Lectures

On

Modern Advances in Mathematical Fluid Dynamics

By

Sivaguru S. Sritharan,

Provost & Vice Chancellor, Air Force Institute of Technology

1. Macroscopic/continuum derivation of fluid dynamics
 - Compressible and incompressible viscous and inviscid flow

2. Statistical derivation of fluid dynamics
 - Liouville equation –Boltzmann equation- Navier-Stokes –Burnett equations

3. Hyperbolic system of conservation laws and shock waves
 - Jump conditions, entropy solutions, numerical methods
 - Inviscid compressible flow (Euler equations)

4. Mathematical theory of Compressible Viscous Flow
 - The Lame system and linearized compressible flow
 - Steady linear and nonlinear compressible Navier-Stokes equations
 - Time dependent compressible Navier-Stokes equations

5. Optimal control of compressible fluid dynamics and Quasilinear Hyperbolic Systems
 - Optimal controls, necessary and sufficient conditions
 - Numerical methods

References: