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• A system of equations for traveling waves on parameterized surfaces is developed.
• Three dimensional traveling waves are computed via numerical continuation.
• An example of a three-dimensional traveling wave with overturned crests is presented.
• The structure of dimension-breaking bifurcations is investigated.
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a b s t r a c t

Traveling gravity-capillary water waves on the interface of a three-dimensional fluid
of infinite depth are computed. The vortex sheet formulation with the small scale
approximation is used as the mathematical model for the fluid motion. The fluid interface
is parameterized isothermally. The traveling wave ansatz for parameterized surfaces is
described. Waves are computed using Fourier collocation and quasi-Newton iteration;
large amplitude overturned travelingwaves are computed via a dimension-breaking based
numerical continuation method.

Published by Elsevier B.V.

1. Introduction

We study periodic waves of the interface between two constant-density fluids undergoing irrotational motions. The fluid
regions are infinitely deep in the vertical direction and periodic in the horizontal direction.We seek travelingwave solutions,
in which the free surface is of permanent form and steadily translating. This study is fundamentally concerned with waves
on a two-dimensional interface, between three-dimensional fluids, which may have overhanging crests (or troughs).

It is the understanding of the authors that no study has been conducted for fully three-dimensional water waves which
are both overturned and traveling. A number of studies have considered overturning in the time dependent problem, for
example [1–7] with a review in [8]. There are also numerous computations of permanent three-dimensional waves (both
traveling and standing waves) in which the interface is parameterized by the horizontal coordinates, for example [9–14].
There have been studies of axisymmetric three-dimensional overturned traveling waves in fluid jets, where such symmetry
is natural [15–17].

The reasons for the absence of previous work on three-dimensional overturned traveling waves are two-fold. First,
one must have a three-dimensional formulation of the problem which allows for traveling waves which are overturning.
Conformal mappings are by far the most popular technique for the two-dimensional problem, but do not generalize to
three-dimensions. In a recent work, the first author and collaborators have developed a formulationwhich extends to three-
dimensions and allows for the computation of traveling waves on interfaces with arbitrary parameterizations [18]. It is in
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Fig. 1.1. The extreme water wave on branches of traveling waves at two different Bond numbers in a two-dimensional fluid are depicted. Left: The large
amplitude limit of traveling waves with σ = 1/8 is a self-intersecting profile. Right: The steepest wave for σ = −1/10. The left panel was computed with
Ma = 512 points, the right panel withMa = 128. The increased resolution on the left is to resolve the extreme curvature within the bubble. In both panels
the inset figures show close-ups of the overturned portion of the wave, with grid-points marked with circles.

this formulation that this paper proceeds to three-dimensions. The need for such parametric formulations of thewaterwave
problem is not unknown. Alternative to the track taken here, Bridges and Dias proposed a Hamiltonian formulation which
allows for arbitrary interface parameterizations [19].

The second reason for the lack of computations of overhanging three-dimensional travelingwaves is the extreme expense
of the computation itself, as will be discussed explicitly here, and is reviewed in [8]. In this work, the extreme cost will be
partially ameliorated via the use of an approximate model, called the small-scale approximation, proposed in [20] and later
used in [21]. The approximation allows themost costly part of the computation, the evaluation of the Birkhoff–Rott integral,
to be computed via fast Fourier transforms. The small scale approximation, although exact in the small-amplitude limit, is
not based on a small-amplitude assumption, and will be used here to compute large amplitude three-dimensional traveling
waves, including those with overturned crests and troughs.

For two-dimensional fluids, a significant amount of work has been done in the study of both dynamic and steady
overturned waves. We will not try to review them all here. Most relevant to this work are the exact traveling solutions
of Crapper [22] and the numerically computed waves of Meiron and Saffman [23], as these two waves are qualitatively
similar to the cross-sections of the three-dimensional waves computed here. This paper also is an outgrowth of a number
of recent two-dimensional studies by one of the authors. The traveling wave ansatz developed in [18] has since been used
extensively to compute two-dimensional overturning traveling waves [24,25].

