
IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 57, NO. 6, JUNE 2009 2311

Bandwidth Efficient Cooperative TDOA Computation
for Multicarrier Signals of Opportunity

Richard K. Martin, Jamie S. Velotta, and John F. Raquet, Member, IEEE

Abstract—Source localization, the problem of determining the
physical location of an acoustic or wireless emitter, is commonly
encountered in sensor networks which are attempting to locate
and track an emitter. Similarly, in navigation systems that do not
rely on the global positioning system (GPS), “signals of opportu-
nity” (existing wireless infrastructure) can be used as ad hoc nav-
igation beacons, and the goal is to determine their location rela-
tive to a receiver and thus deduce the receiver’s position. These
two research problems have a very similar mathematical structure.
Specifically, in either the source localization or navigation problem,
one common approach relies on time difference of arrival (TDOA)
measurements to multiple sensors. In this paper, we investigate a
bandwidth efficient method of TDOA computation when the sig-
nals of opportunity use multicarrier modulation. By exploiting the
structure of the multicarrier transmission, much less information
needs to be exchanged between sensors compared to the standard
cross correlation approach. Analytic and simulation results quan-
tify the performance of the proposed algorithm as a function of the
signal-to-noise ratio (SNR) and the bandwidth between the sensors.

Index Terms—Multicarrier, navigation, orthogonal frequency
division multiplexing, source localization.

I. INTRODUCTION

A CCURATE position measurement is important for many
source localization and navigation problems. Sensor net-

works are becoming increasingly popular for applications such
as determining the position of the source of a wireless transmis-
sion [1]. Similarly, microphone arrays can be used to determine
the location of an acoustic source [2], to aid automatic camera
tracking [3], or determination of the source of sniper fire [4].
This problem is generally referred to as “source localization.”
The converse, but mathematically similar, problem is naviga-
tion via signals of opportunity [5], [6], [7], [8]. In this navigation
problem, the premise is to use existing wireless infrastructure,
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such as radio and television towers at known locations, to deter-
mine the position of a mobile receiver. Although the global po-
sitioning system (GPS) usually provides worldwide high-accu-
racy position measurements, it requires lines of sight to multiple
satellites; hence, it is ill-suited to use indoors, underground, or
in urban canyons. Moreover, in the presence of radio-frequency
interference or jamming, GPS may be unavailable. Thus, alter-
native methods of navigation and positioning are of interest, ei-
ther as a backup or for use in areas unreachable by satellites.

For both the source localization or the navigation problem,
the intent is to determine the relative position of the transmitter
and the receiver. Measurements that can be taken to aid this
process include the angle of arrival (AOA) [1], the received
signal strength (RSS) [2], [9], or the time difference of arrival
(TDOA) at multiple receivers [10]. The drawback of AOA mea-
surements is that the quality of the final position estimate de-
grades rapidly as the receivers move away from the source. RSS
is frequently used, but it generally requires assuming that the
transmitted power and the path loss exponent are known (or
are included as additional parameters to be estimated [11]), that
there is no multipath or shadowing, and that the transmitter is
isotropic—assumptions which are generally not valid. Thus, in
some applications, TDOA is an attractive alternative. Moreover,
TDOA can be combined with AOA or RSS measurements to im-
prove the accuracy of the estimator [12], [13].

In this paper, we focus on TDOA-based methods. It is pos-
sible to directly determine a position estimate from the received
data signals. However, in [14] and [15], it was shown that for
TDOA methods, the Cramér–Rao lower bound on the position
estimate can be obtained by first estimating the TDOAs and
then using the TDOAs to estimate the position. Thus, in this
paper, we focus on TDOA estimation, rather than direct posi-
tion estimation.

In TDOA-based methods, there must be either two trans-
mitters sending the same signal or two spatially separated
receivers measuring the same transmission. Usually only one
transmitter is available, hence multiple sensors or receivers
must cooperate by sharing data. One difficulty that arises from
this is that the sharing of data requires significant bandwidth (as
opposed to RSS or AOA-based methods). Specifically, TDOA
measurements are often determined from the generalized cross
correlation of the two received signals [3], [16], which requires
that one of the two sensors involved in each TDOA computation
retransmit a long portion of the signal it receives to the other
sensor involved in the computation. However, this may require
a large amount of bandwidth and power, which are limited
resources for mobile, wireless devices. Thus, the main goal of
this paper is to reduce the amount of data that must be shared
between sensors in order to perform TDOA computation. In
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particular, we show that the structure of multicarrier modulation
allows for a partially decentralized form of cross correlation to
be performed by retransmitting significantly less data between
sensors.

The assumption that the transmitter uses multicarrier modula-
tion, also known as orthogonal-frequency-division multiplexing
(OFDM), is not a very onerous restriction, since a large number
of emerging systems are multicarrier based. Examples include
various wireless personal, local, and metropolitan area networks
(PANs/LANs/MANs), digital video and audio broadcasts in Eu-
rope (DVB/DAB), the terrestrial repeaters used by both brands
of satellite radio in North America, and even some wireline stan-
dards such as digital subscriber lines (DSL) and power line com-
munications (PLC).

