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We define the ROC manifold and CC manifold as duals in a given sense. Their analysis is required to

describe the classification system. We propose a mathematical definition based on vector space

methods to describe both. The ROC manifolds for n-class classification systems fully describe each

system in terms of its misclassifications and, by conjunction, its correct classifications. Optimal points

which minimize misclassifications can be identified even when costs and prior probabilities differ.

These manifolds can be used to determine the usefulness of a classification system based on a given

performance criterion. Many performance functionals (such as summary statistics) preferred for CC

manifolds can also be evaluated using the ROC manifold (under certain constraints). Examples using the

ROC manifold and performance functionals to compete classification systems are demonstrated with

simulated and applied disease detection data.

Published by Elsevier Ltd.
1. Introduction

Paramount to the development of classification systems is the
ability to judge the usefulness of the system, whether judging the
system against a benchmark level of acceptable performance or
comparing it to other candidate systems. To make this judgement
a performance criterion is required. One of the oldest and most
commonly used performance tools used in the analysis of
classification systems is the receiver operator characteristic
(ROC) curve. The most commonly used ROC curve depicts the
trade-off in correct classification for one pivotal class with
the false classification into that class. A less common ROC curve
depicts the trade-off of the two types of false classifications that
can occur.

In the last decade, complexity in classification applications has
warranted an extension of ROC curves and their analyses to
describe and analyze systems in which there are three or more
classes [1–11,14]. These extensions of ROC curves have produced
various surfaces defined in terms of the correct classifications
with the notable exception of [8,9,14], in which surfaces related to
the misclassification errors are described. Points lying on these
surfaces correspond to different operating parameters associated
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with the classification system. Often these parameters are
thresholds (one example would be signal-to-noise ratio), though
they need not be. There is no standardization of these surfaces
and most focus on permutations of the correct classifications. For
classification systems with three classes, these surfaces may be
visualized in a three-dimensional plot of the true (correct)
classification rates [1–7]. Since these surfaces are topological
manifolds, we refer to them as correct classification manifolds (CC
manifolds). For n42 classes, concepts related to these surfaces
have been proposed, many still focusing on the correct classifica-
tion rates, though the increased dimensionality makes it
impossible to view all correct classifications simultaneously
[10]. At best for the n-class system, sets of three-dimensional
plots can be used to examine the correct classifications for three
classes at a time.

Initially, focusing on correct classification rates seems appeal-
ing since, for the three-class classification system, the trade-off
between correct classifications can be compared graphically using
each class’s correct classification as an axis. Furthermore,
summary measures of these CC manifolds focus on how well
the classification systems correctly classify into their class states,
thereby describing the overall correct classification rate. By
conjunction, then, the overall misclassification rate for the entire
system is described, although no information is directly obtain-
able about misclassifications within each class. Such summary
measures include the total correct classification rate and volume
under the surface (VUS) [1,6,9]. Many researchers have examined
VUS for systems with more than two classes [12,3,10,13,6,14,4]
with the view of constructing a polytope from the data to
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calculate or describe how to use the VUS. The appeal of VUS is that
this summary performance quantifier hopefully becomes a
probability estimate as it does with the two-class case, general-
izing the diagnostic ability of the classification system across all
operating parameters. For a CC manifold, this can be interpreted
as the chance of correct classification when presented with, as a
group, one randomly selected subject from each class [1,6]. To
illustrate further using medical diagnostics, the resulting VUS for
three classes may be interpreted as the probability that a clinician
diagnoses each individual to the correct diagnostic class after
being presented with three individuals from three different
classes. Herein lies more confusion, however, because in the
VUS defined by the volume under a polytope created in the space
based on classification errors, the probability of correct classifica-
tion is not necessarily 1-VUS, if VUS indeed exists. In contrast, for
the VUS defined by the volume under a polytope created in the
space based on correct classifications, the probability of correct
classification is the VUS.

There are noted issues surrounding the use of VUS [15,9]. In
[15] we see that conclusions made when comparing classification
systems based on VUS infer the classification system’s diagnostic
ability, with the caveat that these calculations assume equal
weighting for prior probabilities and costs between the classes.
However, there are no costs associated with correct classifica-
tions, only errors in classifications, and as such, summary
statistics not considering misclassifications cannot address these
costs. In [8,9] we see a definition of a ROC hypersurface and the
hypervolume under it which extended previous efforts beyond
the three-class case to an n-class case. It is demonstrated that the
‘‘guessing’’ (and through convergence the ‘‘near-guessing’’) ob-
server has the same VUS as the ‘‘perfect’’ ideal observer.

As a result of these works, there are two important issues to
address. First, there is a dual problem in the CC manifold. Given an
n-class classification system, analysis of the dual problem
involves an (n�1)-dimensional linear variety of the n-space
containing the CC manifold. Since this linear variety is codimen-
sion 1 to the correct classification space (CC space), a surface can
always be generated under it (ignoring the second issue discussed
below). Therefore, [9] would have the ROC hypersurface VUS of
every ‘‘perfect’’ ideal and ‘‘guessing’’ observer equal to 0.
However, the CC manifold VUS of the ‘‘perfect’’ ideal observer is
1 in every case. This occurs because the surface created by the
‘‘guessing’’ observer will always be an n-simplex for this observer.
For example, in the simpler two-class system which produces a
ROC curve, we have n¼2. Hence, the ROC space is in a space of
dimension 2(2�1)¼2 while the ROC curve is isomorphic to a
subset of the space R1, a space of dimension 2�1¼1, making the
curve codimension 1 to the original ROC space. This creates a
‘‘volume’’ under the ROC curve. Notice also that the CC curve for
the two-class system is also isomorphic to R1, which is
codimension 1 to CC space. Thus, it too has a ‘‘volume’’. Of
course, in these dimensions the ‘‘volume’’ is really area under
the curve. This phenomenon is unique to the two-class case.
Extending to a three-class case, the ROC space is a hypercube
subset of R32

�3
¼R6, while the CC space is a hypercube inside R3.

The ‘‘guessing’’ observer is a classifier which is a subset of
R3�1

¼R2 in ROC space. This clearly has no volume since the
linear variety has codimension 4 to the ROC space; however, the
guessing observer yields a 3-simplex in CC space, which has a
volume of 1

3! ¼
1
6. These examples can be extend to any n-class

system to demonstrate the existence of codimensions 41 which
will suffer with similar problems. Further, these examples assume
much in the dimensionality and independence of the underlying
parameter spaces. Under ideal circumstances where there exist
five independent parameters of the classification system, which
vary as five of the six conditional probabilities of misclassification,
the ROC manifold will be isomorphic to a linear variety in
R32

�3�1
¼R5, which is codimension 1 to ROC space. The second

issue to address involves the importance of the parameters a
classification system uses. In a three-class example, suppose we
have less than five parameters (an occurrence that is acknowl-
edged in[8,9]). Then the codimensionality of the space associated
with the ROC manifold will be higher than 1, and no surface can
exist. This is a very real possibility! In fact, the dimensionality of
the problem has more to do with the underlying parameters of
the classification system than with the number of classes, or
independent misclassifications.

In this paper, we define the ROC manifold and CC manifold as
duals in a given sense. Their analysis is required to describe the
classification system. We propose a mathematical definition
based on vector space methods to describe both. Unlike previous
works, this definition makes no assumption that underlying
distributions are known and thus can be utilized when likelihood
decision criterion is unavailable. The ROC manifold for n-class
classification systems fully describes the system in terms of its
misclassifications and, by conjunction, its correct classifications.
These manifolds can be used to determine the usefulness of a
classification system based on a given performance criterion. We
offer the ROC manifold not as a means for finding the optimal
classifier through the use of utility or other criteria, but as a
means to describe the performance of specific classification
systems and to eventually compare performance between
systems. Some performance functionals (such as summary
statistics) useful for CC manifolds can also be evaluated using
the ROC manifold (under certain constraints). Further, the ROC
manifold may be computed regardless of the codimension that
results from the possible classification systems, that is, directly,
without the need to reduce parameters or dimensionality to
create a manifold that is codimension 1 to the ROC space.
Therefore, the definition of the ROC manifold may subsume
previous ROC surface definitions in many cases. Another key
difference of the ROC manifold with respect to CC surfaces is that
optimal operating parameters may be identified when prior
probabilities or costs differ among the various classes. In this
paper, we will use the term, parameter, to refer to those
continuous deterministic quantities that represent different
settings for the classification system. These parameters are varied
to compare system performance constituting the various points of
the ROC manifold. The ROC manifold and CC manifold are
paramount to fully evaluating the performances of the classifica-
tion systems, and herein we endeavor to define them mathema-
tically and describe them in detail.

