
Funding for this research was provided as part of the Air Force Office of Scientific Research grant 18RT0095 in support of Dynamic Data Driven Application 

Systems; PI: Dr. Eric Blasch.  

The contact author for this Short Research Paper is Ryan Engle, rdengle@gmail.com, ryan.engle@afit.edu. Ryan is a PhD Candidate at the Air Force Institute of 
Technology (AFIT), 2950 Hobson Way, Wright-Patterson AFB, OH 45433.  

Dr. Brent Langhals, brent.langhals@afit.edu, is an Assistant Professor of Information Resource Management at AFIT.  

Dr. Michael Grimaila, michael.grimaila@afit.edu, is a Professor and Head of the Systems Engineering and Management Department at AFIT.  

Dr. Douglas Hodson, douglas.hodson@afit.edu, is an Associate Professor of Computer Engineering at AFIT. 

The Case for NoSQL on a Single Desktop 

 

Abstract—In recent years, a variety of non-relational 

databases (often referred to as NoSQL database systems) have 

emerged and are becoming increasingly popular. These systems 

have overcome scaling and flexibility limitations of relational 

database management systems (RDBMSs). NoSQL systems are 

often implemented in large-scale distributed environments 

serving millions of users across thousands of geographically 

separated servers. However, smaller-scale database applications 

have continued to rely on RDBMSs to provide transactions 

enabling Create, Read, Update, and Delete (CRUD) operations. 

Since NoSQL database systems are typically employed for large-

scale applications, little consideration has been given to 

examining their value in single-box environments. Thus, this 

paper examines potential merits of using NoSQL systems in these 

small-scale single-box environments.  

Index Terms— data storage systems, databases, database 

systems, relational databases, data models, NoSQL. 

I. INTRODUCTION 

Ever since E.F. Codd articulated the relational database 
model at IBM in 1970, organizations have turned to relational 
databases as the primary means to store and retrieve data of 
perceived value [1]. For decades such a model has worked 
extremely well, especially given business intelligence 
applications tended to use data in a format conducive to storage 
and retrieval mechanisms afforded by the powerful Structured 
Querying Language (SQL) that comes standard each relational 
database implementation, regardless of vendor. However, by 
the mid-2000s and with advent of Web 2.0, organizations 
began to understand valuable data existed in diverse formats 
(blob, JSON, XML, etc.) and at such a scale (petabyte or 
larger) that did not easily assimilate into precise, pre-defined 
relational tables. Furthermore, with the globalization of the 
internet, organizations found the need for the data accessibility 
to be independent of geography, and indeed, in many cases by 
millions of simultaneous users with extremely low tolerance 
for latency. Traditional relational database models suddenly 
were found lacking in terms of scalability, flexibility, and 
speed. As a natural consequence, a new generation of data 
storage technologies were developed to address these 
shortcomings and were somewhat euphemistically given the 
general moniker of NoSQL or “Not Only SQL” [5]. While the 
meaning of the term NoSQL is imprecise and often debated, 
for the purposes of this paper, NoSQL is used to generally refer 
to all non-relational database types. 

NoSQL database technologies tended to develop along four 
general class lines: key-value, columnar, document, or graph 
[3].  Each one addressed, in its own way, the issues of 

consistency, availability and partitionability (i.e. Brewers CAP 
Theorem) while simultaneously maximizing the usefulness of 
diverse data types by focusing on the aggregate model rather 
than the traditional data model used by relational databases [4].  
Aggregates, in the NoSQL world, represent a collection of data 
that is interacted with as a unit, effectively setting the 
boundaries for ACID transactions [4].  As a concept, 
aggregates are extremely important because they define at a 
foundational level how data is stored and retrieved by the 
NoSQL database, regardless of type or class.  In other words, 
NoSQL databases need to know a good deal about the data 
intended to be stored and how it will be accessed, while 
focusing less on the structure in which the data arrives.  In 
doing so, NoSQL developers have created a new generation of 
database tools that are extremely fast, easily partitioned, and 
highly available, but at the cost of an ability to create 
independent complex queries.   

Given NoSQL databases were designed to operate in an 
enterprise environment, at scale on large numbers of 
commodity hardware, while supporting a diverse array of data 
types, little discussion of their use has been devoted to more 
traditional deployments (i.e. single desktop solutions).  Indeed, 
in the haste to develop NoSQL tools to meet emergent business 
use-cases, comparatively little effort has been expended to 
evaluate in any rigorous way the inherent advantages NoSQL 
databases may possess over relational databases in any context 
except a distributed environment.  It is conceivable advantages 
exist to using NoSQL technology in more a limited 
deployment. Clearly some inherent NoSQL advantages such as 
ability to easily partition are minimized, if not lost, in a single 
box implementation, other advantages may remain. The 
balance of this paper illuminates such potential advantages. 

II. ADVANTAGES OF NOSQL (ON A SMALL SCALE) 

Before deciding to use NoSQL as a single-box solution, it 
is useful to consider which potential advantages NoSQL retains 
comparative to relational databases without regard to any 
specific deployment strategy. While NoSQL was initially 
developed to address deficiencies with the relational database 
model regarding large data sizes and distributed environments, 
many of the unique attributes which make NoSQL databases 
desirable exist regardless of scale. The following sections 
describe some potential advantages depending on the needs 
and desires of the application using the data. 

A. Minimizing (or Eliminating) ETL Costs 

ETL (extract, transform, and load) is a database 
management technique designed to facilitate sharing of data 

Ryan D. L. Engle, Brent T. Langhals, Michael R. Grimaila, and Douglas D. Hodson  



between multiple data repositories. Historically these data 
stores were relational databases designed to serve specific 
homogeneous purposes. Given relational databases are 
designed to follow rigid data models with prescribed schema 
and structures, data inserted into or retrieved from the database 
often must be transformed into a new state before loading into 
either a new database, data warehouse or a desired end-user 
application. Significant costs in terms of time and effort are 
dedicated to ETL tasks. 

  NoSQL databases present an opportunity to significantly 
reduce ETL costs, because they store data closer to its native 
format and instead choose to push data manipulation to the 
application level. Many NoSQL databases are agnostic to what 
“data” is actually being stored. The ability to work with data in 
its native state potentially reduces coding requirements for both 
creating the database as well as managing it down the road. 
Furthermore, since NoSQL is predicated on the aggregate 
model, much is known a priori about how the target data will 
be used upon retrieval. Applications intended to use the data 
will be aware of the native state and presumably would be 
ready to accommodate the data in such format. Which leads to 
the second advantage, the ability to handle heterogeneous data. 

B. Acceptance of Heterogenous Data 

 Much of data in existence today arrives in diverse formats, 
meaning it arrives as a collection of data where one record does 
not “look like” the other records. To visualize this, consider all 
the potential content of one employee’s human resources 
folder. Such a folder may include values (name, date of birth, 
position title), relationships (dependents, multiple supervisor-
to-employee relationships, contacts in other 
organizations/companies), geospatial data (addresses), 
metadata (travel vouchers, work history, security attributes), 
images (ID picture, jpeg of educational records), and free text 
(supervisor notes, meeting minutes). Further complicating the 
heterogeneous nature of the data, is that not all employees’ 
records may contain the same type or amount of data. In a 
relational database, this can be dealt with by either creating a 
very wide table with many fields to cover every possible 
attribute (and accept a significant number of NULL values) or 
creating a large number of tables to accept every possible type 
of record type (and risk a significant number of complex joins 
during retrieval). Both solutions are highly unsatisfactory and 
can cause significant performance issues, especially as the 
database grows. NoSQL avoids such complications by storing 
data closer to the format in which it arrives.   

 Additionally, NoSQL’s ability to manage such data in its 
native state offers particularly interesting advantages for 
decision making. For example, upon loading the data into the 
database, tools exist that can alert upon key terms of interest 
(i.e. people, places, or things) which can subsequently enhance 
categorization and indexing while incorporating the original 
context accompanying the data when it arrives. The result is 
richer information for decision making. In contrast, relational 
databases, in the effort to transform the data to conform to rigid 
data models, often lose the associated context and the 
potentially beneficial information it contains. Building upon 
the storing data natively, the next advantage of NoSQL 
databases is the ability to support multiple data structures. 

C. Support for Multiple Data Structures 

In many ways, relational databases were initially designed 
to address two end user needs:  interest in summative reporting 
of information (i.e. not returning individual data) and 
eliminating need for the “human” to explicitly control for 
concurrency, integrity, consistency or data type validity. As a 
result, relational databases contain many constraints to 
guarantee transactions, schemas and referential integrity. This 
approach has worked well as long as the focus of the database 
was on satisfying the human end user and performance 
expectations for database size and speed were not excessive. In 
today’s world the end user is often not simply a human sitting 
at the end of terminal, but rather software applications and/or 
analytics tools which value speed over consistency and seek to 
understand trends and interconnections over information 
summaries. Suddenly the type, complexity, and 
interrelatedness of the data store mattered and thus NoSQL 
databases evolved to support a wide-range of data structures. 

