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Abstract—Image-aided navigation techniques can determine
the navigation solution (position, velocity, and attitude) by observ-
ing a sequence of images from an optical sensor over time. This
operation is based on tracking the location of stationary objects
in multiple images, which requires solving the correspondence
problem. This paper enhances previous research efforts to char-
acterize the correspondence problem using fundamental optical
principles and statistical temporal sampling theory by including
a rigorous derivation of the Nyquist constraint in pixel space. This
development results in a general temporal sampling constraint and
reveals the essential connection between the deleterious effects of
temporal aliasing and the ambiguities that plague the correspon-
dence search problem. This temporal image sampling constraint is
expressed as a function of the navigation trajectory for elementary
camera motions. The predicted temporal sampling (also known
as frame) rates are on the order of those needed for adaptive
optics control systems and require very large bandwidths. The
temporal image sampling constraint is then reevaluated by in-
corporating inertial measurements. The incorporation of inertial
measurements is shown to reduce the required temporal sampling
rate to practical levels, which evidences the fundamental synergy
between image and inertial sensors for navigation and serves as
the basis for a real-time adaptive antialiasing strategy.

Index Terms—Image processing, machine vision, navigation.

I. INTRODUCTION

A S ORIGINALLY presented in [1], it is well known that
optical measurements provide excellent navigation infor-

mation when properly interpreted. Optical navigation is not
new. Pilotage is the oldest and most natively familiar form of
navigation to humans and other animals. Mechanical instru-
ments such as astrolabes, sextants, and driftmeters [2] have
been used to make precision observations of the sky and ground
to improve navigation performance for centuries.

The difficulty in using optical measurements for autonomous
navigation, that is, without human intervention, has always
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been in the interpretation of the image, which is a difficulty
shared with automatic target recognition (ATR). Indeed, when
celestial observations are used, the ATR problem in this struc-
tured environment is tractable, and automatic star trackers are
widely used in astro-inertial navigation systems for long-range
aircraft, space navigation, and intercontinental ballistic missile
guidance. When ground images are to be used, the difficulties
associated with image interpretation are paramount. At the
same time, the problems associated with the use of optical
measurements for navigation are somewhat easier than those
of ATR. Moreover, recent developments in feature tracking
algorithms, miniaturization, and reduction in cost of inertial
sensors and optical imagers, aided by the continuing improve-
ment in microprocessor technology, motivate us to consider
using inertial measurements to aid the task of feature tracking
in image sequences and realize a tightly coupled image-aided
inertial navigation system (INS).

This is an active area of research, and many algorithms
exist that attempt to solve this problem by identifying a unique
feature in one image and then searching subsequent images for
a feature match [3]. This is called the “correspondence search
problem.” The correspondence problem is plagued by feature
ambiguity, temporal feature changes, as well as occlusions,
which are difficult for a computer to address. Constraining
the correspondence search to a subset of the image plane has
the dual advantage of increasing robustness by limiting false
matches and improving the search speed. A number of ad
hoc methods to constrain the correspondence search have been
proposed in the literature.

The methods are typically classified as either feature based
or optic flow based, depending on how the image correspon-
dence problem is addressed. Feature-based methods determine
correspondence for “landmarks” in the scene over multiple
frames, while optic-flow-based methods typically determine
correspondence for a whole portion of the image between
frames using correlation techniques. Optic flow methods have
been proposed in the literature, generally for elementary motion
detection, in a somewhat structured environment focusing on
determining the relative velocity or angular rates for obstacle
avoidance [4].

Feature-tracking-based navigation methods have been pro-
posed both for fixed-mount imaging sensors or gimbal-mounted
detectors that “stare” at the target of interest; this is similar
to the gimballed infrared detector on some heat-seeking mis-
siles. Many feature-tracking-based navigation methods exploit
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knowledge (either a priori, through binocular stereopsis, or by
exploiting terrain homography) of the target location and solve
the inverse trajectory projection problem [5], [6]. If no a priori
knowledge of the scene is provided, egomotion estimation
is completely correlated with estimating the scene. This is
referred as the structure-from-motion problem. A theoretical
development of the geometry of fixed-target tracking, with no
a priori knowledge, is provided in [7]. An online (extended-
Kalman-filter-based) method for calculating a trajectory by
tracking features at an unknown location on the Earth’s surface,
provided that the topography is known, is given in [8]. Finally,
navigation-grade inertial sensors and terrain images collected
on a T-38 “Talon” are processed, and the potential benefits of
optical-aided inertial sensors are experimentally shown in [9].
The inertially aided feature tracking theory applies to objects
with known velocity relative to the camera. The most general
class of objects with this property are stationary (relative to
the Earth); however, the theory could be applied in other
situations where the target velocity might be known. We have
not addressed this more-advanced topic in this paper.

