103 J
kg·◦C [19]

K v Thermal Conductivity of Vapor 2.0935× 10−2 J
s·m·◦C [19]

η0,w Re(nwater) 1.179 - [19]
η1,w Re(nwater), Fluctuation 0.776405 - [19]
η0,v Re(nvapor) 1 - [25,65]
η1,v Re(nvapor), Fluctuation 3.648× 10−6 Tv

273 - [25,65]
β0,w Im(nwater) 0.07558 - [19]
β1,w Im(nwater), Fluctuation 0.03 - [19]
β0,v Im(nvapor) 3.2× 10−10 - [63]

β1,v Im(nvapor), Fluctuation 8.667× 10−18 e
2838
Tv - [66]

aUnits are given if the parameter is dimensional.
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Fig. 1. Source function distribution S(ξ) representing the relative
heating of a 5 µm droplet as a function of a normalized internal spatial
coordinate, ξ .

Here, c is the specific heat of water, ρ is the density of water,
K is the thermal conductivity of water, I is the irradiance, and
S(ξ) is a normalized source function representing how much a
10 µm diameter droplet is heated due to radiation as a function
of one, normalized, internal space dimension, ξ , such that
ξ = 0 corresponds to the center of the drop, ξ =−1 represents
the edge of the drop closest to the laser source, and ξ =+1 is
mapped to the edge of the drop furthest from the laser source.
The profile of S can be seen in Fig. 1. A rigorous extension of
the heating profile to two and three dimensions would require
calculations of the laser refraction through such a droplet. We
consider only one-dimensional internal heat profiles; a heuristic
extension to higher dimensions would include a corresponding
multi-dimensional Gaussian profile, centered near the back of
the droplet, along the azimuthal axis.

In Eq. (5) above, the first term on the right side of the equa-
tion accounts for thermal diffusion, while the second term rep-
resents heat effects due to radiation. Following [19], by setting a
ratio of the two terms equal to one and solving for the irradiance,
we can determine the irradiance for which the heating term and
thermal diffusion term are proportional:

I =
λ0 K∇2T

4πη0,wβ0,wS(ξ)
.

Given η0,w = O(1), β0,w = O(10−1), S = O(1),
λ0 = O(10−5)m, K = O(10−1) W

mC◦ , and ∇
2T ≈ δT

(δR)2

such that δT = O(102)◦C and (δR)2 = O(10−8) cm2, a
critical irradiance of Icrit ≈ 104 W

cm2 makes the heating term
proportional to the thermal diffusion.

For this analysis, we consider a laser with peak irradiance of
I= 106 W

cm2 = 1 MW
cm2 , which allows the heating term to dominate

the thermal diffusion while staying below the plasma formation
limit of 108 W

cm2 . We thus neglect diffusion of heat within drops
while the beam is on.

The above argument yields a piecewise temperature equation;
the heating term dominates when the pulse is on and is nonexist-
ent when the pulse is off. The one-dimensional equation for the
droplet temperature, in the normalized internal coordinate ξ =
z/R , is

cρTt =

{
|A| f (Pulse on)
K Tξξ (Pulse off )

. (6)

When the pulse is off, the boundary conditions for the heat
equation take the form [19]

−K
∂T
∂ξ

∣∣∣∣
ξ=4−

=−K v

∂T
∂ξ

∣∣∣∣
ξ=4+

+mL +mc (T − T0)+
m3

2ρ2
v

,

(7)

where Kv is the thermal conductivity of vapor, ρv is the density
of vapor adjacent to the droplet given in Eq. (10), and m is the
mass flux through the surface of the droplet such that m > 0
indicates mass leaving the droplet, and m < 0 is mass entering
the droplet. Quantities evaluated at location 4± are limits
taken from the inside and outside, respectively. The term on the
left-hand side of Eq. (7) is the heat flux from inside the drop.
On the right-hand side of Eq. (7), the first term is the heat flux
from the ambient water vapor outside of the drop, the second
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term is the energy used in vaporization on the surface, the third
term is the energy loss due to droplet shrinking, and the last
term is the convection term, which represents the kinetic energy
exchange [19].