Multicarrier systems use a more highly structured transmis-
sion format than many single carrier schemes. Of particular
note, the beginning and end of each block of data are identical,
due to the presence of a cyclic prefix inserted before each block.
Thus, each sensor can identify block boundaries by looking for
this repetition, which does not require knowledge of the trans-
mitted signal (i.e., it is noncooperative, or “blind”). The sensors
can independently locate the block boundaries without any co-
operation amongst them, and then can each calculate some sta-
tistical feature (e.g., the sample mean or variance) of each block.
Then one sensor can transmit the sequence of block reception
times and the associated feature values to another sensor, rather
than retransmitting the entire signal. We will show that for the
initial position estimation, this partially decentralized computa-
tion of the cross correlation can be used to obtain the same per-
formance as the centralized approach with two to three times
less bandwidth; or alternatively, if the bandwidth use is held
constant, the proposed approach yields the same performance
as the centralized version at 3 to 5 dB lower signal-to-noise ra-
tios (SNRs). Moreover, once the position has been established,
tracking the position updates requires several orders less data
than the standard cross-correlation approach.

There are several other papers in the literature that perform
positioning using multicarrier signals. The main difference be-
tween most of this work and our work is that our work does
not make use of training data in the transmitter. The work in
[17] is somewhat similar to our work insofar as the authors es-
timate the block boundaries of the multicarrier structure. How-
ever, their work is based on the Schmidl–Cox [18] and Minn
[19] synchronization algorithms, both of which make use of
a specially-designed training signal. Thus, their work is lim-
ited to cooperative schemes. Similarly, [20] discussed an in-
door positioning system in which all transmitters and receivers
are cooperative and specifically designed for positioning accu-
racy; [21] makes use of a known transmitted signal by looking
for time-delay-induced phase rotations across subcarriers at the
receiver; and [22] and [23] correlate the received signals with
the training sequence used by IEEE 802.11a wireless LANs. If
available, training can also be used to reduce errors due to mul-
tipath and/or non-line-of-sight (NLOS) errors [24]. However,
our proposed method is blind, i.e., we do not assume training
is available, which is a critical assumption for military, law en-
forcement, and other surveillance applications.

Fig. 1. Geometry of TDOA computation for source localization or navigation.

There are also two other positioning methods which are
tangentially relevant, since they involve multicarrier signals. In
[25], the authors switch between standard TDOA positioning
and Cell ID positioning (simply making use of knowledge of
which cell the mobile is in a cellular system). The Cell ID
method is used only when received power levels indicate the
mobile is near the base station. As such, it could be considered
complimentary to our approach, which refines the TDOA
method of positioning. In [26], each receiver is assumed to
have an antenna array, allowing for extraction of both time of
arrival and direction of arrival information, and the data from
all antenna elements of all receivers at all times is available
in a central location. Moreover, training data is assumed to
be available. In contrast, our approach does not make use of
antenna arrays, does not use training, and attempts to minimize
the amount of bandwidth needed to gather information in a
central location.

In Section II, we outline the system model and our assump-
tions. In Section III, we describe the proposed approach. In
Section IV, we discuss computational complexity and other
resource considerations. In Section V, the performance of the
standard and the proposed approach is presented analytically,
as a function of the sensor-to-sensor bandwidth and the SNR;
and these results are verified via simulations in Section VI.
Section VII concludes the paper.

II. SYSTEM MODEL

The geometry of the sensors involved in a single TDOA com-
putation from a single transmitter is depicted in Fig. 1. The
transmitter can be either a source to be localized or a signal of
opportunity to be used for navigation. The sensor that computes
the centralized portion of the cross-correlation is denoted the
“primary” sensor. This would be the mobile receiver in a nav-
igation application, and each sensor can take this role in turn
in a source localization problem. The sensor which shares in-
formation with the primary is denoted the “reference” sensor.
In general, additional transmitters and/or reference sensors are
required in order to obtain multiple TDOA measurements, but
for simplicity we only show one of each. We assume that the
transmitter has a line of sight (LOS) to the reference sensor and
a LOS to the primary whose location is to be determined. There
must be a reliable communication link between the reference
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Fig. 2. Block diagram of a multicarrier transmitter and receiver. (I)FFT: (in-
verse) fast Fourier transform, CP: cyclic prefix, P/S: parallel-to-serial, S/P: se-
rial to parallel, FEQ: frequency-domain equalizer.

and the primary, but it need not be LOS. The location of the ref-
erence is assumed known, and either the position of the trans-
mitter (for navigation) or the primary (for source localization)
must be known. The reference gathers information about the re-
ceived signal and passes a portion of the information on to the
primary, and the primary compares its received signal to the data
from the reference in order to compute the TDOA. The intent is
that the amount of bandwidth that the reference uses to transmit
to the primary be as small as possible.

In source localization, there are typically many receivers at
known locations and one transmitter at an unknown location.
In navigation, there are many transmitters at known locations
(with distinct signals) and at least two receivers. Often one of
the receiver locations is assumed known, but that is not required
if there are enough transmitters. In either problem, the first step
is to compute a TDOA from each transmitter to each pair of re-
ceivers, which is the problem we focus on. The second step is to
use the TDOAs to estimate any unknown positions of transmit-
ters or receivers, as well as any clock offsets. This second step is
not our focus, and there are many centralized and decentralized
solutions in the literature [27]–[29].

The “full knowledge” approach to TDOA computation would
be to have the reference rebroadcast its entire received signal to
the primary, and then have the primary cross-correlate the signal
from the transmitter and the signal from the reference. However,
this is wasteful of bandwidth. A lower complexity approach is
to look for notable events that can be separately located in the
received signals at the reference and the primary. For example,
occasional sharp spikes might occur in the transmitted signal,
and both receivers can locate and compare the times when the
received signal exceeds some threshold. Then the reference only
needs to transmit the times at which the events occurred, and the
primary can correlate this with its own record of when the events
occurred. The main drawback of this approach is that the events
in question may be sensitive to noise, because in a low SNR
environment, significant spikes are more likely to be due to the
noise than the signal. In addition, some signals do not contain
identifiable “features,” even in high SNR conditions. In the next
section, we will discuss how the block structure of multicarrier
modulation naturally lends itself to identification of events of
this sort. First, however, we present the mathematical model of
multicarrier modulation.

Fig. 2 shows the multicarrier system model. The idea is to
break up a frequency-selective multipath channel into a bank of
flat narrowband channels. This can be accomplished by parsing
the source data into parallel lower rate data streams, and mod-
ulating them with linearly spaced carrier frequencies. Equiva-
lently, we can apply an inverse fast Fourier transform (FFT) to

Fig. 3. Insertion of the cyclic prefix, for an FFT size of� � � and a CP length
of � � �.

each successive block of data samples. Then equalization can
be done after a demodulating FFT at the receiver, simply by in-
verting the channel in the frequency domain.

This method of equalization is enabled by the fact that cir-
cular convolution in time is equivalent to elementwise multipli-
cation in frequency. Since the channel induces a linear convo-
lution with the data, the convolution is made circular inserting
a cyclic prefix (CP) of length at the start of each block, as
shown in Fig. 3. The CP is a copy of the last samples of each
block, and it extends each block from to sam-
ples. Although the purpose of the CP is multipath mitigation, we
will make use of it to ease the TDOA computation in the next
section.

The notation is as follows. The discrete-time transmitted data
stream will be denoted . The redundancy induced by the CP
causes the source data to obey

(1)

where denotes the block index and is the sample index within
the block. We assume that the inverse fast Fourier transform
(IFFT) input is uncorrelated, and by the central limit theorem
the IFFT output is approximately Gaussian. Also, is un-
correlated with itself aside from the repetition indicated by (1).
We do not explicitly deal with oversampling, but it could be in-
cluded to improve the resolution of the TDOA estimate; thus,
the sample period is a fraction of the OFDM block du-
ration. The sampled received signals at the reference and the
primary are

(2)

Here, and are multipath channels consisting of Ricean
fading LOS paths at delays and (in samples)
respectively, as well as other Rayleigh fading paths at longer
delays. Our simulations use up to four total rays of multipath. As
in most TDOA positioning literature, we assume that the LOS
path dominates the multipath [14], [15], [26]. Specifically, we
assume that the sum of the coefficient variances is on the order
of or less than the mean squared of the LOS path. If this is not
true, then any blind method of TDOA computation will have
significant difficulty. Additive noise is represented by
and . The signal and noise powers are , and .
The TDOA can be written as

(3)
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In this paper, we assume that the TDOA is an integer multiple
of samples. Fractional TDOA values could be handled by com-
paring the sampling phase in the two receivers. Specifically, (2)
is obtained by sampling the received signals and

, where the sampling phases are adjusted
by each receiver according to some standard sample timing al-
gorithm (e.g., energy maximization). There will also in prin-
ciple be a small timing offset between the clocks at the
two receivers, and if there is a sampling clock frequency offset
(ScFO), then will gradually change, typically as a random
walk. Thus, the TDOA accounting for all of these effects is

(4)

where everything but is known. In the navigation problem,
in which there are only two receivers, the offset can be in-
cluded in the parameters to be solved for; i.e., after obtaining
the various TDOA estimates, the problem is to jointly estimate
two or three position coordinates and . In the source local-
ization problem (which uses many receivers and hence could
have a different timing offset for each receiver), the receivers
must be synchronous to some accuracy for any TDOA-based
method to work. A total offset of seconds translates to me-
ters (where is the speed of light), hence the positioning ac-
curacy requirements govern the largest acceptable time offset,
and the receivers will need to coordinate in order to ensure the
clocks are synchronous to that accuracy.

III. TDOA COMPUTATION

A. Traditional, Centralized Computation

The traditional method of computing TDOAs involves a cor-
relation of the raw data received at the primary and reference
receivers. The reference receiver retransmits a copy of sam-
ples it receives, , to the primary receiver. Then the latter
performs a correlation:

(5)

The primary must compute (5) for all anticipated valid ranges
of the block arrival time difference, say ,
i.e., about samples, or blocks. Then the TDOA can
be computed as

(6)

where is the real operator and is the sample period.
Throughout the remainder of the paper, we refer to this as the
traditional, centralized approach, since all of the raw data must
be retransmitted to a central location for processing.

