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Reduction of Peak-to-Average Power Ratio in
Transform Domain Communication Systems

Richard K. Martin and Marshall Haker

Abstract—Transform Domain Communication Systems
(TDCS) are spectrum-scavenging systems which modulate data
by a waveform whose magnitude is non-zero only in unused
frequency bins, and whose phase is pseudo-random. This creates
a noise-like waveform suitable for secure, low probability of
intercept (LPI) communications, as well as spectrum-sharing
applications. However, it also creates a high peak-to-average
power ratio (PAPR). We investigate PAPR reduction in TDCS
by modifying the projection onto complex sets approach for
multicarrier systems. Simulations show that adequate PAPR
reduction is achieved, transmitter-receiver waveform mismatches
are not exacerbated by PAPR reduction, and the resulting
waveform is still LPI.

Index Terms—Peak-to-average power ratio, interference sup-
pression.

I. INTRODUCTION

TRANSFORM domain communication systems (TDCS)
[1], [2] employ dynamic spectrum access by sensing the

available spectrum, and only transmitting on unused frequency
bins. This is done by forming a frequency-selective pulse
shape that will be used for pulse amplitude modulation (PAM).
The magnitude of the pulse shape is determined by the
available spectrum, and a pseudo-random phase is assigned
to each frequency bin. By using a low transmit power and
the pseudo-random phases, the waveform appears noise-like
and allows for undetected coexistence. This enables covert
communications for the military, hence TDCS have been
investigated by the Air Force Research Labs and the Air
Force Institute of Technology for some time [1], [3]. Since
it transmits in “spectrum white space,” TDCS can also be
used for dynamic spectrum access in a cognitive radio, as a
spectrum overlay secondary user [4]; and since it transmits at
low power, it can be used on the control channel in cognitive
radios [2].

In a multicarrier system, each time domain sample is a
weighted sum (i.e. an IFFT) of many independent random
variables, which are often drawn from a QAM constellation. In
a TDCS, each time domain sample is a weighted sum of many
independent random variables, which have a distribution of a
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unit magnitude and a (pseudo) random phase. By the central
limit theorem, the time-domain samples are approximately
Gaussian, yeilding a high peak-to-average power ratio (PAPR)
[5], [6], [7]. This is a problem for RF amplifiers, which usually
operate in a small linear region. However, we actually desire
for the signal to look Gaussian, since for a given transmit
power, the source distribution with the highest entropy (and
thus with the least apparent stucture to be used for detection) is
a Gaussian. (Note that the IFFT does not change the entropy of
the entire length-𝑁 waveform, but the entropy of an individual
sample can be maximized.)

PAPR reduction has been thoroughly studied in the context
of multicarrier systems [8]. However, the problem is somewhat
different for TDCS, since the resources that can be manipu-
lated are more limited. In [5], the frequency domain block is
partitioned into pieces, each piece is weighted, and they are
recombined. Similarly, in [9], [10] each block is partitioned,
phase rotations are applied, and the order of the pieces is
permuted, either within a symbol [9] or across antennas [10].
However, for these methods, side information (the weights)
must be known; and in TDCS, if the initial set of used
tones differ slightly at the transmitter and receiver (due to
imperfect spectrum estimates), the sets of used tones cannot
be partitioned in a consistent manner and the final transmitted
waveform and receiver matched filter may differ greatly.

In [6], [7], [11], [12] “tone reservation” was used, wherein
small values were transmitted on the otherwise unused null
tones in a multicarrier system. In [6], the reserved tones
were set by alternating clipping in the time domain and
restoration of the data tones in the frequency domain; in
[11], [12] they were set using a gradient method; and in [7]
they were set by first balancing the two largest time-domain
spikes, then decreasing them to balance with the third spike,
and so on. Similarly, “active constellation extension,” [13]
injects additional power into the data tones. The method of
PAPR reduction we will use in this paper is similar to tone
reservation or constellation extension, with the main difference
being that we will adjust the phases rather than the magnitudes
of the signal in the frequency domain. We will adapt the
method of [6], although in principle the methods of [7], [11],
[12] could also be used. In contrast to multicarrier systems,
we have a magnitude constraint (low power on used tones, no
power on currently occupied tones) which is why we do not
directly apply the methods of [6], [7], [11], [12]; and PAPR
reduction cannot exacerbate potential waveform mismatches
between the transmitter and the receiver, which is why we do
not apply the methods of [5], [9], [10]. The contributions of
this paper are a modification of [6] suitable for TDCS and
a study of the tradeoff of PAPR reduction and the desired
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properties of TDCS.
We use 1𝑚,𝑛 and 0𝑚,𝑛 to indicate 𝑚× 𝑛 matrices of ones

or zeros. The vector operations ∥ ⋅ ∥, ⟨⋅⟩, and ⊙ are the 2-
norm, the sample average, and the Hadamard (element-wise)
product; and (⋅)𝑇 , (⋅)∗, and (⋅)𝐻 indicate transpose, conjugate,
and Hermitian transpose. Elements of a vector are given in
brackets. ℱ and ℱ−1 indicate the fast Fourier transform (FFT)
and its inverse.

II. SYSTEM MODEL

The system model is depicted in Fig. 1. All processing
is performed at an oversampling factor of 𝑁 compared to
the symbol rate. The transmitter and receiver independently
monitor the spectrum use, and create a spectral mask m of 𝐿
ones and 𝑁 −𝐿 zeros (not necessarily contiguous) indicating
which of the 𝑁 frequency bins are available for use. This
is usually done by comparing the spectrum occupancy to a
threshold, which is set by determining how much interference
can be tolerated or detected by the primary user of the
spectrum. 𝐿 is determined by the number of unoccupied bins.
Next, a pseudo-random (PR) sequence generator is used to
create an 𝑁 × 1 vector of phases 𝜽 that are distributed across
[0, 2𝜋), which are applied element-wise to the spectral mask.
The resulting vector is passed through an inverse fast Fourier
transform (IFFT) and scaled to the desired power level. The
PR phases make this waveform appear Gaussian. Thus, the
TDCS waveform in the frequency-domain and time-domain
(respectively) are the 𝑁 × 1 vectors

X = 𝜎𝑥 m⊙ 𝑒𝑗𝜽 , (1)

x = ℱ−1X, (2)

where 𝜎2
𝑥 is the transmitted power per frequency bin. The

vector x will pass through a digital-to-analog converter to
create the continuous-time frequency-selective pulse shape,
although we perform an approximate analysis by considering
the discrete-time waveform x. Then x is used as the pulse
shape for PAM. (Cyclic shift keying (CSK) is often used in
TDCS systems, but since CSK and PAM waveforms with
the same pulse shape have the same PAPR, it is sufficient
to consider PAM in this paper for simplicity.) Finally, x is
passed through a high power amplifier (we use that of (7) in
[14] with nonlinearity parameter 𝑝 = 2), and then upconverted
to passband using a single carrier frequency.

This process is performed separately at the transmitter and
receiver, with the assumption that the spectral occupancy
appears the same to both and that both use the same PR
phase sequence. If there are differing spectrum estimates,
perhaps because multipath channels from the primary user of
the spectrum induce different fading on the band edges at the
TDCS transmitter and receiver, there may be a slight mismatch
between the transmit waveform and the matched filter used by
the receiver. In this case, x, m, 𝜽, and 𝐿 will have subscripts
“tx” and “rx” as needed; whereas a lack of such a subscript
indicates agreement between the transmitter and the receiver.
The PR sequence is always the same at the transmitter and
receiver.

Fig. 1. Generation of a TDCS pulse shape waveform at the transmitter
and (ideally) identical matched filter at the receiver. Inverted triangles are
antennae, an arrow with a slash indicates a vector of data, and ⊙ indicates the
Hadamard product. Digital to analog conversion and modulation/demodulation
are not depicted, to focus attention on the generation of the pulse shape.

III. PAPR REDUCTION

Gatherer and Polley [6] used a method called “projection
onto complex sets (POCS)” which exploits the structure of
multicarrier systems. We will first review POCS in the context
of multicarrier systems, then modify it for use in TDCS. This
PAPR reduction must be performed at the transmitter and
receiver, in order to keep the waveform at both ends similar.
Many multicarrier systems have tones that carry no data, called
“null tones.” They may be used as a guard band, or they
may have insufficient SNR to effectively carry data. In IEEE
802.11a wireless LANs, for example, 12 of the 64 tones are
null tones; 11 of which form a guard band, and one of which
is the DC tone. The transmitted signals on these tones thus
have no importance to the receiver, and they can be modified
freely in an effort to reduce the PAPR.

Consider 𝑆1, the set of time domain vectors x corresponding
to input vectors X with the original data values in place but
possibly non-zero values on the null tones; and 𝑆2, the set of
time domain vectors x whose maxima are below a clipping
threshold 𝑐. POCS involves alternating projections onto the
sets 𝑆1 and 𝑆2 [6]. If the sets truly are convex as is the case
for 𝑆1 and 𝑆2, POCS is globally convergent to a time domain
vector x in the intersection of 𝑆1 and 𝑆2 if the intersection is
non-empty. The choice of 𝑐 dictates whether or not a solution
exists.

The POCS PAPR reduction algorithm for multicarrier sys-
tems is as follows:

1. IFFT the initial vector X to get a point x in 𝑆1.
2. Clip x using the threshold 𝑐. If x changes, go to step 3.

Otherwise, terminate.
3. FFT x and restore the data elements (but not the null

tones) of X to their original values.
4. IFFT to get a new x, then go to step 2.

Steps 2 and 3 each implement a projection. Each iteration
requires an FFT and an IFFT, and the algorithm must be run
in full for each transmitted block. The clipping threshold is
related to a threshold on the PAPR via

PAPR𝑜 =
𝑁𝑐2

𝐿𝜎2
𝑥

. (3)
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To modify the POCS method for use in TDCS, note that
there are no null tones in TDCS, so set 𝑆1 must be redefined.
The parameters at our disposal are the phases on the used
tones, and the constraint is that the magnitude of the spectral
mask must be maintained. Enforcing unit magnitude on the
used tones is the simplest method of enforcing a flat power
spectrum on the used tones. This also keeps any single block
from having spikes in frequency that would be more likely to
be detected or cause interference. Consider the set

𝑆1 =

{
x

∣∣∣∣ℱx =

[
1𝐿,1 ⊙ 𝑒𝑗𝜽

0𝑁−𝐿,1

]}
, (4)

where 𝜽 is any phase vector and for simplicity of notation,
the used frequency bins are assumed to be contiguous. Now
POCS can be used by simply substituting 𝑆1 for 𝑆1, and by
replacing step 3 of the POCS algorithm with

3̂. FFT x and restore the magnitudes (but not the phases)
of X to their original values.

However, there is a caveat: as opposed to 𝑆1 and 𝑆2, the set
𝑆1 is not actually convex, hence the method is not guaranteed
to find a solution. To see this, note that 𝑆 is said to be convex
if and only if for all x1,x2 ∈ 𝑆 and for all 𝛼 ∈ [0, 1], the
vector x𝑎𝑣𝑔 = 𝛼x1+(1−𝛼)x2 ∈ 𝑆. In the context of TDCS,
using (4) we have

ℱx𝑎𝑣𝑔 =

[
1𝐿,1 ⊙

(
𝛼𝑒𝑗𝜽1 + (1− 𝛼)𝑒𝑗𝜽2

)
0𝑁−𝐿,1

]
, (5)

so x𝑎𝑣𝑔 ∕∈ 𝑆1 and 𝑆1 is not convex. Thus, we refer to the algo-
rithm in this section as “Approximate POCS (APOCS),” since
the convexity is only approximate. Although convergence of
APOCS is not guaranteed, our simulations never failed to
converge, and the next section gives a heuristic justification
for this convergence.

To visualize APOCS, consider a toy problem with 𝑁 = 4,
𝐿 = 3, and

x = ℱ−1
[
𝑒𝑗𝜃1 , 𝑒𝑗𝜃2 , 𝑒𝑗𝜃3 , 0

]𝑇
(6)

= 𝑒𝑗𝜃3ℱ−1
[
𝑒𝑗(𝜃1−𝜃3), 𝑒𝑗(𝜃2−𝜃3), 1, 0

]𝑇
. (7)

The PAPR of x depends on the magnitude of its elements,
hence it only depends on two phase differences rather than
three phases. Fig. 2 shows contours of the PAPR as a function
of the phase differences, as well as two sample trajectories
of APOCS for a target PAPR of 1.5. Observe that APOCS
does not approximate a gradient descent algorithm, since
the trajectories are not quite perpendicular to the contours.
However, each iteration does drop to a lower contour.

IV. ENFORCING CONVEXITY

In this section, we show that APOCS could be slightly
modified to be globally convergent, heuristically implying that
APOCS is often globally convergent. The intent is not to
actually use the new algorithm, but to use it to justify the
convergence of APOCS.

Consider a single complex-valued element 𝑋 [𝑘] of the
initial vector X. Let 𝑋⊥[𝑘] be a unit magnitude vector

(θ
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Fig. 2. Contours of the PAPR of x, where ℱx =
[
𝑒𝑗𝜃1 , 𝑒𝑗𝜃2 , 𝑒𝑗𝜃3 , 0

]𝑇 .
There are also two sample trajectories of the APOCS algorithm. Note that
one of the phases, e.g. 𝜃3, can be factored out of ℱx, hence the signal power
depends only on two phase differences rather than three phases.

geometrically (not statistically) orthogonal to 𝑋 [𝑘] in the
complex plane,

𝑋⊥[𝑘] =
𝑋ℐ [𝑘]− 𝑗𝑋ℛ[𝑘]

∣𝑋 [𝑘]∣ , (8)

where subscripts ℛ and ℐ denote real and imaginary parts.
Let X⊥ be the vector with elements 𝑋⊥[𝑘], and let b be a
vector of real-valued weights. Consider the set

𝑆1 (X) = {x′ ∣ℱx′ = X+ b⊙X⊥, ∣𝑏[𝑘]∣ ≤ 𝜖 ∀𝑘 } . (9)

For small 𝜖, this approximates letting the phase of each 𝑋 [𝑘]
vary by a small amount, although there will be a very small
amount of magnitude distortion as well. The set 𝑆1 will
depend on the original waveform X. To show that 𝑆1 is
convex, let x1,x2 ∈ 𝑆1 and x𝑎𝑣𝑔 = 𝛼x1 +(1−𝛼)x2. Taking
the Fourier transform of x𝑎𝑣𝑔 ,

X𝑎𝑣𝑔 = 𝛼 (X+ b1 ⊙X⊥) + (1− 𝛼) (X+ b2 ⊙X⊥)
= X+ (𝛼b1 + (1− 𝛼)b2)︸ ︷︷ ︸

b𝑎𝑣𝑔

⊙X⊥. (10)

Since x1,x2 ∈ 𝑆1, we have ∣𝑏1[𝑘]∣ ≤ 𝜖 and ∣𝑏2[𝑘]∣ ≤ 𝜖 for all
𝑘. From the triangle inequality,

∣𝑏𝑎𝑣𝑔[𝑘]∣ ≤ 𝛼 ∣𝑏1[𝑘]∣+ (1 − 𝛼) ∣𝑏2[𝑘]∣
≤ 𝛼𝜖+ (1− 𝛼)𝜖 = 𝜖. (11)

Thus, ℱx𝑎𝑣𝑔 = X + 𝑏𝑎𝑣𝑔 ⊙ X⊥ with ∣𝑏𝑎𝑣𝑔[𝑘]∣ ≤ 𝜖 ∀𝑘, so
x𝑎𝑣𝑔 ∈ 𝑆1 and 𝑆1 is convex.