We have chosen to operate in the “fast” regime of Armstrong,
neglecting evaporation, so the mass flux across each droplet
surface, m, is zero. The only terms left in the boundary condi-
tion equation, therefore, relate the thermal diffusivities of each
medium, e.g., Eq. (7) becomes

−K
∂T
∂ξ

∣∣∣∣
ξ=4−

=−Kv

∂T
∂ξ

∣∣∣∣
ξ=4+

. (8)

Just as the droplets are coupled to the laser, so is the back-
ground vapor. The large power density and short time-scale
assumptions applied to the droplets have similar consequences
when applied to the vapor. The droplet and vapor equations are
explicitly coupled by their shared boundary equation, Eq. (8).
The droplet and vapor equations are also implicitly coupled,
as both vapor and droplets affect the beam. In the vapor, how-
ever, the absorption is much smaller than the absorption of
water, β0,v� β0,w. Therefore, for the chosen irradiance, the
diffusion term must be kept while the pulse is on in the vapor
heating equation. The background vapor solves the following
equations:

c vρv
∂

∂t
Tv =

{
fv|A| + Kv1Tv (Pulse on)
Kv1Tv (Pulse off)

, (9)

in which the density is taken to satisfy

ρv = 0.0022
1

Tv9.2 exp

(
77.3450+ 0.0057Tv −

7235

Tv

)
,

(10)

where c v , ρv , Kv , fv are the specific heat, density [25],
thermal conductivity, and heat production distribution of
vapor, respectively. It should be noted that there is no cor-
responding normalized source function, Sv(ξ), for vapor
heating; there are no geometric effects in the vapor absorp-
tion. The vapor also affects the beam through the index of
refraction. The corrections to both the real and the imagi-
nary part, η1,v and β1,v , depend on the temperature of the
vapor:

|A|(z)=

 |A|(0) exp
(
−kβ1,wz

)
t < tc (0)

|A|(0) exp
(
−kβ1,vz

)
z< zc (t)

|A|(0) exp
(
−kβ1,vzc (t)

)
exp

(
−kβ1,w(z− zc (t))

)
z> zc (t)

}
t > tc (0)

, (11)

η1,v = 3.648× 10−6 Tv
273

and

β1,v = 8.667× 10−18 exp

(
2838

Tv

)
.

For the numerical simulations in Section 4, we have used the
full dependence of the vapor on temperature. In our numerical
simulation, we observe a negligible contribution from the tem-
perature dependence of the absorbivity, β1,v . In Section 3, we
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Fig. 2. Temperature of an arbitrary droplet and its surrounding
vapor in one dimension after one heating and cooling period using
106 W

cm2 irradiance laser. The droplet boundary is labeled by vertical
lines, and the scale is in units of droplet diameter.

approximate β1,v ≈ 3× 10−13, allowing for the construction
of an exact solution for the front of the cleared region as it passes
through the cloud. This approximateβ1,v appears in [63].

In the above model, both the vapor and the drops are heated.
We directly simulate the coupled system of Eqs. (6) and (9) in a
small vapor domain local to a drop. In this domain, we observe
local heat transfer from droplets to the surrounding vapor. The
effect of the surface heat transfer is visualized in Fig. 2 after one
heating and one cooling period. The global vapor temperature is
updated at the same time as the droplet temperature by a rule of
mixtures-based coupling.

3. SHATTERING FRONT: EXACT SOLUTION

For a one-dimensional beam, e.g., neglecting diffraction by
setting ∂r A≡ 0 in Eq. (1), the equations for the beam and
droplet temperature fields are a pair of coupled linear differential
equations, which are exactly solvable in terms of exponentials.
The only non-trivial detail of the solution procedure is that we
allow for a shattering front to propagate through the system,
creating a discontinuous distribution of droplet radii. We are
able to explicitly determine the location in space–time of the
front of the cleared region while the pulse is constantly on. The
details of this solution follow.

The exact solution to Eq. (1) with ∂r A= 0 is

where tc (z) is the time at which the droplets at location z shat-
ter, and zc (t) is the location of the cleared front as a function of
time. It should be noted that by setting ∂r A= 0, the β0 and η0

terms are eliminated, and the η1 terms cancel out when solving
Eq. (1).

Equation (11) does not include a prescription for tc or
zc and thus is an incomplete representation of the solution.
However, we can find an explicit solution by first solving for the
temperature along the cleared front.

The temperature at the droplet interface is
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T(z, tc (z))=
∫ tc (z)

0
C |A|(z, t)dt

= tc (0)C |A|(0) exp
(
−kβ1,wz

)
+ exp

(
−kβ1,wz

) ∫ tc (z)

tc (0)
C |A|(0)

× exp
(
−k(β1,v − β1,w)zc (t)

)
dt, (12)

where C =maxξ∈[−1,1] f (ξ)= 2
√

2π
λ0
η1,wβ1,w.