The remainder of the paper is organized as follows. In Section 2 we present the vortex sheet formulation of the potential
flow equations, the small scale approximation to the Birkhoff–Rott equations, and the traveling wave ansatz. These three
ingredients combine to give the systemof equationswhich are solved for three-dimensional travelingwaves. In Section 3we
present the numerical procedure used to compute traveling waves as well as the numerical results. This Section 3 includes
an example of an overturned three-dimensional traveling wave and discussion of the dimension-breaking continuation
procedure used to compute three-dimensional waves. In Section 4 we summarize our results and present future research
avenues.

2. Formulation

In thisworkwe compute three-dimensional travelingwaves in amodel for the interface between two-fluids. In particular,
we are interested in the casewhere the fluid interface is overturned, that is, where the vertical displacement is not a function
of horizontal Cartesian coordinates. To compute such three-dimensional overturning waves, we will represent the interface
as a parameterized surface X⃗(α, β, t) = (x1(α, β, t), x2(α, β, t), x3(α, β, t)). Following Ambrose, Siegel and Tlupova, [1],
we will enforce that this parameterization is isothermal, i.e. that

X⃗α · X⃗β = 0, and G ≡ ∥X⃗α∥
2

= λ∥X⃗β∥
2

≡ λE (2.1)

with

λ =


G dαdβ
E dαdβ

.

Wewill think of λ as a constant specified at the beginning, describing the aspect ratio of the parameterization (or howmuch
longer the wave is in α than in β). We choose to set λ = 1, so that G = E. We set the ranges for α and β to be equal to the
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period of the wave in the corresponding horizontal coordinates, that is

x1(α + P1, β) = x1(α, β) + P1, and x2(α, β + P2) = x2(α, β) + P2.

Numerically we will take x1 = α + x̃1 and x2 = β + x̃2 where the x̃j are periodic corrections, which are more amenable to
our Fourier-collocation based numerical method.

Useful in this parameterization are the second fundamental forms

L = X⃗α,α · n̂, and N = X⃗β,β · n̂.

In terms of which the mean curvature can be expressed as

κ =
Lλ + N
2λE

.

The isothermal parameterization is the three-dimensional analogy to the arclength parameterization used in [18,24]. The
fluid velocity, W⃗ , is given in terms of a Birkhoff–Rott integral,

W⃗ (X⃗) =
1
4π


n∈Z


m∈Z

P.V .


(µ′

α X⃗ ′
β − µ′

β X⃗ ′
α)

(X⃗ − X⃗ ′
− nP1e1 − mP2e2)X⃗ − X⃗ ′ − nP1e1 − mP2e2

3 dα′ dβ ′ (2.2)

in which all the primed quantities are evaluated at (α′, β ′). The parameter P1 is the period of the wave in the first horizontal
coordinate, x1, and P2 is the period of the wave in the second horizontal coordinate, x2. This integral is notoriously difficult
to simulate, see [1], and will here be replaced by the small scale approximation of [20,21]. This approximation takes

W ≈
1
2
Hα


µαXβ × Xα

E
3
2


−

1
2
Hβ


µβXα × Xβ

E
3
2


which captures the near-singular behavior of the integral and avoids the significant difficulties associated with computing
the Birkhoff–Rott integral, see, for example, Beale’s discussion of the convergence of this integral [26]. The operators Hα and
Hβ are the Riesz transforms. The Riesz transforms are diagonalized by the Fourier transform, and havemultiplicative Fourier
symbols,

Hα f (k) = −i
k1

k21 + k22
f̂ , and Hβ f (k) = −i

k2
k21 + k22

f̂ .

The ki are the components of the Fourier wave vector k⃗. One can also express the Riesz transforms in terms of differential
operators as

Hα = −∂α


−∂2

α − ∂2
β

−1/2
and Hβ = −∂β


−∂2

α − ∂2
β

−1/2
.

A study of the overturningwaveswith the full Birkhoff–Rott integral using the algorithm of Siegel and colleagues [1] is being
pursued separately.