To project the output of the clipping step, x𝑐𝑙𝑖𝑝, onto this
set, we must find the vector in 𝑆1 that is closest in Euclidean
distance, in either the time or frequency domain. Let the FFT
of the clipped waveform be X𝑐𝑙𝑖𝑝 = X + Δ, where Δ =
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e⊙X+ b𝑐 ⊙X⊥ for some e and b𝑐; and let the projection
(to be determined) be X𝑝𝑟𝑜 = X+ b⊙X⊥. The distance is
minimized via

b = arg min
b,∣𝑏[𝑘]∣≤𝜖

∥X𝑐𝑙𝑖𝑝 −X𝑝𝑟𝑜∥2

= arg min
b,∣𝑏[𝑘]∣≤𝜖

𝑁∑
𝑘=1

((𝑏𝑐𝑙𝑖𝑝[𝑘]− 𝑏[𝑘])𝑋⊥[𝑘] + 𝑒[𝑘]𝑋 [𝑘])
2
.

(12)

The squared terms can be minimized separately for each value
of 𝑘, via

𝑏[𝑘] = arg min
𝑏[𝑘],∣𝑏[𝑘]∣≤𝜖

((𝑏𝑐𝑙𝑖𝑝[𝑘]− 𝑏[𝑘])𝑋⊥[𝑘] + 𝑒[𝑘]𝑋 [𝑘])
2

=

{
𝑏𝑐𝑙𝑖𝑝[𝑘], ∣𝑏𝑐𝑙𝑖𝑝[𝑘]∣ ≤ 𝜖
𝜖 sign (𝑏𝑐𝑙𝑖𝑝[𝑘]) , ∣𝑏𝑐𝑙𝑖𝑝[𝑘]∣ > 𝜖

. (13)

Thus, the projection first restricts each 𝑋 [𝑘] to lie in the
subspace given by 𝑏[𝑘]𝑋⊥[𝑘] for any value of 𝑏[𝑘], then it
restricts the magnitude of 𝑏[𝑘] to be at most 𝜖. We call the
resulting algorithm “Enforced POCS (EPOCS).” It involves
substituting 𝑆1 for 𝑆1, and by replacing step 3 of the POCS
algorithm with

3̃. FFT x. For each element 𝑘, restore the component in
the 𝑋 [𝑘] direction to its original value and clip the
component in the 𝑋⊥[𝑘] direction to length 𝜖.

𝑆1 is very similar to 𝑆1 for small 𝜖, since X⊥ leads primarily
to phase rotations of elements of X with very little magnitude
distortion; hence APOCS and EPOCS will lead to similar
waveforms. Since 𝑆1 is convex, EPOCS is globally conver-
gent, and we infer that its approximation (APOCS) is usually
globally convergent. Since EPOCS induces slight violation of
the magnitude constraints, is slightly more computationally
complex than APOCS, and performs slightly worse than
APOCS (as shown in Section VI), it is preferable to implement
APOCS rather than EPOCS.

V. PERFORMANCE METRICS

Our goals are (i) reduce the PAPR, (ii) maintain correlation
between the transmit and receive waveforms, and (iii) maintain
the noise-like quality of the waveform. For (i), PAPR will
be assessed via the complimentary cumulative distribution
function (CCDF),

CCDF (PAPR𝑜) = 𝑃 [PAPR > PAPR𝑜] . (14)

For (ii), there may be some mismatch between the transmit
and receive spectral masks, so the algorithm starts at two
different points. The final waveforms could differ significantly,
disrupting the matched filter at the receiver. We measure this
via the correlation coefficient,

𝜌 =
x𝐻
𝑡𝑥x𝑟𝑥

∥x𝑡𝑥∥∥x𝑟𝑥∥ , (15)

The effective SNR at the receiver is reduced by a factor of 𝜌,
increasing the bit error rate.

Even if the transmitter and receiver use different tones, the
initial phases on the used tones match. This is easily enforced
by always creating 𝑁 phases per symbol, even though some
are not used. Before PAPR reduction, if the transmitter uses

𝐿𝑡𝑥 out of 𝑁 frequency bins and the receiver uses 𝐿𝑟𝑥 out
of 𝑁 frequency bins, with 𝐿 bins in common, then the initial
value is

𝜌𝑖𝑛𝑖𝑡 =
𝐿𝜎2

𝑥√
𝐿𝑡𝑥𝜎𝑥 ⋅ √𝐿𝑟𝑥𝜎𝑥

=
𝐿√

𝐿𝑡𝑥𝐿𝑟𝑥

≤ 1. (16)

After PAPR reduction, the transmit and receive phases will
differ slightly, yielding

𝜌𝑓𝑖𝑛 =

∑
𝑖∈ℳ 𝑒𝑗(𝜃𝑖,𝑟𝑥−𝜃𝑖,𝑡𝑥)

√
𝐿𝑡𝑥𝐿𝑟𝑥

, (17)

where ℳ is the set of 𝐿 tones that are used by both the
transmitter and receiver. Define 𝜃𝑖 = 𝜃𝑖,𝑟𝑥 − 𝜃𝑖,𝑡𝑥, which is
zero on average. PAPR reduction decreases 𝜌 by a factor of

𝜂 =
𝜌𝑓𝑖𝑛
𝜌𝑖𝑛𝑖𝑡

=
1

𝐿

∑
𝑖∈ℳ

𝑒𝑗
˜𝜃𝑖 ≈ 1− 1

2

〈
𝜃𝑖

2
〉

(18)

by a Taylor series expansion. Recall that ⟨⋅⟩ denotes sample
average. The more the PAPR is reduced, the larger the variance
of the phase discrepancy is likely to be, and the more 𝜌 is
decreased, as shown in Section VI.

Goal (iii) can be assessed via the Lilliefors [15] and Jarque-
Bera [16] tests for Normality. The Lilliefors test computes
the empirical CCDFs of the data (samples of x) and of a
Gaussian whose mean and variance match the data. Then the
test determines whether the maximum discrepancy between
the two CCDF’s is large enough to be statistically significant.
The Jarque-Bera test computes the skewness 𝑆 and kurtosis
𝐾 (normalized third and fourth central moments of the data,
respectively), and computes the test statistic

𝐽𝐵 =
𝑁

6

(
𝑆2 +

(𝐾 − 3)
2

4

)
, (19)

where 𝑁 is the number of observations (the FFT size in our
case). For a Gaussian, 𝑆 and 𝐾 − 3 should be zero. Thus,
increasing values of 𝐽𝐵 indicate increasing departure from
Normality.

VI. SIMULATIONS

We now simulate APOCS and quantify the resulting PAPR
distribution. We also examine whether mismatches between
the transmitter’s and receiver’s spectrum estimates are mag-
nified by APOCS, and we examine the probability that the
transmitted PAPR-reduced waveform still passes the Lilliefors
and Jarque-Bera tests for normality. The TDCS has a spectral
mask of

m = [11,39,01,20,11,10,01,20,11,39]
𝑇
, (20)

hence 𝐿 = 88 out of 𝑁 = 128 frequency bins are used.
From (3), since PAPR ≥ 1, for this frequency allocation the
clipping threshold 𝑐 ≥ 0.829. We tested 𝑐 ∈ {1, 1.25, 1.5}, i.e.
PAPR𝑜 = 1.45𝑐2 ∈ {1.45, 2.27, 3.27}. In Fig. 3, the CCDF is
shown for three thresholds, for 𝑖 = 4 and 𝑖 = 10 iterations
each. 105 different waveform realizations were used. With 10
or more iterations, the PAPR is very nearly hard-limited to the
threshold, and with as few as four iterations, the majority of
the PAPR reduction is obtained. For two of the curves, we also
simulated EPOCS, obtaining almost identical results. We used



4404 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 8, NO. 9, SEPTEMBER 2009

2 3 4 5 6 7 8 9 10
10

−4

10
−3

10
−2

10
−1

10
0

PAPR
o
 [dB]

P
[P

A
P

R
 >

 P
A

P
R o]

initial

c=1.25, i=4

c=1, i=10

c=1.5, i=4

c=1.5, i=10

EPOCS
c=1.25, i=4

EPOCS
c=1.25, i=10

c=1.25, i=10

c=1, i=4

Fig. 3. Complimentary CDF of the PAPR for three different thresholds 𝑐
and two different numbers of iterations 𝑖. All curves are for APOCS except
for the two explicitly labelled “EPOCS.”
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Fig. 4. Histogram of the magnitude of the correlation coefficient 𝜌 between
the transmitted and received waveforms, after APOCS. The dash-dot line is
the correlation coefficient before PAPR reduction (note that in this case, all
104 samples fall into the same bin). The histograms have different size bins
to keep their heights comparable. The effective SNR at the receiver is reduced
by a factor of 𝜌, increasing the BER.