It should be noted that the temperature along the front,
T(z, tc (z)), is by definition fixed; it is the critical temperature
at which droplets explode, Tc in Eq. (4). To solve for tc , we
differentiate Eq. (12) with respect to z yielding

dT
dz
= 0=−tc (0)kβ1,wC |A|(0) exp

(
−kβ1,wz

)
+C |A|(0) exp

(
−k(β1,v − β1,w)zc (tc (z))

)
× exp

(
−kβ1,wz

)
t ′c (z)

− kβ1,w exp
(
−kβ1,wz

) ∫ tc (z)

tc (0)
C |A|(0)

× exp
(
−k(β1,v − β1,w)zc (t)

)
dt . (13)

The substitution u = zc (t) paired with the fact that zc and tc
are inverse functions of one allows Eq. (15) to be rewritten as

0=−tc (0)kβ1,w + exp
(
−k(β1,v − β1,w)z

)
t ′c (z)

− kβ1,w

∫ z

0
exp

(
−k(β1,v − β1,w)u

) du
z′c (tc (u))

. (14)

Further use of the inverse relationship of zc and tc ,

u = zc (tc (u)), and thus 1= z′c (tc (u))t
′

c (u),

allows Eq. (14) to be written as

0=−tc (0)kβ1,w + exp
(
−k(β1,v − β1,w)z

)
t ′c (z)

− kβ1,w

∫ z

0
exp

(
−k(β1,v − β1,w)u

)
t ′c (u)du. (15)

Differentiating Eq. (15) with respect to z and simplifying
returns a linear constant-coefficient differential equation:

kβ1,vt ′c (z)= t ′′c (z). (16)

The solution to Eq. (16) is

tc (z)=
Tc

|A(0, 0)|C

(
β1,w

β1,v

(
e kβ1,v z

− 1
)
+ 1

)
, (17)

which can be inverted to produce

zc (t)=
1

kβ1,v
ln

[
β1,v

β1,w

(
t|A(0, 0)|C

Tc
− 1

)
+ 1

]
. (18)

Armed with Eq. (17) [or equivalently Eq. (18)], the solution
in Eq. (11) is now fully explicit. This solution is exact in the
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Fig. 3. Figure depicting the exact 1D solution in the first 40 m of a
cloud with a 1 MW/cm2 laser. The solution was sampled for this figure
every 0.5 ms and only includes time when the pulse is on.

model, but as the model is approximate it should be considered
as approximate for the physical penetration depth zc (t) or
tunneling time tc (z).

An example of the exact solution in space at equally spaced
times is shown in Fig. 3. The change in decay rate from before
zc to after can be seen clearly. The figure depicts the exact
one-dimensional solution in the first 40 m of a cloud with a
1 MW/cm2 laser. The spatial step size used was1z= 10−2 m.
The pulse on time for this example is ton = 4.1810−4 s. The
solution was sampled seven times at 2.1× 10−7 s intervals.

4. RADIALLY SYMMETRIC PARAXIAL
EQUATION: NUMERICAL SIMULATIONS

In this section, we consider geometric effects on beam propaga-
tion by numerically simulating the radially symmetric paraxial
equation, Eq. (1). The temperatures of a field of uniform diam-
eter droplets and background gas (vapor only) are also tracked.
The droplet field solves the piecewise defined Eq. (6), the back-
ground vapor solves the piecewise defined Eq. (9), and they are
coupled via the boundary equation, Eq. (8).

Despite there only being one vapor temperature equation,
there are two sources of vapor heating: the laser and the droplets.
The laser heats the field of ambient vapor in the cloud, and that
heat is able to diffuse on the same time scale, see Eq. (9). The
heat flux from the droplet into the immediately surrounding
vapor is tracked separately and is governed by the boundary
equation, Eq. (8). The resultant vapor temperatures are then
combined via the rule of mixtures,

Tv = Tv,ambient (1− Pv)+ Tv,local Pv, (19)

where

Pv = 10−6

(
Dv

D0

)3

= 1.25× 10−4 D
D0
,

such that 10−6 is the droplet concentration in the cloud used
earlier in Eq. (3), and Dv = 5D is the diameter of the sphere of
local vapor. The size of the local vapor was determined based
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upon the domain over which the heat flux from the droplet is
significant. Compared to Eq. (3), the reduced ratio of vapor
volume to droplet volume is included here to account for the
additional volume taken up by the vapor local to the droplet.
The ratio is further simplified to demonstrate how the droplet
concentration is related to the ratio of local vapor, which is
heated by heat flux from the droplet, to ambient vapor, which is
heated directly by the laser.