The Bernoulli equation for the evolution of the vortex sheet strength is

µt = τκ +


µα
√
E
(V1 − W · t̂1) +

µβ
√
E
(V2 − W · t̂2)



+ At


|W |

2
+ 2W · t̂1(V1 − W · t̂1) + 2W · t̂2(V2 − W · t̂2) −

µ2
α + µ2

β

4E
− gx3


. (2.3)

This equation is presented for a parameterization with λ = 1, so that G = E. Here Vj are the tangential components of the
velocity of the interface in our parameterization, not to be confusedwithW · t̂j, the velocity of fluid particles on the interface.
The parameter τ is the surface tension coefficient, g is gravity, and At =

ρ1−ρ2
ρ1+ρ2

is the Atwood ratio, comparing the densities
of the upper and lower fluids with densities of ρ2ρ1, respectively.

The kinematic equation for the interface is

X⃗t = Un̂ + V1 t̂1 + V2 t̂2 (2.4)

where U is the physical normal velocity to the interface and Vj are chosen to preserve the isothermal parameterization.
For a general interface motion, to preserve an isothermal parameterization requires that the Vj solve an elliptic equation,
as discussed in [1]. For steadily translating interfaces, as is the case for traveling waves, the Vj can be determined by the
kinematic condition (2.4) coupled with the prescription that the interface is traveling in the x1-direction, Xt = (c, 0, 0),
yieldingc

0
0


=

n̂ t̂1 t̂2

 U
V1
V2


.
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If one considers the speed c , and interface location X to be known, then U and Vj are specified

Vj = c(t̂j)1, and U = c(n̂)1. (2.5)

The notation (t̂j)i refers to the ith entry of tangent vector j.
From the perspective of the kinematic equation, any interface shape is allowable, so long as the velocity of the interface

is coupled to the shape by (2.5). If one chooses, as we will here, to parameterize in a frame moving with the wave, then the
interface shape is independent of time. A sufficient condition for traveling waves in such a frame is that the vortex sheet
strength has µt = 0. The coupling of µt = 0 and (2.5), play the role of the traveling wave ansatz in this formulation.
Combining this ansatz with Eq. (2.3) under an isothermal parameterization gives the equations for traveling waves.

To compute a traveling wave requires finding four functions x1, x2, x3, and µ as well as a speed c , which solve four
equations,

0 = τκ +
1

√
E
(Ṽ · ∇)µ + At


|W |

2
+ 2W · t̂1Ṽ1 + 2W · t̂2Ṽ2 −

1
4E

|∇µ|
2
− gx3


, (2.6a)

0 = c(n̂)1 − W · n̂, (2.6b)
0 = Xα · Xβ , (2.6c)

0 = G − λE, (2.6d)

in which Ṽj = c(t̂j)1 −W · t̂j, and Ṽ = (Ṽ1, Ṽ2). We append another equation fixing the wave amplitude to close the system.
The measure of wave amplitude will vary in our numerical method. For the results in the following section we alternately
use the crest height, total displacement, and the amplitude of a Fourier mode of the third coordinate.

3. Results and discussion

The numerical method used is a combination of Fourier collocation and a quasi-Newton iteration, similar to those used
in [18,27,28]. The unknown functions x1, x2, x3, andµ are all real functions of two parametric variablesα andβ .We compute
both planar waves, which are constant in the direction transverse to propagation, and fully three-dimensional waves, which
depend non-trivially on both α and β .

To compute overturned fully three-dimensionalwaves,weuse a dimension-breaking approach. First a branch of traveling
planar waves (trivial dependence in β) are computed. Because these waves do not depend on β , one needs only to compute
the profile at a single location. This dimension reduction makes computing large amplitude planar waves significantly less
expensive than computing fully three-dimensional branches of traveling waves. Next, branches of waves with non-trivial
β dependence are computed as bifurcations from the branch of planar waves. These waves have transverse (β direction)
periodicity which depends on the amplitude from which they bifurcate. The numerical cost to compute such waves is
significantly greater than the planar waves; however, since one can pay the planar cost to reach large amplitude, we are
able to compute well resolved, large amplitude, overturned, fully three-dimensional waves. An example of the dimension
breaking bifurcation is depicted in Fig. 3.1.

The fully three-dimensional Fourier collocation begins with Ma points in α and Mb points in β , where (α, β) ∈
−

1
2P1,

1
2P1

×

−

1
2P2,

1
2P2

. Thus direct projection of the these functions onto Fouriermodeswould yield 4MaMb unknowns.

Problem symmetries allow for this number to be reduced significantly.
The number of unknowns are reduced via the folllowing sequence of arguments. The solutions sought are real functions,

therefore one needs only compute the Fourier coefficients in one quadrant of Fourier space. Second, symmetries allow for
one to look for x3(α, β) which is doubly even (in both α and β) and µ(α, β) which is odd in α and even in β . Similarly
we seek x1(α, β) which is odd in β and even in α, and x2(α, β) which is even in α and odd in β . The last two are simply
choices of how the parametric variablesα andβ are alignedwith respect to the horizontal coordinates x1 and x2. These parity
choices allow one to compute Fourier coefficients which are either pure real (if the function is even in both variables) or
pure imaginary (if the function is even in one variable and odd in the other). Many of the spatial averages of these functions
need not be solved for; odd functions have zero spatial means. The end result is that to compute a traveling wave one must
solve forMaMb − Mb −

1
2Ma + 1 Fourier coefficients (as well as the speed c).

The system of equations we solve are the projection of Eqs. (2.6) into Fourier space. For (x, µ) with the above described
parity, the equations support similar symmetries and give the same number of non-trivial Fourier coefficients as the
equations. We couple to this system an equation specifying the size of the traveling wave to close the system. This last
equation is used as our continuation parameter, the choice of which will vary along a branch of traveling waves. For small
amplitudewe use the total displacement h = max(x3)−min(x3). For large amplitudewe sometimes observe turning points,
where the branch has a locally maximal displacement, in which case we switch to another measure of the wave size, for
example a Fourier coefficient of x3.

The primary numerical cost in computing traveling waves is the filling (and storing) of the approximation of the Jacobian
in the quasi-Newton solver. We ameliorate this to some extent via Broyden’s update [29], and by re-using Jacobian’s during
the continuation procedure. This does not avoid the expense of storing large Jacobian matrices. The highest resolution wave
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Fig. 3.1. The dimension breaking bifurcation of traveling waves solutions to Eqs. (2.6) is depicted in the speed, c , and total displacement, h = max(z) −

min(z), plane. The waves bifurcate from a planar wave with Bond number σ = 1/8, whose speed–amplitude curve is marked with the dashed curve in the
left panel. The secondary, dimension-breaking bifurcations occur at different amplitudes depending on the transverse period (the secondary bifurcation’s
speed–amplitude curves are marked with arrows at their tips). Notice that there is closed loop, representing a ‘‘return to trivial’’ global bifurcation, a
close-up of this loop is inset. An example genuinely three-dimensional profile, marked with the star in the left panel, is depicted in the right panel.

Fig. 3.2. Left: A relatively large amplitude wave, h = 4.23, used for the convergence study on the right. This wave has At = 1, g = −0.1, τ = 2. At larger
amplitude and transverse variation this wave overturns, and is depicted in Fig. 3.4. Right: The Cauchy error of the computedwave speed, |c(Mb)−c(2Mb)|,
is plotted as a function of points in the β coordinate Mb (marked with circles). The number of points in the α direction is fixed at Ma = 256. The solid line
is O(M−2

b ).

computed hadMa = 128 andMb = 256; at this resolution the Jacobian is 32 450 × 32 450, which in IEEE type double costs
8.4 GB just to store. Rather than push the computational limits of ourmachine, we have chosen to present only waves which
are very regular. This allows for highly resolved computations at a relatively small number of points (see Fig. 3.4, which has
Ma = 128,Mb = 32). The computations done at this resolution are numerically exact at small amplitude, and have errors
smaller than visible graphically at large amplitude. Fig. 3.2 presents evidence of the convergence of the numerical method
at relatively large amplitude.