This paper is constructed as follows. Section 2 outlines the
necessary classification system theory. Section 3 defines the ROC
manifold and the CC manifold. In this section we observe the
relationship between the ROC manifold and the typical ROC curve
when only two classes are of interest and between previous
surfaces focusing only on correct classifications. We assume
underlying distributions are not known and, therefore, likelihood
decision criterion is unavailable. We also assume ROCs are
invariant with respect to the prevalences of the various classes
to be distinguished among, so that the class-conditional prob-
abilities do not change if, or when, prior probabilities change.
Section 4 details performance functionals useful for competing
two or more classification systems and, specifically, focuses on
Bayes cost as a decision criterion. In Section 5, we demonstrate
the ROC manifold as useful in finding points of optimal
performance defined in terms of the associated misclassification
costs and prior probabilities. Using a simple classification system,
Section 5 also gives examples that demonstrate the calculation of
the ROC manifold and associated optimal points for codimension
1 and higher systems as well as illustrate some properties of this
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manifold. Further, we demonstrate how the CC manifold fails to
identify optimal points when prior probabilities and costs differ,
yet the ROC manifold can identify such points. In Section 6, we
apply the ROC manifold to real data trying to distinguish between
levels of disease progression for chronic allograft nephropathy.
Finally, we close with conclusions in Section 6.
2. Classification system theory

The ROC manifold is a mathematical construction comprised a
collection of characteristics of a classification system. In this
section, we describe the general theory of a classification system
and its corresponding collection of characteristics. These char-
acteristics will be used to formally define the ROC manifold in
Section 3.

We assume an n-label set, L¼ f‘1,‘2, . . . ,‘ng where ‘k is a
generic label and nZ3. For a 3-label set L, examples include
numerical labels such as {0,1,�1}, nominal (without ordering)
categorical labels such as {trains, planes, automobiles} or ordinal
(with ordering) categorical labels {normal weight, overweight,
obese}. In this paper, we do not assume any ordering on these
labels, though such an ordering may exist.

Let E be a population set of outcomes. We assume there is a
truth mapping T : E-L such that T partitions the population set
with fE1,E2, . . . ,Eng where

Ek ¼ feAE : TðeÞ ¼ ‘kg

for each k¼1,2,y,n such that

E1 [ E2 [ � � � [ En ¼ E and Ei \ Ej ¼ | for every ia j:

Thus,

TðeÞ ¼ ‘k if and only if eAEk:

Let E be the s-algebra of subsets of E generated by T, then ðE,EÞ is
a measurable space. Let Pr be a probability measure defined on E,
then ðE,E,PrÞ is a probability space.

The truth mapping is the gold standard. In practice, we create a
classification system to approximate T. Specifically, we might
create a sensor s to observe the outcome eAE, that produces a raw
datum dAD, where D is the (sensor) data set, such that s : E-D.
Examples of sensors could be an X-ray device, MRI device,
infrared camera, optical camera, camcorder, thermometer, scales,
or pressure transducer. Examples of a datum include a chest
X-ray, a case of mammogram images, satellite photos, and video.
The data set may be too difficult or high dimensional to quantify
the attributes for classification, so a feature map p represents a
processor (or feature extractor) that takes a raw datum from D
and produces a refined datum called a feature such that p : D-F ,
where F is a feature set. These features are what one
(a statistician) commonly refers to as variables, or, as in the
chronic allograft nephropathy data presented later, diagnostic
markers. Examples of processors that comprise the feature
mapping include signal/image processors, signal/image trans-
forms, filters, numerical algorithms, assay kits, and time–
frequency transforms. When a nurse computes the body-mass
index (BMI) of a patient from his height and weight (the raw
data), then the nurse is the processor producing the feature (the
BMI value). Next we create a classifier c to assign a label ‘AL to
each feature xAF such that c : F-L. We assume the composition
of these mappings, c3p3s, is defined and, hence, yields a new
mapping A¼ c3p3s. Thus, A : E-L is defined on some subset of E
(possibly on all of E) and we call the mapping A a classification

system. The graphical representation of these mappings is given in
the following diagram:

E�!s D�!
p
F�!c L:

Suppose there is a parameter yAY, a parameter set, that can
be varied so that for each yAY the mapping cy : F-L is another
classifier. Note that each parameter refers to a deterministic
quantity representing different settings for the classification
system. Then the compositions Ay ¼ cy3p3s yields a collection of
systems we denote by A¼ fAy : yAYg and call a family of

classification systems or simply a classification system family

(CSF). There are other possible ways to construct a CSF.
For example, suppose the processor has multiple parameters
that can be varied, say px for xAX, then the CSF is
A¼ fAx : xAXg ¼ fc3px3s : xAXg. If one can vary the classifier
parameters and the processor parameters then another example
of a CSF is

A¼ fAy,x : yAY,xAXg ¼ fcy3px3s : yAY,xAXg:

In this example, the processor parameter, x, may represent
different settings such as different feature extractors or neural
network weights and the classifier parameter, y, may represent
different model settings or threshold values of interest associated
with a statistical model.

Since L is a finite set and letting L denote the power set of L,
then ðL,LÞ is clearly a measurable space. We assume that Ay is a
ðE�LÞ measurable mapping for each yAY [16], and, thus, a
random mapping (in fact, a stochastic process or random field). Of
course, this will be true based upon properties of the individual
mappings cy, p, and s. Therefore, appealing to the probability
measure space ðE,E,PrÞ, we can quantify how well the classifica-
tion system Ay approximates T by constructing the ROC manifold.
In order to discuss the resulting probability estimates, we recall
the definition of a pre-image [16].

Definition 1 (Pre-image). Let X and Y be nonempty sets. Let the
mapping f take an element from X and map it into Y, that is,
f : X-Y. Given a subset Y �Y we define its pre-image with
respect to f to be a subset in X by

fyðYÞ ¼ fxAX : fðxÞAYg:

Thus, the pre-image of a subset Y in Y is the collection of all the
elements in X that are mapped by f into Y.

The pre-image is also called the inverse image, although the
mapping f need not be invertible. Because this construction
creates a natural mapping from subsets of Y into subsets of X , the
natural symbol, y (the becuadro), will be used to avoid confusion
with the inverse function. Therefore, we write fyðYÞ ¼ X and
observe that fy maps a set to a set whereas f maps a point to a
point.

Given a classification system A we write the pre-image of a
specific label, ‘AL¼ f‘1, . . . ,‘ng by defining the singleton set
L‘ ¼ f‘g, then

Ay
ðL‘Þ ¼ feAE : AðeÞAL‘g ¼ feAE : AðeÞ ¼ ‘g:

The use of pre-images allows us to take a label and express it in
terms of the underlying events.
3. The ROC manifold

3.1. The receiver operating characteristic of a classification system

Assume the classification system A : E-L is designed to map
the outcomes in the event set Ei to ‘i for each i¼1,y,n. Define the
probability of correct classification for a given label ‘i of the
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classification system A by the conditional probability

PijiðAÞ � PrfAðeÞ ¼ ‘ijeAEig ¼
PrðAy

ðf‘igÞ \ EiÞ

PrðEiÞ
,

when PrðEiÞa0, and 0 otherwise. We use the notation PijiðAÞ to
convene the fact that Piji is a function with the system A as its
input. The probability that system A misclassifies a set of
outcomes as label ‘i when the outcomes are truly classified as
label ‘j is

PijjðAÞ ¼ PrfAðeÞ ¼ ‘ijeAEjg ¼
PrðAy

ðf‘igÞ \ EjÞ

PrðEjÞ
, ð1Þ

when PrðEjÞa0, and 0 otherwise. There are exactly n conjunctive
equations of the system,

Xn

i ¼ 1

PijjðAÞ ¼ 1 for each j¼ 1,2, . . . ,n ð2Þ

[17,18] . The iji terms are correct classifications, the other n�1
terms are the misclassifications of system A and, consequently,
from Eqs. (2) we have

Xn

i ¼ 1,ia j

PijjðAÞ ¼ 1�PjjjðAÞ for each j¼ 1,2, . . . ,n: ð3Þ

For system A define the n�n matrix PðAÞ to be the matrix
whose i,j entry is the value PijjðAÞ for every i,jAf1, . . . ,ng, that is,

PðAÞ ¼

P1j1ðAÞ P1j2ðAÞ P1j3ðAÞ � � � P1jnðAÞ

P2j1ðAÞ P2j2ðAÞ P2j3ðAÞ � � � P2jnðAÞ

P3j1ðAÞ P3j2ðAÞ P3j3ðAÞ P3jnðAÞ

^ ^ & ^

Pnj1ðAÞ Pnj2ðAÞ Pnj3ðAÞ � � � PnjnðAÞ

2
6666664

3
7777775
: ð4Þ

This matrix describes the classification information of system A.
Notice that the diagonal entries of matrix PðAÞ are probabilities of
correct classification and the off-diagonal entries are probabilities
of misclassification. Given the off-diagonal entries, we can
compute the diagonal entries by Eq. (3). Therefore, we can
represent the probabilities associated with classification by using
only the misclassifications of the system, thus losing no
classification information. Define RðAÞ as the n�n matrix in
which the probabilities of correct classifications are removed,

RðAÞ ¼

0 P1j2ðAÞ P1j3ðAÞ � � � P1jnðAÞ

P2j1ðAÞ 0 P2j3ðAÞ � � � P2jnðAÞ

P3j1ðAÞ P3j2ðAÞ 0 P3jnðAÞ

^ ^ & ^

Pnj1ðAÞ Pnj2ðAÞ Pnj3ðAÞ � � � 0

2
6666664

3
7777775
: ð5Þ

The matrix RðAÞ can be derived from PðAÞ by

RðAÞ ¼ J� PðAÞ,

where � denotes the Hadamard product and matrix J is defined
as

J¼

0 1 1 � � � 1

1 0 1 � � � 1

1 1 0 1

^ ^ & ^

1 1 1 � � � 0

2
6666664

3
7777775
:

The matrix RðAÞ is the ROC of the system A and is defined as
follows.

Definition 2 (Receiver operating characteristic, ROC). Let A be a
classification system. Let RðAÞ be a matrix of associated condi-
tional probabilities whose diagonal entries are zero. The matrix
RðAÞ is the receiver operating characteristic (ROC) of classification
system A.

Some comments on this definition are given. From Eq. (2) we
observe

Xn

i ¼ 1,iak

PijjðAÞ ¼ 1�PkjjðAÞ for each j¼ 1,2, . . . ,n,

where k may or may not equal j and can be different for each j.
When k¼ j, a probability of correct classification is removed from
the left side. When ka j a probability of misclassification is
removed. Regardless of the value of k, no classification informa-
tion of system A is lost. The most common application for ka j is
the two-class case in which the ROC is

RðAÞ ¼
P1j1ðAÞ P1j2ðAÞ

0 0

� �
:

This ROC is equivalent to the standard false positive-true positive
pair of probabilities, i.e., ðP1j2ðAÞ,P1j1ðAÞÞ. The ROC associated with
k¼ j yields

RðAÞ ¼
0 P1j2ðAÞ

P2j1ðAÞ 0

" #

which produces the probabilities for the two types of misclassi-
fications for the system, i.e., the ða,bÞ errors. Similarly, the CC
manifold [1] is given by

RðAÞ ¼

P1j1ðAÞ 0 � � � 0

0 P2j2ðAÞ ^

^ & 0

0 0 0 PnjnðAÞ

2
66664

3
77775: ð6Þ

These examples demonstrate that there are other representa-
tions of the ROC, however, we will choose to work with the ROC,
RðAÞ given in Eq. (5). The use of this standard RðAÞ will produce
what we will call the ROC manifold and yields an intuitive
geometric approach when introducing functionals on this ROC
manifold.

We note that PcðAÞ � I� PðAÞ yields the matrix of probabilities
of correct classifications. While both matrices Pc(A) and R(A) have
full rank, matrix R(A) contains n2

�2n more entries (and therefore
more information) than matrix Pc(A). The matrix Pc(A) is the
foundation for the correct classification surfaces described
previously in [1–7,10].

3.2. Construction of the ROC manifold of a classification system

family

Let Rn denote the set of n�n matrices X whose entries lie in
[0,1] with zero diagonal entries, that is,

Rn ¼ fX¼ ðXi,jÞ : Xi,jA ½0,1� for every i,jAf1,2, . . . ,ng and

Xi,i ¼ 0 for all i¼ 1,2, . . . ,ng

then RðAÞARn for every classification system A. The set Rn is the
set of ROCs.

Definition 3 (Error set). Given a classification system family A,
define its error set EA to be the set of ROCs

EA � fRðAÞARn : AAAg:

Clearly EA �Rn since the diagonal entries are always zero. This
error set could be as large as the family A, however, we seek a
subset of EA such that its members lie ‘‘closest’’ to the origin as
we define next.
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Definition 4 (ROC function). Given a classification system family
A, define its ROC function UA to be, for every XARn

UAðXÞ ¼
smallest aZ0 such that aXAEA
1 if aX=2EA for all aZ0

(

¼minfaA ½0,1Þ : aXAEAg:

Therefore, UA : Rn-½0,1�.

This definition is motivated by the Minkowski functional
[19,20]. An equivalent definition of UA, useful for computations, is
given in the following theorem using the alignment concept [19].
We say two matrices X and Y are aligned if

/X,YS¼ JXJJYJ,

where / � , �S is the inner product that generates the Frobenius
norm J � J. Basically, X and Y ‘‘point’’ in the same direction, but
may not have the same ‘‘length’’.

Theorem 1. Given a classification system family A, for every

0aXARn define the set of ROCs aligned with X to be

AAðXÞ � fYAEA : /Y,XS¼ JYJJXJg:

Then, the ROC function UA is

UAðXÞ ¼
1

JXJ
min

YAAAðXÞ
JYJ if AAðXÞa|,

1 if AAðXÞ ¼ |:

8><
>:

Proof. Let 0aXARn. For every a40 the matrix Y¼ aX is aligned
with X, that is,

/Y,XS¼/aX,XS¼ aJXJ2
¼ aJXJJXJ¼ JaXJJXJ¼ JYJJXJ:

Since,

JYJ¼ JaXJ¼ aJXJ

then

a¼ JYJ

JXJ
:

Therefore,

fa40 : aXAEAg ¼
JYJ

JXJ
: YAEA and Y is aligned with X

� �

¼
1

JXJ
fJYJ : YAEA and Y is aligned with Xg

¼
1

JXJ
fJYJ : YAAAðXÞg:

Hence,

UAðXÞ ¼minfa40 : aXAEAg

¼
1

JXJ
min

YAAAðXÞ
JYJ:

If the set AAðXÞ is empty then the minimum of AAðXÞ is defined to
be þ1. &

Here we have a calculation which takes the minimum
‘‘Euclidean’’ distance (i.e., the Frobenius matrix norm) of all
matrices aligned in the same direction as X. The inner product
/X,YS is computed by traceðXTYÞ.