B. Proposed Decentralized Computation

The proposed TDOA computation is a two-step process:
S1) (block boundaries): The reference uses the CP to lo-

cate the block boundaries within the signal that it re-

ceives. Simultaneously and independently, the primary
performs the same task on its received signal.

S2) (feature extraction): The reference and the primary each
compute a single, scalar statistical feature from each
block. The reference transmits the feature values and
boundary times of the associated blocks to the primary,
which then correlates the sets of feature values in order
to line them up.

The first step is a fairly common method of blind (noncooper-
ative) block synchronization [30]. In conventional communica-
tions applications, block synchronization must be performed in
order to successfully demodulate the data. However, we perform
the same task here in order to transform the TDOA computation
from the time scale of samples to the time scale of blocks.

Note that S1) is what makes the proposed method specific
to OFDM—for non-block-based methods, there would be no
way to predefine times at which one could measure features.
By blindly estimating the locations of the block boundaries, the
two receivers can agree upon the times to calculate the features.
An alternative approach could be to asynchronously look for
particular statistical features, and then share the times of those
features (rather than the proposed approach of sharing values
of features at specific times). However, this approach may be
sensitive to noise, e.g., if the feature is the occurrence of a large-
amplitude spike or something similar.

For clarity of presentation, we review the blind block syn-
chronization method of [30] here, but the novel work lies pri-
marily in S2), which we will discuss later in this section. Given
a received block, the maximum likelihood estimate of the block
boundaries is given by [30]

(7)

where the subscript “rx” will be used throughout to generically
denote either the reference or the primary, and where

(8)

(9)

denote the prospective CP to end-of-symbol correlation and the
power in the CP and the end-of-symbol. Note that [30] also as-
sumes the presence of a carrier frequency offset (CFO) which
complicates the equations, whereas we do not for simplicity.
Thus, (7) is a simplification of [30, eq. (12)] when the CFO

.
As opposed to [30], in our work we average over many blocks.

This causes the power term to be nearly constant as a
function of , hence we omit it. Including this averaging and
approximation, the estimate of the block boundaries becomes

(10)
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(11)

where is the number of blocks included in the averaging. Note
that if our primary goal is to reduce the bandwidth between the
reference and the primary, each sensor can use an arbitrarily
large (subject to internal complexity constraints) without af-
fecting this bandwidth.

Unfortunately, there is an ambiguity in the estimate of (10),
since at this point we cannot tell one block from another—we
simply know where the boundaries are. In a standard communi-
cations application, this is not a problem, since synchronization
is only performed to be able to demodulate the data, and the
value of the propagation delay is not of interest in and of itself.
However, for TDOA computation, we need to know the value
of the difference of two propagation delays, so we must move
on to the second step of the process described at the start of this
section [S2 (feature extraction)].

Given the block boundaries, we parse the received signals into
blocks, with the th block given by

... (12)

The task now is to compute some scalar feature for this block,
which can be used to label it and discriminate it from other ar-
bitrary received blocks. Thus, a desirable feature will vary sig-
nificantly from block to block. It should depend on the under-
lying signal as much as possible and on the noise as little as
possible. Some of the features we considered include the first
four normalized central moments (mean, variance, skewness,
and kurtosis)

(13)

(14)

(15)

(16)

the “mini-mean”

(17)

the average symbol’s phase

(18)

and the peak-to-average power ratio

(19)

where refers to the th element of a vector and is an ap-
propriately-sized column vector of ones. Other features were
considered, such as the root-mean-squared signal (preserving

phase), the standard deviation, and various frequency domain
features; for a full list, see [31]. We found that the mini-mean
feature yielded the best performance, hence the analytic and
simulation results will focus on the mean and mini-mean fea-
tures, but the notation will be left in a general form to allow for
alternative features. To see the performance of other features,
see [31]. Also note that the features in (13)–(19) are not an ex-
haustive list, merely those which appeared promising and were
computationally simply to compute. The authors know of no
systematic way to derive other features that may perform better,
but certainly other features could be proposed.

The statistical features are sample averages of small amounts
of data, hence they vary from block to block, which is what
allows for detectability of the TDOA. For example, consider
three blocks of random binary data, ,
and . The “mean” features of these blocks are

. One can search for this pattern of three means
rather than searching for the original pattern of 12 bits, which re-
duces the data required for the correlation. This is only enabled
when the data has a block structure, as in multicarrier systems.

The reference calculates the value of a particular feature for
each of blocks, then transmits these values and its estimate
of to the primary. Assuming complex-valued features,

real numbers must be transmitted from the reference to the
primary each time the TDOA estimate is updated.