Many methods for solving the correspondence problem have
been proposed in the computer vision literature. A popular
algorithm is the Lucas–Kanade feature tracker [10], which
relies on the premise of the invariance of the intensity field
between images. It uses a template correlation algorithm to
minimize the sum of squared differences between image in-
tensities. The algorithm typically assumes a linear (xy plane)
motion model but can be extended to optimize over affine
or bilinear transformations. Other feature correspondence al-
gorithms have been proposed that are invariant to rotations,
scaling, or both (e.g., [11]). More robust feature tracking al-
gorithms are typically computationally expensive, and a de-
signer must trade tracking robustness and accuracy for real-time
performance.

This paper is organized as follows. Current techniques for
constraining the correspondence search problem are outlined
in Section II. The general spatial-temporal image sampling
problem is described in Section III, which provides a theoretical
basis for the derivation of a set of sampling constraints in
Sections IV and V for situations where inertial aiding is avail-
able and unavailable. The effects of relative motion between
the camera and the world are derived in Section VI, and the
overall theory is demonstrated using an illustrative case study
in Section VII.

II. CURRENT CORRESPONDENCE

CONSTRAINT APPROACHES

Exploiting inertial measurements to constrain the correspon-
dence search has been proposed in the literature. In this section,
two methods that exploit inertial measurements are discussed.

Bhanu et al. [12] utilize inertial measurements to compensate
for rotation between images and to predict the focus of expan-
sion in the second image. Once the second image is derotated
and the focus of expansion is established, the correspon-
dence between interest points is calculated using goodness-of-
fit metrics. One relevant metric is the correspondence search
constraint placed on each point. This constraint ensures each

Fig. 1. Correspondence search constraint using epipolar lines. Given a pro-
jection of an arbitrary point in an initial image, combined with knowledge of
the translation and rotation to a second image, the correspondence search can
be constrained to an area near the epipolar line. Note that the epipole can be
located outside of the image plane, as shown in this example.

interest point lies in a cone-shaped region, with the apex at the
focus of expansion, bisected by the line joining the focus of
expansion and the interest point in the camera frame at the first
image time. While this constraint is not statistically rigorous, it
does show the value of using inertial measurements to aid the
correspondence problem.

Strelow also incorporates inertial measurements to constrain
the correspondence search between image frames [13]. This
constraint on the image search space is a similar concept to the
field of expansion method proposed by Bhanu et al.; however,
Strelow generalizes the approach by exploiting epipolar geome-
try. The projection of an arbitrary point in an image is described
by an epipolar line in a second image. All epipolar lines in an
image converge at the projection of the focus of the compli-
mentary image. Combining knowledge of the translation and
rotation between images and the pixel location of a candidate
target in the first image, a correspondence search can then be
constrained to an area “near” the epipolar line. This approach is
illustrated in Fig. 1.

Strelow’s method of using inertial measurements to con-
strain the correspondence search along an epipolar line is
ad hoc, since the search space is not statistically defined. This
method could be improved by utilizing a stochastically rigorous
development.

In previous publications, we have presented an approach that
leverages the inertial measurements and any available terrain
information to predict the locations and statistical uncertainty
of features in a new image [14], [15]. Our goal in this paper
is to expand the stochastic constraint theory to an elemental
level that is dependent on the inherent optical properties of
the sensor. Analyzing the correspondence problem from this
perspective reveals the parallel nature between feature corre-
spondence searching and temporal sampling theory in signal
processing, which is well understood. As a result, feature cor-
respondence ambiguity is shown to be analogous to temporal
aliasing. Thereby, sampling theory can be used to predict and
mitigate/avoid the presence of temporal aliasing in the feature
space.
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Fig. 2. Digital imaging system. The imaging system transforms the scene into a digital image. The major components of the camera are the optics, the light
detector, the amplifier, and the analog-to-digital converter.

In the next section, the theory of image sampling is devel-
oped from first principles, with particular attention paid to the
anticipated issues with regard to temporal sampling.

III. GENERAL IMAGE SAMPLING PROBLEM

The mathematical relationships governing spatial-temporal
sampling are developed from basic optical and sampling theory.
This development provides a theoretical basis that is used to
develop temporal sampling constraints in subsequent sections.
In this paper, temporal sampling rates and frame rates are used
synonymously.

Notation: (·)∗, (·)T , (·)H , and E{·} denote complex conju-
gate, matrix transpose, Hermitian (conjugate) transpose, and
statistical expectation, respectively, and j =

√
−1 is the unit

imaginary number. Throughout, ν denotes a spatial frequency
in units of per meter, and f denotes a temporal frequency in
units of hertz.

For clarity, the applicable sensor modeling development is
included from [1]. A digital imaging device is, in essence, a
sampler of light intensity patterns in three dimensions: two
spatial and one temporal. Analyzing the effects of the sampling
process on image sequences resulting from camera motion with
due regard given to the motion’s dynamics has very important
implications on how to properly interpret image sequences to
derive navigation information.

A. Effects of Egomotion on Image Formation

As discussed in the previous section, the recorded image
is a representation of the optical intensity patterns generated
by a scene. The projection function is a function of the scene
itself, the camera optical properties, and the pose (i.e., relative
position and orientation) of the camera and scene. This strong
coupling between camera pose and the image is the basis for
the rapidly growing research efforts dedicated to exploiting
images to determine changes in camera pose. In this section,
the geometric projection function is developed using a pinhole
camera model. This model will be used as a basis to quantify
the effects of egomotion and temporal sampling.

B. Optical Sensor Model

An optical sensor is a device designed to measure the in-
tensity of optical energy (light) entering the sensor through an
aperture. Imaging sensors consist of an array of light-sensitive
detectors that create a 2-D light intensity measurement (i.e.,
sampled image). In this section, the basic physical properties
of an optical sensor are presented, and a model representing an
optical sensor is given.

For the purposes of this discussion, the world is defined
as a collection of all real objects. Some objects are sources
of radiometric illumination or radiance. These light sources
illuminate the world and interact with the other physical
objects through various types of reflection. The amount of
light along a certain direction is defined as the irradiance
[3]. The physical irradiance pattern entering the aperture of
the optical sensor is defined as the scene and is represented
by a continuous array of nonnegative real numbers, i.e.,
o(x, y, t), projected onto the image plane. For the purposes
of this discussion, the irradiance sources are constrained to
an arbitrary piecewise-continuous Lambertian surface in three
dimensions.

A digital optical imaging sensor consists of an aperture, a
lens, a detector array, and a sampling array, as shown in Fig. 2.
The lens focuses the scene on the detector array. The light
pattern focused on the detector array is defined as the image
and is represented by i(x, y, t). In statistical terms, the image
is the mean photon arrival rate and is defined by a Poisson
distribution [16]. The detector array converts the light energy
into a voltage or a charge that is converted to a digital value
by the sampling array. The sampling array is assumed to be
a square grid, although other patterns can be designed (e.g.,
honeycomb) [17].

The lens is an analog low-pass filter in the spatial domain,
with a cutoff frequency (νc) determined by the aperture (D),
wavelength of light source (λ), and focal length of the camera
(f0) [16]:

νc =
D

λf0
(1)
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Fig. 3. Effects of camera optics on image spatial frequency. The camera optics
act as a low-pass filter with a cutoff frequency of νc. The scene, which is
wideband, appears as a band-limited image on the detector array.

Thus, a scene consisting of a point source of light (delta
function intensity) would appear slightly blurred (spread) on
the image plane. Assuming spatial invariance, this blurring due
to the lens is represented by the point spread function (PSF),
which is denoted as h(ξ, ρ), where ξ and ρ are the spatial
differences in the x- and y-directions, respectively. The image
in the spatial domain can now be mathematically expressed as
the convolution of the scene and PSF [18], i.e.,

i(x, y, t) =
∫

ξ∈X

∫
ρ∈Y

o(ξ, ρ, t)h(x − ξ, y − ρ) dρ dξ. (2)

The image is physically continuous in space and time. This
continuous function of three variables is then sampled and
converted to an array of (digital) numbers. Concerning the
sample process, the light energy in the image is integrated in
each pixel over a temporal period defined as the dwell time
(Δt). The sampled image (is[m,n, tk]) is obtained for integer
pixel location (m,n) and sample time tk as

is(m,n, tk)=

m+Δx/2∫
m−Δx/2

n+Δy/2∫
n−Δy/2

tk+Δt/2∫
tk−Δt/2

i(x, y, tk) dx dy dt (3)

where Δx and Δy correspond to the pixel dimensions in the
x- and y-directions, respectively. The frequency-domain rep-
resentation of the PSF H(νx, νy) is called the optical transfer
function. Applying the Fourier transform to the image equation
(2) yields

i(νx, νy, t) = o(νx, νy, t)h(νx, νy). (4)

In most conditions, the projected scene can be treated as
a wideband function relative to the optical transfer function
(i.e., νcscene � νcOTF). This results in the following spatial
frequency limitation of the projected image:

i(νx, νy, t) = 0 ∀
√

ν2
x + ν2

y > νc (5)

with autocorrelation function denoted as Ri(x, y). This rela-
tionship is graphically expressed in Fig. 3.