Definition 5 (ROC manifold). Given a classification system family
A define its ROC manifold MA to be

MA ¼ fXARn : UAðXÞ ¼ 1g:

The intent is to express the ROC manifold in terms of those
minimal errors so that, by property (3), the correct classifications
are maximized. Therefore, observe that the systems AAA

such that UAðRðAÞÞ ¼ 1 are the systems of interest and those
corresponding matrices R(A) form the ROC manifold. The defini-
tion of a manifold is the following. ‘‘A topological m-manifold is a
Hausdorff topological space for which each point has a neighbor-
hood homeomorphic to an open subset of Rm (typically the unit
ball)’’ [21].
4. Performance of a classification system

How does one quantify the approximation of a classification
system A to the truth system T, especially when we do not know
T? We construct a summary functional r to quantify the
approximation to T. Thus, we require rðAÞ to be a non-negative
real number, and for definiteness, assume a smaller value of rðAÞ
implies a better approximation. So, if rðAÞorðBÞ then system A
approximates T better than B. The value rðAÞ is called the
performance of A, and the functional r is called a system

performance functional. A system performance functional r
induces a family performance functional R on a classification
system family A by defining

RðAÞ ¼min
AAA

rðAÞ

and, in the case A¼ fAy : yAYg, then

RðAÞ ¼min
AAA

rðAÞ ¼min
yAY

rðAyÞ:

A performance functional will necessarily involve the mis-
classifications of the system. Given ROC R(A), then for any
function j : Rn-Rþ ¼ ½0,1Þ, a system performance functional
r is created by the composition

rðAÞ ¼jðRðAÞÞ

and, consequently,

RðAÞ ¼min
AAA

rðAÞ ¼min
AAA

jðRðAÞÞ ¼ min
XAMA

jðXÞ:

4.1. Comparing classification system families

The family performance functional can be used to compare
different CSFs to determine which classifies better (approximates
T better). Thus, given two CSFs A and B, we wish to determine
which CSF is ‘‘better’’ with respect to the family performance
functional R. If

RðAÞrRðBÞ

then we say A is better than or equal to B with respect to R.
(Recall a smaller value of RðAÞ means better performance.) This

induces a partial ordering, $
r

, on the collection of CSFs, and hence,
we write

Ak

R
B:

Now we develop a specific functional, Bayes cost. We choose
this functional because it will allow us to compare CSFs regardless
of our prior probabilities or costs of misclassifications; that is, we
can determine the CSF that minimizes errors subject to the
underlying prior probabilities and misclassification costs.
4.2. Expected cost

Let pj � PrðEjÞ, the prior probability of class j, and cijjZ0, the
cost of classifying outcome eAEj as label ‘i. This is a correct
classification cost when i¼ j and a misclassification cost when
ia j. Now we can define the system performance functional
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(expected cost) by

rðAyÞ ¼jðRðAyÞÞ ¼
Xn

j ¼ 1

Xn

i ¼ 1,ia j

cijjpjPijjðAyÞ: ð7Þ

Now consider a couple of options with this equation. First option
could be allowing cijj to equal 0 whenever ia j. This would allow a
functional over the CC manifold. Indeed, this expected cost
performance functional is what we would like to be maximized.
On the other hand, we could choose instead for cijj to equal 0
whenever i¼ j, giving risk, an expected cost performance func-
tional we would like to minimize. In this second case

rðAyÞ ¼jðRðAyÞÞ ¼
Xn

j ¼ 1

Xn

i ¼ j

cijjpjPijjðAyÞ ¼/G,RðAyÞS, ð8Þ

where the matrix G¼ C � diagðpÞ for the cost matrix C and the
diagonal matrix, diag(p) of prior probabilities. Thus, the family
performance functional

RðAÞ ¼min
yAY

/G,RðAyÞS

is the Bayes cost of the CSF A. It is reasonable to use this
functional when good estimates of the priors and costs are
available. Note that when each cijj is equal to 0 for i¼ j, the inner
product in Eq. (8) is equivalent to /G,PðAyÞS and thus can be
minimized using this product as well.
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Fig. 1. The plots of the one-dimensional density functions f1 (solid ), f2 (dashes),

and f3 (dots).
5. Examples

This section is divided into three parts with which to illustrate
properties of the ROC manifold. First, in Section 5.1, we show
generally how to compute the ROC manifold for a specific
CSF and, using Bayes cost, how to compare between candidate
classification systems. To aid computations, we assume distribu-
tional information is known, though it need not be. Within
this part, we offer example 1 and example 2 which compete
systems based on their optimal parameter settings using equal
(example 1) and unequal (example 2) costs and prior probabil-
ities. Section 5.2 demonstrates the dual problem through the
computation of the CC manifold from the distributions and
classifiers suggested in Section 5.1. The CC manifold is computed
and examples 1 (equal costs and priors) and 2 (unequal costs
and priors) are again given. Now, identical solutions are shown
between the CC manifold in Example 1 of Section 5.2 and the ROC
manifold in Example 1 of Section 5.1. However, we show
mathematically the inability of finding a solution from the CC
manifold of Example 2 in this Section 5.2. Finally, in Section 5.3,
we demonstrate computation of the ROC manifold when the
codimension is greater than 1. To aid computation, we again
assume distributional information is known and suggest a
classifier different than that presented in previous examples.
We conclude this example by computing the optimal point via
Bayes cost and suggest the optimal operating parameters for that
specific classifier.

5.1. Computation and classification system comparisons using the

ROC manifold

To illustrate the ROC manifold of a CSF, different performances,
and different comparison of CSFs, we pose an example of a 3-label
classification problem. Let the label set L¼ f‘1,‘2,‘3g have generic
labels where the indices 1, 2 and 3 do not necessarily imply any
ordering. Assume that the sensor s and processor p mapped the
disjoint events E1,E2,E3 into the feature set F ¼R and produced
sets that were not disjoint but normally distributed with density
distributions given by
Label
 Center
 Variance
 Density
‘1
 �1
 0.5

f1ðxÞ ¼

1

0:5
ffiffiffiffi
p
p exp �

xþ1

0:5

� �2
 !
‘2
 0
 1

f2ðxÞ ¼

1ffiffiffiffi
p
p expð�x2Þ
‘3
 1
 2

f3ðxÞ ¼

1

2
ffiffiffiffi
p
p exp �

x�1

2

� �2
 !
Here, xAR is a feature. These density distributions are graphed in
Fig. 1.

Define the classifier

ay1 ,y2
ðxÞ ¼

‘1 for �1oxoy1,

‘2 for y1rxoy2,

‘3 for y2rxo1

8><
>:

for the two parameters y1,y2A ½�5,5� such that y1ry2. These
parameters will act as threshold cut points for the classifier ay1 ,y2

.
For brevity of notation we write

Y¼ ½�5,5�2þ � fh¼ ðy1,y2ÞA ½�5,5� � ½�5,5� : y1ry2g:

The composition ay1 ,y2
3p3s yields a classification system

Ah ¼Ay1 ,y2
� ay1 ,y2

3p3s for each ðy1,y2ÞA ½�5,5�2þ . The resulting
CSF is

A¼ fAy1 ,y2
: ðy1,y2ÞA ½�5,5�2þ g:

For y1ry2 the conditional probabilities are computed by

P1jjðAhÞ ¼

Z y1

�1

fjðxÞdx,

P2jjðAhÞ ¼

Z y2

y1

fjðxÞdx,

P3jjðAhÞ ¼

Z 1
y2

fjðxÞdx
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Fig. 2. The plot of the three density functions and the optimal cut points

ðy	1 ,y	2Þ ¼ ð�0:511,0:837Þ as dashed vertical lines for Example 1 (equal costs and

equal prior probabilities).
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for j¼1,2,3, and the associated matrix of conditional probabilities
from Eq. (4) is

PðAhÞ ¼
1

2

2�erfcð2y1þ2Þ erfðy1Þþ1 erf
y1�1

2

� �
þ1

erfcð2y1þ2Þ�erfcð2y2þ2Þ erfðy2Þ�erfðy1Þ erf
	y2�1

2



�erf

y1�1

2

� �

erfcð2y2þ2Þ 1�erfðy2Þ 1�erf
y2�1

2

� �

2
666666664

3
777777775
:

Since there are two free parameters y1, y2, the ROC manifold is a
two-dimensional manifold lying in the six-dimensional set R3

(observe that R3 is isomorphic to ½0,1�6). Whereas this manifold
cannot be visually graphed, the performance functionals can still
be applied.

Example 1. Consider the Bayes cost performance functional with
equal prior probabilities pj ¼ PrðEjÞ ¼

1
3 and equal costs cijj ¼ 1 for

all ia j, then the matrix G given in Eq. (8) is

G¼

0 c1j2 c1j3

c2j1 0 c2j3

c3j1 c3j2 0

2
64

3
75

p1 0 0

0 p2 0

0 0 p3

2
64

3
75¼

0 1 1

1 0 1

1 1 0

2
64

3
75

1

3
0 0

0
1

3
0

0 0
1

3

2
6666664

3
7777775

¼

0
1

3

1

3
1

3
0

1

3
1

3

1

3
0

2
6666664

3
7777775

ð9Þ

and the inner product yields

/G,RðAhÞS

¼
1

2
trace

0
1

3

1

3
1

3
0

1

3
1

3

1

3
0

2
6666664

3
7777775

T

�

0 erfðy1Þþ1 erf
y1�1

2

� �
þ1

erfcð2y1þ2Þ�erfcð2y2þ2Þ 0 erf
y2�1

2

� �
�erf

y1�1

2

� �
erfcð2y2þ2Þ 1�erfðy2Þ 0

2
666664

3
777775

¼
1

6
erfcð2y1þ2Þþerfðy1Þ�erfðy2Þþerf

y2�1

2

� �
þ3

� �
:

Therefore,

RðAÞ ¼min
hAY

/G,RðAyÞS

¼
1

6
min
hAY

erfcð2y1þ2Þþerfðy1Þ�erfðy2Þþerf
y2�1

2

� �
þ3

� �
¼ 0:297

occurring at ðy	1,y	2Þ ¼ ð�0:511,0:837Þ. These optimal cut points are
plotted as dashed vertical lines in Fig. 2.

Example 2. If we choose a Bayes performance functional with
differing prior probabilities and costs to be

G¼

0 c1j2 c1j3

c2j1 0 c2j3

c3j1 c3j2 0

2
64

3
75

p1 0 0

0 p2 0

0 0 p3

2
64

3
75
¼

0 1 3

2 0 2

1 3 0

2
64

3
75

1

2
0 0

0
1

3
0

0 0
1

6

2
6666664

3
7777775
¼

0
1

3

1

2

1 0
1

3
1

2
1 0

2
6666664

3
7777775

ð10Þ

then the inner product is

/G,RðAyÞS

¼
1

2
trace

0
1

3

1

2

1 0
1

3
1

2
1 0

2
6666664

3
7777775

T

�

0 erfðy1Þþ1 erf
y1�1

2

� �
þ1

erfcð2y1þ2Þ�erfcð2y2þ2Þ 0 erf
y2�1

2

� �
�erf

y1�1

2

� �
erfcð2y2þ2Þ 1�erfðy2Þ 0

2
666664

3
777775

¼
1

12
erf

y1�1

2

� �
þ2erfðy1Þþ6erfcð2y1þ2Þ

�

þ2erf
y2�1

2

� �
�6erfðy2Þ�3erfcð2y2þ2Þþ11

�

and the Bayes cost is

RðAÞ ¼min
hAY

/G,RðAyÞS

¼
1

12
min
hAY

erf
y1�1

2

� �
þ2erfðy1Þþ6erfcð2y1þ2Þ

�

þ2erf
y2�1

2

� �
�6erfðy2Þ�3erfcð2y2þ2Þþ11

�
¼ 0:576:

The optimal parameters are ðy	1,y	2Þ ¼ ð�0:746,�0:125Þ with mini-
mum value of 0.576. These cut points are plotted as dashed
vertical lines in Fig. 3. With unequal values, the optimal cut points
do not lie in a visually intuitive location as they do in Fig. 2. Thus,
using visual inspection to deduce optimal points for lower
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Fig. 3. The plot of the three density functions and the optimal cut points

ðy	1 ,y	2Þ ¼ ð�0:746,�0:125Þ as dashed vertical lines for Example 2 (unequal costs

and unequal prior probabilities).

C.M. Schubert et al. / Pattern Recognition 44 (2011) 350–362 357
dimensional (graphable) systems, without first conducting
supporting computations, will not necessarily produce optimal
cut points any time that the prior probabilities or the costs are
unequal.

5.2. Computation and comparisons with the correct classification

(CC) method

Now we compare with the CC method [1] for determining the
optimal cut points. This method maximizes the probabilities of
correct classifications over the CC manifold. Specifically, the
functional for the correct classification is

RccðAÞ ¼max
hAY

Xn

i ¼ 1

dijipiPijiðAhÞ,

where the costs dijiZ0 for i¼1,2,y,n represent the costs (or
weights) for the ith correct classification. This expression is
equivalent to that of expected cost in Eq. (7) of Section 4.2 in
which cijj equals 0 whenever ia j and produces a functional
defined on the CC manifold. Indeed, this expected cost perfor-
mance functional is what we would like to be maximized. Since

X3

i ¼ 1

PijjðAyÞ ¼ 1

then by Eq. (3) we have

P1j1ðAyÞ ¼ 1�P2j1ðAyÞ�P3j1ðAyÞ,

P2j2ðAyÞ ¼ 1�P1j2ðAyÞ�P3j2ðAyÞ,

P3j3ðAyÞ ¼ 1�P1j3ðAyÞ�P2j3ðAyÞ:

Observe that

X3

i ¼ 1

dijipiPijiðAyÞ

¼ d1j1p1P1j1ðAyÞþd2j2p2P2j2ðAyÞþd3j3p3P3j3ðAyÞ

¼ d1j1p1½1�P2j1ðAyÞ�P3j1ðAyÞ�þd2j2p2½1�P1j2ðAyÞ�P3j2ðAyÞ�
þd3j3p3½1�P1j3ðAyÞ�P2j3ðAhÞ�

¼
X3

i ¼ 1

dijipi�d1j1p1½P2j1ðAyÞþP3j1ðAyÞ��d2j2p2½P1j2ðAyÞþP3j2ðAyÞ�

�d3j3p3½P1j3ðAyÞþP2j3ðAyÞ�

¼
X3

i ¼ 1

dijipi�trace

0 d2j2p2 d3j3p3

d1j1p1 0 d3j3p3

d1j1p1 d2j2p2 0

2
64

3
75
T

�

0 P1j2ðAyÞ P1j3ðAyÞ

P2j1ðAyÞ 0 P2j3ðAyÞ

P3j1ðAyÞ P3j2ðAyÞ 0

2
64

3
75

¼
X3

i ¼ 1

dijipi�traceGTRðAyÞ:

Thus, maximizing over Y yields

RccðAÞ ¼max
hAY

Xn

i ¼ 1

dijipiPijiðAyÞ

¼max
hAY

X3

i ¼ 1

dijipi�traceGTRðAyÞ

 !