Given the data from the reference, the primary can compute
and maximize the covariance of the features. Generically de-
noting the feature values as and , the primary
computes

(20)

where

(21)

and similarly for the reference. The primary must compute (20)
for all anticipated valid ranges of the block arrival time differ-
ence, say . Thus, while the reference computes the
feature values for blocks, the primary must compute them for

blocks. Once (20) has been computed over this range,
the TDOA can be computed as

(22)

where is the real operator; is the offset in samples,
modulo is the offset in blocks, which accounts for the
modulo ambiguity; and is the sample period. Again,
we assume baud rate sampling for simplicity of analysis, but
this procedure could be extended to the oversampled case by
increasing , and , and decreasing by the oversampling
factor, leaving the rest of the procedure unchanged.
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C. Position Estimation and Tracking

Once the TDOAs have been determined, either through the
traditional centralized or the proposed decentralized processes,
then there are various methods to estimate and track the source
position [27]–[29]. These methods can help mitigate the errors
in the TDOAs due to multipath. For example, as opposed to
most other methods of geolocation, in [27], the variances of
the TDOA estimates are not assumed to be known, since mul-
tipath can increase them; and in [28], a Kalman filter is used to
track inconsistencies between the TDOA estimates and the po-
sition estimates in the form of biases in the TDOAs. If available,
training can also be used to reduce errors due to multipath and/or
non-line-of-sight (NLOS) errors [24]. Since this paper focuses
on the TDOA estimation step rather than the subsequent geolo-
cation or navigation step, we do not pursue these approaches fur-
ther. However, evaluating our work in the context of various ge-
olocation algorithms may form a starting point for further work.

IV. BANDWIDTH AND COMPLEXITY

In this section, we discuss what resources are available and
how much of each is used. This includes a discussion of how
many blocks can be used in the feature correlator, the band-
width between the reference and the primary, the computational
complexity at the primary, the time required to gather enough
data for a position estimation, and the size of the geographical
area to be searched.

The parameters and (the number of blocks used in S1
and S2, respectively) are of great importance because increasing
them will improve the estimate of the TDOA, as will be quan-
tified in the next two sections. However, if the primary or the
transmitter is moving quickly, the true value of the TDOA will
change over time, and if too many blocks are used, the TDOA
will not be approximately constant within the estimation in-
terval. Assume that the reference is stationary and that either
the primary or the transmitter is moving at a velocity . The
total length of the estimation interval in (20) is seconds
(here, could equivalently be replaced by ), and during this
time the primary will move meters. Depending on the
geometry, the maximum change in propagation time from the
transmitter to the primary or the reference is sec-
onds (each), where is the speed of light. The worst case sce-
nario is such that the transmitter is colinear with the two sensors
and is moving directly towards one of them and directly away
from the other. We would like the total change in TDOA to be
much less than the resolution of our sampling, i.e.,

(23)

which bounds by

(24)

If the primary or the transmitter is on an aircraft travelling at the
speed of sound, 343 m/s (or about 767 mph), then

. For a block size of as used in our simulations,
this means that (or ) 5500 blocks can be used. If

(among the largest used in existing OFDM systems), then
(or ) blocks can be used. Of course, this is all for

a worst case geometry and a very high velocity, so in practice
more blocks may be used. On the other hand, if we oversample,
we reduce the resolution requirement on the right-hand side of
(23) without changing the product on the left-hand side of
(23), hence the upper bound on or must be reduced.

The bandwidth between the reference and the primary should
be as small as possible. For scalability of comparison, we will
evaluate the reference-to-primary bandwidth as compared to the
bandwidth used by the transmitter, rather than in an absolute
sense. The transmitter transmits complex samples per block.
The reference transmits one feature value per block, and it may
be real or complex. Assuming a complex-valued feature, the
bandwidth ratio is

(25)

Typical values of range from 80 to 2560, hence large savings
are possible. However, as seen in the next section, if the central-
ized approach is used, the target performance may be reached
by transmitting fewer blocks, and when that is factored in, the
total bandwidth savings of our approach is a factor of 2 to 3. On
the other hand, once an initial position estimate is determined
and we are in a tracking environment, our “step 2” (which, of
the two steps, is the step that typically causes any errors) is no
longer necessary, and the proposed approach also does not re-
quire many blocks to maintain a target accuracy. Thus, our ap-
proach leads to a bandwidth savings of at least a factor of 2–3,
and much more when in a tracking situation.

At the primary, the computational complexity of the proposed
approach is dominated by three contributions:

• computation of ;
• computation of ;
• and computation of .

We will only evaluate the complexity for the “mini-mean” fea-
ture, since it yielded by far the best performance. (This can
be verified by noting that the “mean” feature was shown to
outperform all other features except the “mini-mean” in [31],
and the theoretical analysis in the next section shows that the
“mini-mean” should be slightly superior to the “mean.”)

First consider computation of . It is a sum of dot
products of a pair of windows that slides with . Thus, for
the first value of complex multiplies and additions are
needed. However, as is incremented, each dot product can
be updated by appending and removing one term from each dot
product. The elements to be removed have already been com-
puted, hence only a total of complex multiplies and additions
are needed for each additional value of . Thus, in total, com-
puting requires approximately complex
multiplies and additions (each). Approximately word of
memory are needed to store the data, although this could be
reduced to approximately words by performing the com-
putations block-by-block rather than in a single batch process.