 Key value stores, while simplistic in design, offer a 
powerful way to handle a range of data from simple 
binary values to lists, maps, and strings at high speed 

 Columnar databases allow grouping of related 
information into column families for rapid storage and 
retrieval operations 

 Document databases offer a means to store highly 
complex parent-child hierarchal structures  

 Graph database provide a flexible (not to mention 
exceptionally fast) method to store and search highly 
interrelated information  

The one constant from each of the database types and the 
data structures they support is the presupposition that NoSQL 
is driven by application-specific access patterns (i.e. what types 
of queries are needed). In effect, NoSQL embraces 
denormalization to more closely group the logical and physical 
storage of data of interest and uses a variety of data structures 
to optimize this grouping. In doing so data is stored in the most 
efficient organization possible to allow rapid storage and 
querying [6]. The tradeoff, of course, is if the queries change, 
NoSQL (in general) lacks the robustness to support the 
complex joins of SQL based relational databases. However, it 
should not be inferred that NoSQL equates to inflexibility. 

D. Flexibility to Change 

 To compare the flexibility of relational vs. NoSQL 
databases, it is helpful to remember how each structures data. A 
relational database has a rigid, structured way of storing data, 
similar to a traditional phone book. A relational database is 
comprised of tables, where each row represents an entry and 
each column stores attributes of interest such as a name, 
address, or phone number. How the tables, attributes, data types 
permitted in each field are defined is referred to as the database 
schema. In a relational database, the schema is always well 
defined before any data is inserted because the goal is to 
minimize data redundancy and prevent inconsistency among 
tables, a feature essential to many businesses (i.e. financial 
operations or inventory management). However, such rigidity 
can produce unintended complications over time. For example, 



a column designed to store phone numbers might be designed to 
hold exactly 10 integers because 10 is the standard for phone 
numbers in the United States. The obvious advantage is any 
data entry operation which attempts to input anything other than 
10 whole numbers (i.e. omits an area code or includes decimals) 
results in rejecting the input, resulting in highly consistent (and 
more likely accurate) data storage. However, if for any reason 
the schema needs to change (i.e. your organization expands 
internationally, and you need to accommodate phone number 
entries with more than 10 integers), then the entire database 
may need to be modified. For relational databases, the benefits 
of rigid initial organization come with compromised future 
flexibility. 

 In comparison, NoSQL databases do not enforce rigid 
schemas upfront. The schema agnostic nature of NoSQL allows 
seamless management of database operations when changes, 
such as inclusion of international standards for phone numbers, 
are required. NoSQL systems are also capable of accepting 
varying data types as they arrive thus, as previously discussed, 
the need to rewrite ETL code to accommodate changes in the 
structure, type or availability of data is minimized. Some 
NoSQL databases take this a step further and provide a 
universal index for the structure, values, and text found in 
arriving data. Thus, if the data structure changes, these indexes 
allow organizations to use the information immediately, rather 
than having to wait months while new code is tested as typically 
is the case with relational databases. Of course, this flexibility 
comes with costs, primarily in terms consistency and data 
redundancy issues, but some applications, even on a singles 
desktop, may not be concerned about attendant problems these 
issues cause.   

E. Independence from SQL 

Structured Query Language (SQL) is the powerful, 

industry standardized, programming language used to create, 

update, and maintain relational databases. It is also used to 

retrieve and share data stored in the database with users and 

external applications. The power of SQL is derived from its 

ability to enforce integrity constraints and link multiple tables 

together in order return information of value. However, using 

SQL also imposes a certain rigidness on how developers and 

users alike can interact with the database. Additionally, as the 

database increases in scale, multi-table joins can become 

extremely complex, thus the effectiveness of SQL is, to some 

degree, dependent on the skills of the database administrator. 

While several databases belonging to the “NoSQL” class 

have developed a SQL-like interface, they typically do so to 

maintain compatibility with existing business applications or 

to accommodate users more comfortable with SQL as an 

access language [2]. NoSQL databases also support their own 

access languages with varying lesser degrees of functionality 

than SQL. This trade-off allows independence from SQL and 

permits a more developer-centric approach to the design of the 

database. Typically, NoSQL databases offer easy access to 

application programming interfaces (API) and are one of the 

reasons NoSQL databases are very popular among application 

developers. Application developers don’t need to know the 

inner workings and vagaries of the existing database before 

using them. Instead, NoSQL databases empower developers to 

work more directly with the required data to support the 

applications instead of forcing relational databases to do what 

is required. The resulting independence from SQL represents 

just one of many choices offered by NoSQL databases. 

F. Application Tailored Choices (Vendor, Open Source) 

The NoSQL environment is clearly awash with choice. In 

2013, over 200 different NoSQL databases options existed [4]. 

As previously mentioned, key-value, column, document, and 

graph comprise the broad categories, but each NoSQL 

implementation offers unique options for developers and users 

to choose features best suited for a given application. The key 

to choosing is dependent upon understanding how the relevant 

data is be acquired and used.   

If the application is agnostic to the “value” being stored 

and can accept limited query capability based on primary key 

only, the simplicity and speed of key value databases may be 

the answer. Such apps may include session data, storing user 

preferences, or shopping cart data. Alternatively, if the 

developer wishes to store the data document (often as JSON, 

XML, or BSON) and requires the ability to search on a 

primary key plus some stored value, document databases are 

an excellent choice. Apps that are likely to take advantage of 

document databases would include content management 

systems, analytic platforms, or even e-commerce systems. 