For this first work on overturned traveling waves, the small-scale approximation to the Birkhoff–Rott integral is
employed. This reduces the cost of computing W to O(MaMb log(MaMb)). Simulation of the full Birkhoff–Rott integral is
possible, but significantly more complicated, and is being pursued separately. The difficulty of simulating the Birkhoff–Rott
integral for three-dimensional fluids is well known [11]. A modern fast technique is that of Siegel and colleagues [1] which
combines Ewald summation, matched near-field and far field expansions and a tree code, in the spirit of the ‘‘Fast Multipole
Method’’ [5,30].

The computations here are based on a quasi-Newton iteration, thus they require initial guesses. For small amplitude, it is
natural to use a Stokes’ expansion to compute one traveling wave, and then compute larger amplitude waves via numerical
continuation. This approach is numerically costly, as one must pay the cost of computing a fully three-dimensional wave at
every amplitude along the branch of travelingwaves.We take an alternate tactic, following dimension breaking bifurcations
from a planar (two-dimensional) traveling wave.
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Fig. 3.3. A three-dimensional traveling wave which bifurcates from a planar wave at small amplitude. As is typical for small amplitude planar waves, the
transverse period of the three-dimensional bifurcation is large, here P2 = 30π , where P1 = 2π . This wave was computed with At = 1, τ = 2, g = 2, with
Ma = 128 and Mb = 256.

To compute three-dimensional bifurcations from a planar wave, our computations begin with a planar solution

x1 = x̃1(α), x2 = β, x3 = x̃3(α), and µ = µ̃(α). (3.1)

A small spatial variation in the transverse direction is then added to the planar solution, and the perturbed wave is used as
an initial guess for three-dimensional traveling wave. The initial guesses used here are exactly the planar solutions in the
x1 and x2 coordinates, from (3.1). For the displacement and vortex sheet strength, we add small transverse dependence of
period P2,

x3 = x̃3(α)


1 + δ cos


2π
P2

β


, and µ = µ̃(α)


1 + δ cos


2π
P2

β


. (3.2)

In (3.2) the parameter δ is a small constant, we used δ = 0.005. The ansatz (3.2) is not always close to a genuinely three-
dimensional traveling wave. We observe a single period at each displacement of planar waves P2 = P2(h) for which (3.2)
approximates a three-dimensional wave. In order to find dimension breaking bifurcations one must guess one such period,
along with all the other unknowns. After a successful guess, continuation is used to find larger amplitude, fully three-
dimensional waves.

A significant challenge in this procedure is guessing the transverse period, P2, at which the bifurcations occur. We
observed that the periods are largest at small amplitude. In Fig. 3.1, we present a branch of planar waves, and a sequence of
dimension-breaking bifurcations. Each of these secondary bifurcations have their own transverse period, and appear as solid
curves tipped with arrows in Fig. 3.1. We computed only a sampling of periods, the period P2 is observed to be continuous
in h; more secondary bifurcations exist between our sampling.

To compute our sampling of dimension breaking bifurcations, we begin by guessing a large period at small amplitude. The
small amplitudewaveprofiles at different periods are similar, and serve as a good initial guesses for nearby periods; the small
amplitude case is numerically more forgiving with respect to poor guesses in P2. An example of a fully three-dimensional
wave at small amplitude, with large transverse period, is in Fig. 3.3. The planar wave from which Fig. 3.3 bifurcates is a
classic Wilton ripple—in the small amplitude limit the wave resonates with its second harmonic, see [31,32]. After a single
three-dimensional wave is found using (3.2), we use numerical continuation (in ∂βx3 at a point) to compute branches of
three-dimensional waves.

To compute three-dimensional traveling waves which bifurcate from larger amplitudes, we use the numerical
continuation to follow the period dependence on amplitude, P2 = P2(h). That is, we use the period from one amplitude
dimension breaking bifurcation as a starting point to search for the period of the next larger amplitude dimension breaking
bifurcation. At all amplitudes we use the ansatz (3.2) for the displacement and vortex sheet strength of the first fully three-
dimensional wave on a branch.