The complexity of the feature computation depends on the
feature. The mini-mean requires a total of about complex
additions. (Note that in practice we do not actually apply con-
stant scale factors such as since they scale the signal and
noise components equally.) words of memory are needed to
store the result.
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The final correlation step requires computing and ,
which are of negligible complexity. For each value of , com-
puting requires subtractions followed by multi-
plies, for a total of about complex multiplies and addi-
tions, with memory words to store . In total, the com-
putational complexity is approximately by
complex multiplies and additions,
computed over the span of samples of the source data; and

words of memory are needed.
Now compare this complexity to the full, centralized cross-

correlation approach, which does not exploit the OFDM struc-
ture. If the TDOA estimate ranges over blocks, we must
compute the cross-correlation for values of the correla-
tion lag (in samples), using memory words to store the
result. If the two sensors share blocks of data (i.e.,
samples of data), each lag in the cross correlation is a length

dot product, hence the total complexity would be
complex multiplies and additions, and memory words.
However, a direct numerical comparison is difficult because the
proposed approach and the standard approach need not use the
same amount of data for comparable performance, and the com-
plexity of the proposed approach is highly dependent on the
transmission standard via the parameter .

In terms of actual time spent to obtain a position estimate, the
proposed method requires seconds. For IEEE 802.11a,
for example, s, and in digital video broadcast,
ranges from 10 s to 280 s. Thus, for 1000 blocks, data
acquisition time would range from 4 to 280 ms.

In order to define a search space for the feature correlation
maximization, we assume that the unknown TDOA will fall into
some range of blocks, corresponding to a search space
of meters. In our simulations, we assume .
For the systems discussed in the previous paragraph, this cor-
responds to 240 to 16 800 km. Assuming a priori knowledge
that the position is in a sphere of 240 km is reasonable, and
in fact in most cases could be reduced to , which
would improve the performance of the simulations consider-
ably. However, in order to not be restrictive, we will assume

. Also note that in a tracking situation (after initial
acquisition), it is likely that will become less than 1, i.e., a
fraction of a block. Then the decentralized approach does not
need to continue transmitting feature values, just the times of
the block boundaries; whereas the centralized approach must
still continue to perform the correlation, since it operates at the
sample level and an ambiguity of a fraction of a block is still
many samples.

V. ANALYSIS

In this section, we theoretically analyze the performance of
the mean and mini-mean features, which led to the best perfor-
mance. The performance metric will be , the probability of
error in the estimate of in (22). This is essentially equiva-
lent to the probability of making a TDOA error, since can be
chosen large enough to make an error in far less likely than an
error in . For simplicity of notation, in this section we assume
that the true TDOA is zero. We also omit scale factors of
since they scale the signal and noise components equally.

The “mean” features are computed as

By the central limit theorem, , and are
approximately Gaussian with zero mean and variance

(26)

(27)

(28)

where the term 2 in the numerator of accounts for the
correlation of the last samples of the block with the CP.

The “mini-mean” feature is almost identical to the mean.
However, only the first and the last terms are included
in the averaging, and these are precisely the terms which are
correlated with each other. Thus, for the mini-mean feature, we
have

(29)

(30)

(31)

Comparing the mini-mean to the mean, the “feature SNR”
has improved by a factor of , which is

about 1.4 to 2 for typical OFDM systems. This improvement
was the motivation for selecting the mini-mean as a feature,
and the rest of the analysis will be performed in terms of the
mini-mean alone.

Since we have for this feature, the covariance of
the features reduces to a correlation

(32)

The next task is to determine the mean and the variance of
as functions of . The mean is straightforward, since the last
three terms in (32) are zero mean:

(33)
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To compute the variance, we will first compute the second
moment.

(34)

Expanding (34) as in (32) yields 16 terms, only four of which
are nonzero:

(35)

The last three terms of (35) are simple. For the first term, we
must consider the and cases separately. For ,
there will be terms within the double summation in which

and hence all four factors have the same index, and
terms in which the first two indexes are the same

but are different from the last two indices. Thus, we have

(36)

(Note that herein we are assuming complex-valued data. For
real-valued data, the last line above would need to change
slightly to to account for the difference in
kurtosis between real and complex Gaussian random variables,
but the rest of the derivation would remain unchanged.) For

, the only way for an even number of indexes to line up is
if , and there are such occurrences. Thus, we have

(37)

Accounting for the last three terms in (35) and noting that the
variance of is the second moment from (35) minus the
square of the first moment from (33), we have

(38)

In the special case , this reduces to

(39)

Together, (33) and (39) characterize the mean and variance of
the feature correlation.