Columnar databases aggregate data in related column families 

without requiring consistent numbers of columns for each 

row. Column families facilitate fast, yet flexible, write/read 

operations making this database type well suited for content 

management systems, blogging systems, and services that 

have expiring usage. Finally, graph databases allow storage of 

entities (nodes) along with corresponding relationship data 

(edges) without concern for what data-type is stored while 

supporting index-free searches. These characteristics make 

graph databases especially well-suited for applications 

involving social networks, routing info centers, or 

recommendation engines. These choices emphasize the power 

of the NoSQL aggregate model over the relational data model.   

Making the choice even more appealing, is that numerous 

open source options exist for every NoSQL database type. 

While most NoSQL databases do offer paid support options, 

nearly all have highly scalable, fully-enabled versions, with 

code made freely available. Popular names like MongoDB 

(document), Redis (key value, in memory), Neo4j (graph), and 

HBase (column), among many others, all represent industry 

standard options that are unlikely to become unsupported due 

to neglect since each enjoy avid developer communities. 

These low cost, open source options enable users to 

experiment with NoSQL databases with minimal risk while 

allowing successful implementations to become operational 

(even when intended to produce profit!) without huge upfront 

costs. While free open source versions of relational databases 

exist (i.e. MySQL), they are often provided as an introductory 

or transitional offer to the more powerful, for profit versions 

or have restrictive usage agreements for no-cost versions. The 

net result is with NoSQL, users can not only choose the 

database best suited to their application needs, they can also 



do so with a low or no-cost options with access to the 

underlying code in order to remain independent of software 

vendors. It is very likely that users of single box or desktop 

solutions would find this level of choice very appealing. 

 

III. USES FOR NOSQL ON THE DESKTOP 

The unanswered question remains, what application or 
types of applications, running on a single machine, perhaps 
even an individual’s desktop, might benefit from one or more 
of these potential advantages? Instead of defining a list of 
specific applications, it is more useful to approach the problem 
from the perspective of the characteristics such applications 
may seek. The following list, while certainly not exhaustive, 
highlights a few characteristics that would form a starting point 
for deciding which NoSQL database to choose:   

 Efficient write performance – i.e. collecting non-
transactional data such as logs, archiving applications 

 Fast, low-latency access – i.e. such as that required for 
games 

 Mixed, heterogeneous data-types – i.e. applications 
that use different media types (such as an expert 
system containing images, text, videos, etc.)  

 Easy maintainability, administration, operation – i.e. 
home-grown applications without professional support 

 Frequent software changes – e.g. embedded systems 

In the end, each database developer must consider the goals of 
the database and choose the type to match the requirements 
needed. The key realization is, regardless of scale, there are 
available choices beyond relational database models. 

IV. CONCLUSIONS 

When choosing a database to support a specific application, 
the choice between relational versus NoSQL options should 
come down to what the database needs to accomplish to 
support the application. The thesis of this paper challenges the 
notion that NoSQL is only considered useful for applications 
requiring big data and distributed support, while applications 
residing on a single box or desktop solutions remain the 
domain of relational databases. Instead, the authors believe 
choosing the database type should be driven by expected usage 
and performance concerns. It is hoped the paper encourages 
researchers (and developers) to rigorously define 
methodologies and advantages related to NoSQL outside 
enterprise solutions. In doing so, the future applications may 
benefit from a richer, more understood set of choices when 
selecting an appropriate data storage method. 

REFERENCES 

 
[1] Codd, E. F, “A Relational Model of Data for Large Shared Data Banks,” 

Communications of the ACM, vol. 13, pp. 377–387, June, 1970. 

[2] Hecht, R. and Jablonski, S., “NoSQL Evaluation: A Use Case Oriented 
Survey”, International Conference on Cloud and Service Computing, 12-
14 December, 2011. 

[3] Nayak, A., Poriya, A. and Poojary, D., “Type of NoSQL Databases and 
its Comparison with Relational Databases”, International Journal of 
Applied Information Systems, Vol 5, pp 16-19, March, 2013. 

[4] Sadalage, P. J. and Fowler, M., NoSQL Distilled: A Brief Guide to the 
Emerging World of Polyglot Persistence. Upper Saddle River: Addison-
Wesley, 2013. 

[5] Schram, A. and Anderson, K. M., (2012) “Mysql to NoSQL: Data 
Modelling Challenges in Supporting Scalability”, proceedings of the 3rd 
Annual Conferences on Systems, Programming, and Applications: 
Software for Humanity, 191-202, Tucson, AZ. 

[6] Denning, P. J. (2005). The locality principle. Communications of the 
ACM, 48(7), 19-24. 

 

 

 