The guess (3.2) is ad-hoc, not based on formal asymptotics. Wewould prefer to have an explicit formula for waves which
are weakly varying in the transverse direction, as in [33]; however, we believe such a solution is impossible to find, as it
would require solving a linear non-constant coefficient PDE whose coefficients are only known numerically. The absence
of such an asymptotic formula results in regions of parameter space where our initial guess (3.2) is not good enough to
compute the dimension breaking bifurcations. That being said, we were able to compute dimension breaking along the
entire branch of planar traveling waves in many configurations. One such configuration is depicted in Fig. 3.1, in which we
compute dimension breaking bifurcations from a planar wave with σ = 1/8.
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Fig. 3.4. An overturned fully three-dimensional traveling wave solution to (2.6), using the small-scale approximation to the Birkhoff–Rott integral. This
wave was computed with At = 1, τ = 2, g = −0.2, withMa = 128 andMb = 32. In the left panel is the three-dimensional surface, in the right panel is a
close-up of a slice at y = −π/2. In the close-up on the right, the grid-points are marked with solid circles.

Generallywe computed only small departures from the planar travelingwaves, i.e. the local bifurcation structure.We did
observe a case where the global bifurcation was also a small departure from planar. In the left panel of Fig. 3.1, observe the
second and third to largest reported dimension-breaking bifurcations merge. These two bifurcations thus form the ‘‘return
to trivial’’ global bifurcation. This phenomenon occurs in the two-dimensional setting as well, and is described in case (e) of
the global bifurcation theorem of [34] and was numerically computed in [25].

In one space dimension there are twoqualitatively different types of overturned travelingwaterwaves. The first resemble
the Crapper’s wave, see the left panel of Fig. 1.1, which limits on an enclosed bubble and has large curvature in the
neighborhood of this bubble. The second resembles the waves computed by Meiron and Saffman [23] and are more regular,
see the right panel of Fig. 1.1. Numerically, the latter requires many fewer points to resolve; the planar wave has Fourier
modes decaying to machine precision right at wave number k = 32 (corresponding toMa = 64). In this work, we compute
dimension breaking bifurcations near planar waves at two Bond numbers σ =

g
k2τ

, here k is the typical wave number of the
planar wave based on its longitudinal period. The planar waves with σ = 1/8 resemble that of Crapper. The planar waves
with σ = −1/10 resemble the waves of Meiron and Saffman.

An example of an overturned three-dimensional traveling wave is depicted in Fig. 3.4. This wave was computed via
dimension breaking numerical continuation from a planar wave σ = −1/10. In this configuration the overturned planar
wave is very regular (see the right panel of Fig. 1.1). Three-dimensional traveling waves were also computed via dimension
breaking numerical continuation from planar waves with σ = 1/8. In the latter configuration we computed a number of
dimension-breaking bifurcations, see Fig. 3.1. The waves computed in this figure all have interfaces which are functions of
the horizontal Cartesian coordinates. In this case the overturned waves require significantly more points to resolve, and we
were only able to resolve waves whose interfaces did not overturn.

Although we believe that there are fully three-dimensional overturned traveling waves at generic Bond numbers,
bifurcations from waves with narrow bubbles (i.e. Crapper-like) require too many points for our current capabilities.
Numerically we see evidence that overturned traveling waves exist in this setting, but we are only able to compute their
under-resolved approximations. We are currently pursuing a study of overturned three-dimensional traveling waves in this
more expensive case, as well as computing full Birkhoff–Rott integral, rather than its small scale approximation, using the
Air Force Research Laboratory’s supercomputing resource center [35].

4. Conclusion

Fully three-dimensional overhanging traveling waves are computed in the vortex sheet equations for water waves
with surface tension. The small-scale approximation is used in the Birkhoff–Rott integral for the velocity field. A traveling
wave ansatz for parameterized surfaces is presented. Large amplitude overhanging waves are computed via dimension-
breaking continuation from planar traveling waves. Future research directions include computing these waves with the
full Birkhoff–Rott integral, instead of the small scale approximation. Also desirable would be parameter space explorations,
computing overturned traveling waves with fine structure, as would be the case for three-dimensional bifurcations from
Crapper’s wave. It is also natural to question as to whether any of these waves are stable to perturbations, and should they
be unstable, how instabilities manifest in the time-dependent problem.
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