𝜖 = 0.1, leading to a magnitude distortion of up to 0.5% on
each tone. Note that EPOCS performs slightly worse in PAPR
than APOCS and leads to slight violation of the magnitude
constraints, which is why APOCS is preferred.

Now consider the effects of a spectral mismatch between
the transmitter and receiver, where the transmitter uses the
spectral mask of (20), and the receiver uses the spectral mask
of

m𝑟𝑥 = [11,41,01,16,11,14,01,16,11,41]
𝑇
, (21)

although the PR phases are the same at both transmitter
and receiver. This could occur if either the transmitter or
receiver imprecisely identifies the band edges of occupied
spectrum. Fig. 4 shows a histogram of ∣𝜌∣ of (15), computed
over 104 independent trials. Before PAPR reduction, we had
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Fig. 5. BER for no PAPR reduction; for PAPR reduction with 𝑐 = 1.5,
𝑐 = 1.25, and 𝑐 = 1 in the presence of spectral mismatch; and PAPR
reduction with 𝑐 = 1 with no spectral mismatch.
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Fig. 6. Results of Lilliefors and Jarque-Bera testing for normality, for the
initial TDCS waveforms and the outputs of the PAPR reduction for various
clipping thresholds. “Both” indicates the fraction of symbols that tested as
Normal under both tests at once.

∣𝜌∣ = 0.957 due to the difference in the number of used
tones. After 100 iterations of APOCS, the correlation only
decreased by a small amount; although it dropped as low as
0.802 in some cases, when the PAPR reduction was greatest.
Fig. 5 shows the bit error rate (BER) versus SNR with and
without PAPR reduction, in the presence of both the spectral
mismatch described above and a nonlinear amplifier, for an
AWGN (flat-fading) channel. The PAPR reduction improves
the BER by reducing distortion to the transmitted waveform,
while the spectral mismatch degrades the BER; but overall
PAPR reduction helps. However, note that the simulation
parameters were chosen to be extreme, and in many cases
the BER differences will be smaller than shown in Fig. 5.
More common benefits of PAPR reduction include improving
power efficiency and reducing out-of-band interference [8].

Fig. 6 shows the results of the Lilliefors and Jarque-Bera
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tests, before and after PAPR reduction. This indicates the
fraction of the waveforms (out of 104) that tested as Normal,
and the curve “both” indicates the fraction of the waveforms
that simultaneously satisfied both tests. For thresholds above
1.25, almost all of the waveforms were normal, but below
this value, the fraction dropped off quickly. Oddly, between
thresholds of 1.2 to 2.2, PAPR reduction appears to actually
increase the chance that the signal appears Gaussian. This
is because reducing the PAPR reduces the kurtosis, but the
JB test statistic of (19) depends on the square of the excess
kurtosis. Thus, if the average kurtosis decreases monotonically
with decreasing thresholds, the average JB test statistic need
not increase monotonically.

VII. CONCLUSIONS

We have investigated the POCS method of PAPR reduc-
tion in TDCS. Despite the fact that the set of the desired
waveforms is not convex, our modified APOCS algorithm
significantly reduces the PAPR. When the transmitter and
receiver have mismatched spectral estimates, the magnitude
of the correlation coefficient between the transmitter’s and
receiver’s waveforms drops, but not severely (from 0.96 to
0.80 in the worst case we have observed). By comparing the
amount of PAPR reduction for various thresholds in Fig. 3,
the amount of possible waveform decorrelation for various
thresholds in Fig. 4, and the likelihood of retaining a Gaussian
appearance for various thresholds in Fig. 6, a value of the
threshold that best balances the desired criteria can be selected.
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