The mean and variance can be used to obtain a “correlation
SNR” as follows. We are looking at to locate a large,
real-valued spike. Thus, we can throw away the imaginary part,
and the real-valued part of the function will have half the vari-
ance. The “correlation SNR” will shortly be shown to explicitly
govern the probability of error, and we define it as the ratio of
the difference of the peak to off-peak means to the standard de-
viation of the real part

(40)

Substituting from (29)–(31) and simplifying

(41)

Note that we have various SNR-like terms in this paper. The
unqualified term “SNR” is simply or , i.e.,
received signal power over received noise power. The term
“feature SNR” is , and it refers specifically to the
powers of the signal and noise components of the features

. Finally, the “correlation SNR” is a ratio of the powers
of the signal and noise portions of the correlation function

. Thus, when determining the probability of error in the
feature correlation, the “correlation SNR” will be the gov-
erning factor, as we now derive. Also note that the correlation
SNR is proportional to the square root of the number of blocks.
For large SNR, becomes flat, and for small SNR, is roughly
proportional to the SNR.

In order to determine the probability of error, define the

shorthand . We will approximate as a set
of independent jointly Gaussian random variables, with means
and variances as determined above. The jointly Gaussian ap-
proximation is justified by the central limit theorem for vectors
[32], at least for large . The independence assumption is also
justified for large since are jointly Gaussian and can be
shown to have a correlation coefficient of zero. This requires
following a procedure similar to (35), except with two different
values of , and is omitted here since it is fairly similar. We will
validate these approximations by comparing the theoretical re-
sults to simulations in Section VI. Under these approximations,
the probability of not making an error in the estimate of is
simply the probability that no value of exceeds

,

(42)
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Fig. 4. Probability of error in the TDOA estimate as a function of the “corre-
lation SNR” � .

where . Using the independence of and
, the probability can be written in integral form as

(43)

where the last line follows from the identical distributions of
. Using the Gaussian approximation

(44)

(45)

where and are as given in (33) and (39). After changes
of variables and to normalize to zero mean
and unit variance, we have

(46)

where as in (41). Substituting in normalized
Gaussian PDFs for and

(47)

This is a fairly easy-to-compute function of and the threshold
, which in turn is a simple function of and the SNR via (41).
Fig. 4 shows the probability of error from (47) versus for

10, 100, and 1000. Other features besides the mean may
have different functional dependencies between the SNR, ,
and , but Fig. 4 is independent of the feature once has been
determined. If at the outset you do not have a good estimate of
the position, you will have to search using a large value of .
Fig. 4 shows that every order of magnitude increase in (which

Fig. 5. Contours of the theoretical probability of error as a function of the SNR
and the number of symbols� , for the proposed partially decentralized method.
The search range of the TDOA was over� � �� symbols of� � �� samples
each. The contour levels are spaced by orders of magnitude.

is roughly an order of magnitude increase in each dimension
of the search space of the TDOA estimator) corresponds to ap-
proximately an order of magnitude increase in the probability
of error.

Fig. 5 shows contours of the probability of error from (41) and
(47) for a range of and values, for . (For the
parameters used in our simulations, this equates to assuming that
the transmitter is within an area of diameter 12 km.)
This shows a curious effect stemming from the dependence of

on and the SNR, via (41). For low SNR, ,
and for high SNR, . Thus, in the low SNR region,

can be increased either by increasing or the SNR, but in
the high SNR region, if is fixed, then cannot be changed
even if the SNR is further increased. The upshot of this is that in
Fig. 5, we see that for , it is simply impossible to achieve

even as the SNR goes to infinity. This explains some
of the simulation results to be discussed in Section VI.

In order to compare the proposed approach to the centralized
approach, we can develop a plot similar to Fig. 5 as follows. As-
sume a total TDOA ambiguity of blocks, or samples. Let

be the total amount of data transmitted from the reference to
the primary; for the decentralized approach, this was the number
of blocks worth of features, and for the centralized approach it
is the number of samples of the received sequence. Then, in the
centralized approach, the TDOA is computed as

(48)

(49)

which is similar to but distinct from (22). The rest of the anal-
ysis is fairly similar to that of the feature correlation, with one
major exception: while the feature values are uncorrelated from
block to block, the samples of the received signal are not uncor-
related over time, due to the presence of the CP. This correlation
creates two small side peaks in at . Omitting the
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Fig. 6. Contours of the theoretical probability of error as a function of the SNR
and the number of samples� , for the centralized method. The search range of
the TDOA was over � � �� symbols of� � �� samples each. The contour
levels are spaced by orders of magnitude.

details, which are similar to but slightly more involved than for
the proposed approach, we obtain a probability of error of

(50)

where

(51)

(52)

(53)

(Here, and are analogous to the correlation SNR , al-
though for the centralized approach the signal strength varies
within due to the presence of the CP, hence the correla-
tion SNR takes on two different values at different locations.) A
plot of the probability of error from (50) is given in Fig. 6.