¼
X3

i ¼ 1

dijipi�min
hAY

traceGTRðAyÞ:

The matrix G is

G¼

0 d2j2p2 d3j3p3

d1j1p1 0 d3j3p3

d1j1p1 d2j2p2 0

2
64

3
75¼

0 d2j2 d3j3

d1j1 0 d3j3

d1j1 d2j2 0

2
64

3
75

p1 0 0

0 p2 0

0 0 p3

2
64

3
75:

For this special form of G we get

RccðAÞ ¼
X3

i ¼ 1

dijipi�RðAÞ: ð11Þ

Example 1. Assume equal prior probabilities pi ¼ PrðEiÞ ¼
1
3 and

equal costs diji ¼ 1 for all i¼1,2,3. Then

RccðAÞ ¼max
hAY

X3

i ¼ 1

dijipiPijiðAyÞ

¼max
hAY

1

3
½P1j1ðAyÞþP2j2ðAyÞþP3j3ðAyÞ�

¼max
hAY

1

6
3�erfcð2y1þ2Þþerfðy2Þ�erfðy1Þ�erf

y2�1

2

� �� �
¼ 0:703

occurring for ðy	1,y	2Þ ¼ ð�0:511,0:837Þ which are the same cut
points determined from the ROC manifold using equal prior
probabilities and costs. Thus, the Bayes cost functional R and the
CC functional Rcc identify the same cut points for equal priors and
costs. Observe the G matrix given in Eq. (9) is of the form

G¼
0 b c

a 0 c

a b 0

2
64

3
75

p1 0 0

0 p2 0

0 0 p3

2
64

3
75: ð12Þ

Hence,

RccðAÞ ¼ 1�RðAÞ: ð13Þ

Example 2. Assuming different prior probabilities and different
misclassification costs yield the Bayes cost performance func-
tional found in Example 2 of Section 5.1 for the ROC manifold.
The optimal parameters are ðy	1,y	2Þ ¼ ð�0:746,�0:125Þ with
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performance value of RðAÞ ¼ 0:576. However, since the G matrix,
given in Eq. (10), is not of the special form as in Eq. (12) then
Eq. (11) for the CC method does not hold true. To prove this point,
we seek correct classification costs dijiZ0 that yields the same
optimal parameters, ðy	1,y	2Þ ¼ ð�0:746,�0:125Þ. Let d1j1,d2j2 and
d3j3 be unspecified. Then

RccðAÞ

¼max
hAY

X3

i ¼ 1

dijipiPijiðAyÞ

¼max
hAY

1

2
d1j1P1j1ðAyÞþ

1

3
d2j2P2j2ðAyÞþ

1

6
d3j3P3j3ðAyÞ

� �

¼max
hAY

1

2
d1j1

2�erfcð2y1þ2Þ

2

� �
þ

1

3
d2j2

erfðy2Þ�erfðy1Þ

2

� ��

þ
1

6
d3j3

1�erf
y2�1

2

� �
2

2
664

3
775
1
CCA:
0.05

z

0.06

0.07

0.08

0.09

0.10

0.11

0.12

Fig. 4. The plots of the two-dimensional density functions: f1 is Logistic, f2 is

Gaussian, and f3 is Cauchy.

Label Centers (x,y) Variance (x,y) Density

‘1 (2,3) ð14 ,1Þ
f1ðx,yÞ ¼

exp � x�2
0:5

� �� �
exp �

y�3
1

	 
	 

ð0:5Þð1Þ 1þexp � x�2

0:5

� �� �
 �2

1þexp �
y�3

1

	 
	 
h i2

‘2 (�1,0) (1,9)
f2ðx,yÞ ¼ 1

2pð1Þð3Þexp � xþ1
1

� �2
�

y�0
3

	 
2
� �

‘3 (2,�2) (1,1)
f3ðx,yÞ ¼ 1

p2ð1Þð1Þ
1þ x�2

1

� �2
h i

1þ yþ2
1

	 
2
� �
We seek values for d1j1,d2j2 and d3j3 such that

1

2
d1j1

2�erfcð2y1þ2Þ

2

� �
þ

1

3
d2j2

erfðy2Þ�erfðy1Þ

2

� �

þ
1

6
d3j3

1�erf
y2�1

2

� �
2

2
664

3
775

þ
1

12
erf

y1�1

2

� �
þ2erfðy1Þþ6erfcð2y1þ2Þ

�

þ2erf
y2�1

2

� �
�6erfðy2Þ�3erfcð2y2þ2Þþ11

�
¼ 1:

Multiplying by 12 and subtracting 12 from both sides yields

ð6d1j1þ2d3j3�1Þþerf
1

2
y1�

1

2

� �
þð2�2d2j2Þerfðy1Þ

þð6�3d1j1Þerfcð2y1þ2Þþð2�d3j3Þerf
1

2
y2�

1

2

� �
�3erfcð2y2þ2Þþð2d2j2�6Þerfðy2Þ

¼ 0:

Since the error function, erf, the complemented error function,
erfc, and the constant one function, 1, are linearly independent,
we see that there are no values for d1j1,d2j2 and d3j3 for this
equation to hold true. Therefore, there is no CC functional that will
yield the same results as the Bayes performance functional for
varying priors and misclassification costs. An optimal point using
the CC functional cannot be found.

Examples 1 and 2 demonstrate that the Bayes cost perfor-
mance functionals are more general than the CC functionals. This
hinges on the use of the misclassifications versus the correct
classifications, and ultimately, upon the ROC manifold. In special
cases, the CC method and Bayes cost applied to the ROC manifold
will yield the same result as illustrated in our first example with
equal priors and costs. However, there are other cases for which
the CC method cannot always produce an answer, yet the ROC
manifold can, i.e., when priors and costs differ.
5.3. The ROC manifold with higher codimension

We illustrate a ROC manifold of a CSF that is not codimension 1
to the ROC space. We pose an example of a 3-label classification
problem for simplicity. Let the label set L¼ f‘1,‘2,‘3g have generic
labels where the indices 1, 2 and 3 do not necessarily imply any
ordering. Assume that the sensor s and processor p mapped the
disjoint events E1,E2,E3 into the feature set F ¼R2 and produced
sets that were not disjoint but distributed with the following mix
of distributions:
The density distributions are graphed in Fig. 4. Define the
classifier

ay1 ,y2 ,y3
ðx,yÞ ¼

‘1 if y1rx, y4y2þy3x,

‘2 if xoy1, yAR,

‘3 if y1rx, yry2þy3x:

8><
>:

This classifier creates a vertical plane that shifts horizontally with
y1. It contains a ray that begins at ðy1,y2Þ with slope y3. An
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Fig. 5. The classifier ay1 ,y2 ,y3
. The parameter y3 is the slope of the ray that begins at

the point ðy1 ,y2Þ. The vertical line is located at x¼ y1.

Fig. 6. The classifier ay1 ,y2 ,y3
with the optimal choice occurring at

ðy	1 ,y	2 ,y	3Þ ¼ ð0:48,�0:7,0:15Þ. The contours of the distributions of the Logistic

(solid), Gaussian (dash), and Cauchy (dots) occur at values 0.01, 0.05 and 0.1.
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instantiation of this classifier is graphed in Fig. 5. Since the
classifier has three classes then the dimension of the ROC space is
3(3�1)¼6. Since the classifier has three independent parameters
it will produce a ROC manifold that has dimension 3, thus,
its codimension is 6�3¼3.

Let h¼ ðy1,y2,y3ÞAY� ½�10,10� � ½�10,10� �R, then define
the pre-image

ay
hð‘iÞ ¼ ay

y1 ,y2 ,y3
ð‘iÞ ¼ fðx,yÞAR2 : ay1 ,y2 ,y3

ðx,yÞ ¼ ‘ig

and generally, the conditional probability as

PijjðAhÞ ¼

Z
ay

h
ð‘iÞ

fjðx,yÞdy dx:

This generates the following six expressions for the misclassifica-
tion probabilities:

P1j2ðAhÞ ¼

Z 1
y1

Z 1
y2þy3x

f2ðx,yÞdy dx

¼

Z 1
y1

1

2
ffiffiffiffiffiffi
2p
p exp �

ðxþ1Þ2

2

 !
1�erf

y2þxy3

3
ffiffiffi
2
p

� �� �
dx,

P1j3ðAhÞ ¼

Z 1
y1

Z 1
y2þy3x

f3ðx,yÞdy dx

¼

Z 1
y1

1

p 1þ
x�2

1

� �2
 !

2
66664

3
77775

1

2
�

1

p
arctanðy2þy3xÞ

� �
dx,

P2j1ðAhÞ ¼

Z y1

�1

Z 1
�1

f1ðx,yÞdy dx¼
1

1þexp �
y1�2

0:5

� �� � ,

P2j3ðAhÞ ¼

Z y1

�1
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We consider the same Bayes performance functional as in
Example 2 given by Eq. (10):

G¼

0 c1j2 c1j3

c2j1 0 c2j3

c3j1 c3j2 0

2
64

3
75

p1 0 0

0 p2 0

0 0 p3

2
64

3
75¼

0 1 3

2 0 2

1 3 0

2
64

3
75

1

2
0 0

0
1

3
0

0 0
1

6

2
6666664

3
7777775

¼

0
1

3

1

2

1 0
1

3
1

2
1 0

2
6666664

3
7777775
:

Therefore, to find Bayes cost, we minimize /G,RðAhÞS over all
ðy1,y2,y3ÞAY, that is, minimize

/G,RðAhÞS¼ trace

0
1

3

1

2

1 0
1

3
1

2
1 0

2
6666664

3
7777775

T

0 P1j2ðAhÞ P1j3ðAhÞ

P2j1ðAhÞ 0 P2j3ðAhÞ

P3j1ðAhÞ P3j2ðAhÞ 0

2
64

3
75

¼
1

3
P1j2ðAhÞþ

1

2
P1j3ðAhÞþP2j1ðAhÞþ

1

3
P2j3ðAhÞ

þ
1

2
P3j1ðAhÞþP3j2ðAhÞ:
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The resulting Bayes cost is

RðAÞ ¼min
hAY

/G,RðAyÞS¼ 0:311

occurring at ðy	1,y	2,y	3Þ ¼ ð0:48,�0:7,0:15Þ. These optimal cut
points are plotted in Fig. 6.
6. Data application: comparing classification systems for
chronic allograft nephropathy

We apply the ROC manifold to data from medical diagnostics.
Chronic allograft nephropathy (CAN) is a condition associated
with late renal allograft loss. The ability to detect CAN non-
invasively through gene expression levels in a set of urine sample
markers would provide a more useful tool to assess renal injury as
current use of serum creatinine levels provide only a late sign of
renal injury. We investigate the detection of CAN in a subset of
patients evaluated at least six months post-kidney transplant
using several identified urine markers. In addition, we wish to
detect the progression of CAN as measured through those
individuals with proteinuria, a condition leading to CAN. There-
fore, three outcome classes were identified: normal kidney
function (NKF), NKF with proteinuria (NKF+), and CAN. Data
collection and sample characteristics for 64 individuals have been
described previously [22]. Truth data identified 32 individuals
with NKF, 18 with NKF+ and 14 with CAN. Potential urine
markers included in this analysis were angiotensingen (AGT) and
transforming growth factor-beta (TGF-b).

The classification system for the kidney transplant patients can
be described using the classification system theory in which the
centrifuge acts as our sensor s mapping the urine sample for an
individual into the raw data set D comprised mRNA preparations.
These preparations are not refined enough for our classification,
thus, the processor p is used to conduct real-time polymerase
chain reaction (PCR) analysis in order to map the data from D into
a feature set F comprised possible analytes, such as AGT and TGF-
b. These features are subjected to a classifier cy where yAY and
the parameter set Y represents the set of possible threshold
values. Finally, the classifier, cy, outputs a label from the label set
L¼ fNKF,NKFþ ,CANg. We denote the classification system using
AGT as system A, and the classification system using TGF-b as
system B.

To demonstrate the use of the ROC manifold to find optimal
thresholds for classification, a simple rectangular classifier was
chosen so that the resulting threshold values would represent
actual marker values to distinguish between the three groups.
First, AGT and TGF-b were considered separately. To distinguish
between the three labels for this simple case, the rectangular
classifier was applied separately to each biomarker, Y, such that if
Yry1 then we assigned the label NKF, if y1oYry2 we assigned
the label NKF+, and if Y4y2 we assigned the label CAN. This
process was repeated for every y1,y2AY¼ ð�1,1Þ with y1oy2.
Theoretically, y1 and y2 can range from ð�1,1Þ, however, no new
information regarding the classification of the observations is
obtained outside the range of Y, thus, y1 and y2 can be restricted
to the observable range of Y, in this case y1,y2A ½0,maxðYÞ�.
Table 1
Correct classification and misclassification rates by class for single markers.

Classification system Bayes cost Parameters Correct clas

y1 y2

A (AGT) 6.96 3.3 55.8 62.5 (n¼40

B (TGF-b) 6.32 1.2 2.5 54.7 (n¼35
Once we classified each observation for every y1,y2 pair, we
computed the resulting misclassifications (for three labels we had
3(3�1)¼6 errors). These six-tuples comprised the points making
up the ROC manifold. Applying our Bayes cost performance
functional to the ROC manifold, we found optimal threshold
values for AGT and TGF-b. These threshold values denote cut
points of the biomarker that minimize the misclassification error
in CAN progression (NKF, NKF+, CAN) according to our perfor-
mance functional. Using the resulting optimal threshold values,
we assessed the correct classification rate and the misclassifica-
tion rate for each label. Results for the Bayes cost functional,
assuming equal costs and priors among the three classes, are
given in Table 1.

The optimal threshold values for AGT identify the following for
classification: if AGTr3:3 then we assign the label NKF, if
3:3oAGTr55:8 we assign the label NKF+, and if AGT455:8
we assign the label CAN. For TGF-b, the optimal threshold values
identify the following classifications: if TGF-br1:2 then we
assign the label NKF, if 1:2oTGF�br2:5 then we assign the label
NKF+, and if TGF�b42:5 then we assign the label CAN.

Whether we use the ROC manifold or the CC manifold, we
will find the same optimal threshold values for these markers
under the assumption of equal costs and priors. Therefore, the
correct classification and misclassification rates at this optimal
threshold will be the same for the ROC manifold and the CC
manifold.

When we ignore the error classification and observe only the
correct classification rates (Table 1), we conclude that each
marker performs slightly better than chance in the overall
classification of these patients. Invoking our Bayes cost perfor-
mance functional as our measure of performance, we determine
that TGF-b is a better classifier than AGT because

RðBÞ ¼ 6:32oRðAÞ ¼ 6:96:

Recall that we assumed the costs for misclassification and
prior probabilities across the classes would be equal. Although
AGT classifies more than twice as many NKF patients correctly as
TGF-b, we observe that AGT misclassifies every patient with CAN
(100% misclassification) whereas TGF-b classifies all but three
CAN patients correctly (21.4% misclassification). The minimum
risk assuming equal errors and costs across classes then identifies
TGF-b as a better marker.

Next, we examined the use of both markers to separate
patients into these three classes in hopes of minimizing Bayes
cost further. Using an analogous classifier as that for the single
marker, but now extended to two markers, we use both AGT (x)
and TGF-b (y) to classify these patients. Thus, four parameters are
now identified, y1 and y2 for AGT and f1 and f2 for TGF-b. We
denote this classification system as system C, and propose the
following form for this classifier, cy1 ,y2 ,f1 ,f2

ðx,yÞ:

cy1 ,y2 ,f1 ,f2
ðx,yÞ ¼

NKF for �1oxo1, f2oyo1,

NKF for y1rxoy2, f1ryof2,

NKFþ for �1oxoy1, �1oyof2,

CAN for y1oxo1, �1oyof1,

CAN for y2oxo1, �1oyof2:

8>>>>>><
>>>>>>:
sification rate Misclassification rate within class

NKF (n¼32) NKF+ (n¼18) CAN (n¼14)

) 9.4 (n¼3) 38.9 (n¼7) 100.00 (n¼14)

) 59.4 (n¼19) 38.9 (n¼7) 21.4 (n¼3)



Table 2

ROC manifold classification rates (%) for combined thresholds of AGT and TGF-b.

Costs and priors Correct classification Misclassifications within class Parameters

NKF NKF+ CAN y1 y2 f1 f2

Equal costs 68.8 (n¼44) 9.4 (n¼3) 61.1 (n¼11) 43.0 (n¼6) 2.0 2.6 4.3 4.0

Unequal costs 57.8 (n¼37) 56.3 (n¼18) 50.0 (n¼9) 0.00 (n¼0) 1.2 1.3 9.5 10.5
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All combinations of these four parameters were examined over
their respective ranges. The six misclassification rates for every
combination of the four parameters were determined. Bayes cost
was computed first assuming equal costs and priors among the six
errors and then with differential costs of misclassification.

Results using both markers simultaneously are given in Table 2.
Under the assumption of equal costs and priors, AGT and TGF-b
together classify 68.8 (n¼44) of the patients correctly and
misclassify 20 patients. This is an improvement in the total
correct classification rate for equal costs and priors over the use of
any single marker (Table 1). Using AGT and TGF-b together,
misclassification rates improve within class differentially, with
fewer patients being misclassified as NKF as compared to TGF-b,
and fewer patients being misclassified as CAN as compared to AGT.
Most importantly, we compare the Bayes cost for this classification
system to the two prior systems in which single markers were
used. Bayes cost for classification system C is 6.04. Thus,

RðCÞoRðBÞoRðAÞ

and we conclude that the classification system using both AGF and
TGF-b is better than either proposed system using these markers
separately.

As a separate study, we may be concerned about high class-
specific misclassification rates, as we would rather not misclassify
patients who truly have CAN or who are progressing towards CAN
(i.e., those NKF+). This suggests a different cost structure for the
errors associated with these two classes over the common equal
cost assumption.

Therefore, we imposed a cost structure to the classes. We
assumed the cost for making the errors of classifying CAN as
either NKF or NKF+ was five times worse than NKF and that
making the errors of classifying NKF+ as CAN or NKF as two times
worse. Applying these costs to our six-tuples for each set of
parameters, another optimal set of threshold values was found
(Table 2). For this set, we observe fewer misclassifications of
NKF+ and no patient with CAN is misdiagnosed.

This weighted combined classifier resulted in the following
decision thresholds:

cy1 ,y2 ,f1 ,f2
ðx,yÞ ¼

NKF for �1oxo1, 10:5oyo1,

NKF for 1:2rxo1:3, 9:5ryo10:5,

NKFþ for �1oxo1:2, �1oyo10:5,

CAN for 1:2oxo1, �1oyo9:5,

CAN for 1:3oxo1, �1oyo10:5:

8>>>>>><
>>>>>>:

The classifiers used in this example do not necessarily identify
the optimal classifier for this problem, though they illustrate
several concepts related to quantifying the performance of
classification systems. Firstly, the computation of Bayes cost is
straightforward and provides a way to compete classification
systems when visual inspection methods do not exist due to the
dimensionality of the system. Further, Bayes cost offers a way to
compare the performance of the system for the user’s underlying
assumptions regarding costs and class-specific prevalence. Sec-
ondly, the use of the ROC manifold is a better method for finding
optimal parameters when using unequal costs of misclassification
and prior probabilities. The CC method cannot be used to find
such values that minimize these important misclassifications as it
cannot consider varying the costs and priors associated with each
of the possible n2

�n errors. Lastly, it is worth noting that the
types of classifiers compared in this example are useful in a
clinical setting as the optimal threshold parameters identified
relate directly to the observable levels of the biomarkers within
the patient. The research for using these biomarkers to classify
patients as to their CAN progression is not completed. Future
work for this application includes competing other classifiers,
possibly including decision tree and modelling methods, con-
sidering several other biomarkers along with AGT and TGF-b to
improve the classification of patients with these conditions, and
refining appropriate cost and prior probability assumptions.
7. Conclusions

The ROC manifold offers several advantages over the CC
manifold as a tool for classification system performance due to
the fact that the ROC manifold is an object in Rn2�n, isomorphic to
the hypercube ½0,1�n

2�n we call ROC space. The ROC manifold does
not project down in dimension from ROC space, unlike the CC
manifold, which is a factor of n�1 less in dimension. The ROC
manifold maintaining this dimensionality enables the researcher
to use it to consider varying costs within a class and does not
require those costs to be constant. Presumably, one can identify
more accurate operating parameters when the costs reflect the
real-world situation, and there may be many cases where such
weighting is warranted. Optimal points on the CC manifold are
only tractable when costs and prior probabilities are equal. In this
case, computing these points on the projected manifold in
n-dimensional space is computationally easier (considering
computational time and power) than computing these points on
the ROC manifold in (n2

�n)-dimensional ROC space. From the
ROC manifold, the CC manifold can be created using the
conjunctive equations comprising the classification system. No
information is lost as to the relative classification of the system in
relation to each class when using the ROC manifold. This is not
true for the CC manifold.

The CC manifold can be used to find markers that perform well
over all threshold values, via comparison of the VUS. VUS has no
direct meaning for the ROC manifold [9]. However, VUS for the CC
manifold is not always obtainable depending on the dimension-
ality of the classification system. For example, a classification
system with one parameter and three classes has a CC manifold
(topologically a 1-manifold) which is a trajectory in 3-space and
clearly has no volume. VUS for this system is zero, though
applying other performance functionals to this trajectory, such as
Bayes cost, is possible. Further, when comparing classification
systems, unless there is system dominance with respect to VUS,
that is, one system has a CC manifold with better correct
classification rates across all combinations of parameters, it is
possible that the system with the smaller VUS may have better
performance for specific ranges of operating parameters [15]. If
these operating parameters are of interest, then use of the CC
manifold VUS to choose the best classification system may be
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misleading. For this reason we describe and compute Bayes cost
as a more useful performance functional with which to judge the
classification system in terms of the best performance that the
system can deliver. We compare and compete systems based on
the system performance at the optimal point(s).

We have perhaps belabored the comparisons between the CC
manifold and the ROC manifold, specifically through the use of
VUS, despite earlier work [9] and ourselves demonstrating flaws
with this measure. However, some disciplines (statistics) continue
to focus and publish on the use of the CC manifold and
computations of VUS despite these flaws. Therefore we have
chosen to describe the relationship between these manifolds and
the dual problem in order to promote understanding of these
methodological tools and what these tools can and cannot tell us
in terms of classification system performance. We offer the ROC
manifold as a method for determining classification system
performance for even more general systems in which likelihood
criteria may not be available or the manifold has higher
codimensionality with the ROC space, e.g. through the number
of parameters, extending previous work in ROC manifolds.

The examples in this paper were chosen to demonstrate the
methods of using and computing the ROC manifold and associated
performance functionals with which to compete systems. We
offer examples in which likelihood criteria are readily traceable, in
which codimensionality is greater than 1, and for which we can
compute optimal system performance using both equal and
unequal costs and prior probabilities. The classifiers chosen here
are not meant to be suggested as optimal classification systems
(we know they are not). Indeed our intent is not to offer a method
in which to identify the optimal classification system, but rather
to be able to describe and compare classification system
performance for specific systems of interest within the family of
systems. As such, the optimal parameters we find through Bayes
cost allow us to identify an optimal setting for each system of
interest. Work is ongoing for the CAN data example to find better
classifiers using the ROC manifold and associated performance
functionals with which to compare candidate classifiers.

Finally, the methods outlined in this paper allow us to find
optimal parameters for a classification system with any finite
number of features and labels, given a particular functional with
which to measure the performance of the CSF. The advantages
include not having to examine one parameter at a time, or having
to assume a specific relationship among the parameters. The
methods leverage the power of looking through all of the
parameters simultaneously provided all of the class conditional
probabilities are computed, which is only limited by computing
power and time, depending on the number of classes proposed.
Future work will extend the ROC manifold to combined
classification systems (not just combined features of systems) in
order to determine how the performances of combined classifica-
tion systems compare to single classification systems and under
what conditions combined systems may outperform that of the
single systems.
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