The numerical method used to solve the system of equa-
tions is a classic split-step scheme. It begins by solving the laser
equation in space for a fixed time using the Crank–Nicholson
scheme with zero boundary conditions. Then, the pulse on
the temperature equation is solved in both the droplets and
vapor with previously determined laser irradiance using Euler’s
method. The droplet distribution is updated next, based on
the temperature solution. Any droplets with a discrete internal
temperature at or exceeding the critical temperature are replaced
by vapor of the same temperature. The scheme is repeated for
the duration of a pulse.

Between pulses, the dissipation of built up heat in the droplets
and vapor is modeled by the heat equation. Within the droplets
and in the vapor in the near vicinity of the droplets, the heat
dissipation and transfer is modeled in one dimension and is
solved using the Crank–Nicholson scheme. For the rest of the
vapor, the heat equation is solved using the alternating direc-
tion implicit (ADI) method [64]. The large-scale vapor field
temperature heated by the laser is tracked separately from the
near-droplet vapor temperature. Specifically, the near-droplet
vapor temperature is an average of the near-droplet vapor tem-
perature over the locally solved domain and, once the droplet has
exploded, includes the vapor that replaces the exploded droplets.
The combined effect of these two vapor temperature fields on
the laser is represented artificially through the rule of mixtures,

similar to effect of the droplets and vapor. The large-scale vapor
field temperature and the averaged local vapor temperature are
shown in Fig. 4.

Parameters, such as pulse length and irradiance, were chosen
to satisfy the underlying assumptions of our model. As discussed
earlier, irradiance between 104 W/cm2 and 108 W/cm2 is
necessary to avoid plasma formation while allowing shattering
to dominate droplet dynamics. Our model used an irradiance
of 106 W/cm2. The cloud will be modeled as a cylinder with a
radius of 3 m and length of 100 m. The laser model will oper-
ate with a pulse on time of ton = 4.185× 10−6 s, a pulse off
time of toff = 8.069× 10−5 s, radial step size 1x = 5× 10−2,
azimuthal step size 1z= 10−2, and initial Gaussian laser
profile of

A(r , 0, 0)= e−r 2
MW/cm2.

Figure 5 shows the laser irradiance over two-dimensional,
radially symmetric space for a sampling of times, t =
8.5× 10−5 s (after the first pulse and cooling period),
t = 1.70× 10−4 s (after the second pulse and cooling period),
and t = 1.71× 10−4 s (the time at which the laser has fully
cleared a path through the cloud). Figure 6 shows the maxi-
mum temperature within each drop over two-dimensional,
radially symmetric space for the same times as well as the cleared
channel through the cloud (represented by the white space).
The majority of the energy delivered by the laser goes to those
droplets along the thin boundary between the cleared channel
and the rest of the cloud. The maximum ambient vapor temper-
ature and the maximum locally averaged vapor temperature are
found to be 0.45◦C and 20.11◦C greater than the initial vapor
temperature, respectively.

Fig. 4. Temperature fluctuations above 23◦C of the ambient vapor, the vapor of the propagating medium heated by the laser (top row), and local
vapor, the vapor immediately surrounding the drops heated through surface heat flux from the droplets (bottom row), over two-dimensional, radially
symmetric space for time t = 8.5× 10−5 s, t = 1.70× 10−4 s, and t = 1.71× 10−4 s as a megawatt laser passes through a 100 m cloud.
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Fig. 5. Irradiance of the laser, sliced in the x z plane (top row) and at the back of the cloud z= 100 m (bottom row) for times t = 8.5× 10−5 s, t =
1.70× 10−4 s, and t = 1.71× 10−4 s.

Fig. 6. Maximum temperature within each droplet over two-dimensional, radially symmetric space for time t = 8.5× 10−5 ms, t =
1.70× 10−4 ms, and t = t = 1.71× 10−4 ms. In the white central region, the droplets have exploded, and there is no droplet temperature to be
represented.

5. DISCUSSION

The model presented in the previous section predicts dwell
times and power input requirements for cloud clearing by
high energy lasers. A one-dimensional model, which ignores
beam shape, diffraction, and pulsing, and an axisymmetric,
three-dimensional model were simulated. Both models showed
that cloud clearing is possible in the same power regime. The
assumptions used to derive this model are in many respects ideal,
with some even hand-picked to allow for clearing to occur. In
this section, we will discuss the limitations these assumptions
place on the model, and the costs one would pay to relax them.