A direct comparison between the centralized method (Fig. 6)
and the proposed partially decentralized method (Fig. 5) is dif-
ficult. We can hold any two of the SNR, the amount of data ,
and the probability of error constant and compare the third. For
example, at a 0.01% probability of error and , the de-
centralized approach can operate at an SNR of 2 dB, but the
centralized approach operates at 1 dB, for a 3-dB gain. Or, at
a 0.01% probability of error and an SNR of 5 dB, the de-
centralized approach requires 250 feature values but the
centralized approach requires 650 samples. Finally, for

and an SNR of 10 dB, the decentralized approach has
a probability of error of and the centralized approach
has a probability of error of . Moreover, once the ambi-
guity has been resolved through the feature correlation and an
initial position fix has been determined, tracking the position
via the decentralized approach requires less bandwidth because

Fig. 7. Comparison of theoretical and simulated probability of synchronization
error versus SNR, for the “mini-mean” feature.

the feature values no longer need to be transmitted, and the po-
sition can be tracked by simply comparing the reception times
of the block boundary at the reference and the primary sensor,
since it is unlikely that the TDOA would jump by an entire
block of samples between two successive position measure-
ments; whereas the centralized method must still transmit signal
values from the reference since it is not unlikely that the TDOA
will change by several samples between two successive position
measurements.

VI. SIMULATIONS

This section provides a performance analysis via simulations.
The transmitter uses multicarrier modulation with an FFT size
of , a CP length of , a block size of ,
and a bandwidth of 20 MHz ( 50 ns) which are consistent
with the IEEE 802.11a, HIPERLAN/2, and MMAC standards
for wireless LANs. We also assumed throughout, which
assumes prior knowledge that the transmitter is within an area
of diameter 12 km. For simplicity, the noise powers
are the same at both sensors, i.e., , hence the SNR at
either sensor is .

A plot of the probability of correctly determining the overall
TDOA is given in Fig. 7 for the mini-mean feature. Here,
we used blocks to make step 2 the limiting factor
in performance. Performance of the mean, variance, phase,
and peak-to-average power ratio features was several decibels
worse; and performance of the skewness and kurtosis was such
that they are unusable. For the mini-mean, perfect synchro-
nization is achieved 95% of the time at 10-dB SNR with only

blocks. If blocks are available, perfect
synchronization is almost always achieved at 3-dB SNR; and
if blocks are available, perfect synchronization is
almost always achieved at 10-dB SNR. The theoretical values
agree with the simulated values very well, except for small
amounts of data , for which the central limit theorem
based Gaussian approximation is of marginal validity.

The effect of varying the parameter is shown in Fig. 8. The
parameters are the same as in Fig. 7, except that the SNR was
fixed to 0 dB and was varied. Observe that the asymptotic
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Fig. 8. Simulated probability of synchronization error as a function of number
of blocks � in step 1, for the “mini-mean” feature. The SNR was 0 dB and �
was 10. The “large�” performance of Fig. 7 is obtained for� � ��� or greater.

Fig. 9. Simulated probability of synchronization error versus SNR, in the pres-
ence of multipath. The channels each had a Ricean LOS path and a Rayleigh-
fading path, and the two channels were different.

performance for large values of is obtained for or
greater, hence is not a significant limiting factor.

The effect of multipath is shown in Figs. 9 and 10. In the leg-
ends, “old” is the traditional centralized approach, and “new” is
the proposed approach. The total bandwidth (i.e., samples of
communication) of the two approaches was equated, rather than
equating performance and comparing bandwidth. Each channel
had a Ricean LOS path with a variance 10 dB (relative to the
LOS path’s mean ). In Fig. 9, the channels from the transmitter
to the two receivers had Rayleigh fading NLOS paths at 5 dB
(primary) and 7 dB (reference). In Fig. 10, the channels had
Rayleigh fading NLOS paths at 6 dB, 10 dB, and 14 dB
(primary), and 8 dB, 10 dB, and 14 dB (reference). The
results in Figs. 9 and 10 are degraded compared to Fig. 7, al-
though if the TDOA location estimator was used in conjunction
with a Kalman filter for tracking, the performance would still
be acceptable. For stronger multipath, it may be necessary to

Fig. 10. Simulated probability of synchronization error versus SNR, in the
presence of multipath. The channels each had a Ricean LOS path and three
Rayleigh-fading paths, and the two channels were different.

use or even to maintain performance, de-
pending on the SNR.

If desired, the results in this section could be lowered
by combining several features into the correlator of (20). This
would enable a tradeoff between the bandwidth used from the
reference to the primary and the synchronization performance.

VII. CONCLUSION

We have shown that multicarrier modulation can be used to
perform accurate TDOA computation with an SNR as low as

3 dB when 100 blocks are available. No training signal was
required, although we did assume knowledge of the block struc-
ture of the transmitted signal. The only communication required
between the reference and the primary for this level of perfor-
mance was the transmission of 100 complex numbers and one
integer over the course of the 100 block (8000 sample) time
window, hence the bandwidth from the reference to the primary
was almost two orders of magnitude smaller than the bandwidth
of the signal of opportunity.

We analytically evaluated the performance of the proposed,
partially decentralized approach and compared it to that of the
standard centralized approach. For a given level of performance,
the proposed approach requires two to three times less band-
width; or from another point of view, it yields the same perfor-
mance at 3–5 dB lower SNR for comparable bandwidths.

Future work will include investigating the effects of multi-
path, extending the analysis to the oversampled case, which
would introduce correlation within the feature computation, and
investigating methods of multipath mitigation. When training is
available, the channel modelling and physics can be used to mit-
igate NLOS errors [24], but mutlipath mitigation is much more
challenging in a blind environment.
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