The presence of impurities in the droplet will deform the
heating profile, potentially slowing down the shattering proc-
ess. Impurities, however, will also provide a surface for vapor
nucleation, causing droplets to explode at lower temperatures
and allowing for quicker penetration time. Careful modeling
of this effect requires knowledge of the impurities absorption

properties and simulation of the electromagnetic field within
the impure drop.

The model maintains an implicit assumption that the laser
acts on the entire cloud at once (the front of the laser enter-
ing the cloud is not tracked). This limits the maximum pulse
frequency for which the model is valid. For example, a cloud
depth of 100 m [25] requires that the pulse be no shorter than
3× 10−7 s or 0.3 µs (and preferably an order of magnitude
longer). Ignoring this restriction would require tracking the
front and back of the laser passing through the cloud. This
could, in principle, be done numerically, but it destroys the
structure used to derive the exact solution.

This model is limited to 10.6 µm lasers. A change in wave-
length will alter the heating profile of the drops. The heating
profile is also specific to 10µm diameter drops; both smaller and
larger drops have different heating profiles. The ratio between
the wavelength and the droplet size presented in this model was
chosen to produce the most distinct hot spot. Therefore any
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deviation will produce less effective droplet shattering. For a
given wavelength, smaller droplets have more uniform source
functions and thus take longer to shatter. Droplets with a diam-
eter larger than 10µm have a less centralized maximum and also
require more time to shatter. As the hot spots become less dis-
tinct, more time will be required for the internal temperature of
the droplet to reach the critical temperature. For longer exposure
times, effects such as evaporation and droplet motion become
more important, and would need to be incorporated.

The model takes the entire fluid system to be spatially static,
no fluid motion is permitted. This can be thought of as a time-
scale restriction, assuming that the laser heating happens on a
faster time scale than any motion of the fluid, whether it be due
to cross wind, vapor convection, or droplet motion. While the
tracking of individual droplet motion is impractical, a model
that incorporates droplet motion via tracking their distribution
would be a natural extension of this work.

In order to quantify the assumption of a quiescent atmos-
phere, consider a wind speed of 30 mph and a cleared channel
width of 1 m. The assumption of stationary droplets with
respect to the laser effects only holds true if the laser can pen-
etrate in less than 0.0357 s. That is the time it takes for a droplet
to cross half the diameter of the cleared channel. Based on
our simulation, the laser penetrated the cloud in 0.16 ms, an
order of magnitude faster than necessary for the static droplet
assumption. The persistence of this cleared channel is, of course,
inversely proportional to wind speed.

The rule of mixtures used in vapor and droplet heating also
directly influences the cloud clearing abilities of the laser based
on the droplet density of the modeled cloud. A cloud with a
higher density of droplets will increase the rule of mixtures
fraction, affecting both the rate at which droplets explode and
the rate at which the vapor heats.

The background gas was assumed to be pure water vapor,
thereby overstating its effect on the laser. The effect of the water
vapor on the laser was found to be minimal. A more accurate
refractive index would correspond to a background vapor com-
posed primarily of air and only about 1% water vapor. A more
realistic background medium would then absorb less heat,
allowing the laser to be more effective.

In this work, a monodisperse uniform field of droplets is used
as a simple model for a cloud. Actual clouds are polydisperse,
with non-uniform droplet locations. The 10 µm diameter
chosen here is the peak of the distribution of diameters observed
in clouds [50] (as opposed to fog, haze, or rain, which all have
other representative diameters). The drops whose sizes differ
by an order of magnitude from 10 µm have entirely different
responses from those modeled here (important geometric effects
within larger drops and dominant evaporation for smaller
drops). A more realistic cloud model would require incorpora-
tion of these effects as well, but could in principle improve the
accuracy of the model.

6. CONCLUSIONS AND FUTURE RESEARCH

The model presented above simulates the process of a high
energy laser penetrating a cloud. This work considers the
leading-order effects on the cloud clearing problem, creating an
approximate model, for which exact solutions and numerical

simulations are presented. In the context of this model, it is
shown that a channel can be cleared in a model cloud by a high
energy 10.6µm laser.

A number of amendments to this model could be considered
as avenues for future work. These can include non-axisymmetric
beam geometries, the inclusion of a distribution of droplet sizes,
and corresponding heating profiles. As mentioned before, these
different heating profiles will be less effective, and evaporation
may need to be incorporated. Ejected mass due to droplet shat-
tering is not currently accounted for and should ultimately be
tracked. Also, any resultant fluid flow from the explosions will
appreciably affect the model but requires the simulation of the
entire vapor velocity field.
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