For simplicity, we will assume that the primary time depen-
dence of the observations is due to spatial translations, i.e.,

i(x, y, t) = i (x − δx(t), y − δy(t), 0) . (6)

This is a reasonable assumption if we are rapidly sampling
and focusing on a small subregion of the image, e.g., for
feature tracking. Due to the various effects discussed in [1],
we assume that the instantaneous velocity of the translation is
(ṡproj

x , ṡproj
y ), which is bounded in magnitude by ṡmax.

The cutoff frequency of the PSF dictates that the image be
spatially sampled at

Δx = Δy = Δpixel ≤
1

2νc
. (7)

The goal of this paper is to determine the temporal sampling
rate necessary to enable feature correspondence determination
across successive frames with minimal effort. This is equivalent
to requiring that a feature not move more than one pixel be-
tween successive frames. This, in turn, is equivalent to requiring
that the image be sampled fast enough such that there is no
temporal aliasing in a given pixel when viewed as a function
of time.

IV. INERTIAL NAVIGATION SYSTEM-UNAIDED TEMPORAL

SAMPLING REQUIREMENTS

Given the model in Section III-B, the worst-case scenario is
when the scene is being translated with a constant rate ṡmax in
either direction. Assuming that the motion is in the x-direction,
viewing pixel (xo, yo) over time yields the continuous-time
intensity signal u(t) given by

u(t) Δ= i(xo, yo, t) = i(xo + ṡmaxt, yo, 0). (8)

The Fourier transform of u(t) is related to the PSF, which, in
turn, will provide a Nyquist criterion for sampling. It is easy to
derive the 1-D Fourier transform pair, i.e.,

i(x, yo, 0) ⇐⇒
∫

I(ν, νy)ej2πνyyo dνy
Δ= V (ν). (9)

Since I(νx, νy) = 0 for νx ≥ νc, we also have V (ν) = 0 for
ν ≥ νc. Using V (ν), the Fourier transform of u(t) is

U(f) =
∫

i(xo + ṡmaxt, yo, 0)e−j2πft dt (10)

=
1

ṡmax
ej2π(f/ṡmax)xo

∫
i(x, yo, 0)e−j2π(f/ṡmax)x dx

(11)

=
1

ṡmax
ej2π(f/ṡmax)xoV (f/ṡmax) (12)

and U(f) = 0 for f/ṡmax ≥ νc or, equivalently, for f ≥
ṡmaxνc. Thus, the Nyquist temporal sampling criterion is

ft ≥ 2ṡmaxνc. (13)

Assuming square pixels that are sized according to the spatial
Nyquist sampling constraint (i.e., νx = νy = 2νc) results in the
following pixel size (7):

Δpixel =
1

2νc
. (14)
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Substituting (14) into (13) results in the normalized temporal
sampling constraint, i.e.,

ft ≥

√(
ṡproj

x

)2

+
(
ṡproj

y

)2

Δpixel
. (15)

As a result, to minimize temporal aliasing, the Nyquist rate
can be achieved by ensuring that no feature moves more than
one half of the minimum distance between intensity peaks
in the image plane. Given an optical cutoff frequency of νc,
the temporal sampling interval Ts should be chosen such that
the maximum image shift due to camera motion is less than
1/2νc. This implies a fundamental interrelationship between
the minimum spatial and temporal sampling intervals, which
is somewhat similar to the spatial-temporal discretization con-
straint found when solving the heat partial differential equation,
which is also known as the von Neumann condition [19].

In the next section, a mathematical model describing the
relationship between point locations in the world and the image
will be derived. The resulting projection equations will be used
to calculate appropriate temporal sampling intervals, based on
scene geometry and camera motion.

V. INERTIAL NAVIGATION SYSTEM-AIDED SAMPLING

Now, assume that an INS is used to recenter each frame based
on the estimated motion of the camera with respect to the scene.
The time-dependent translation becomes a random process that
is represented by δx(t) and δy(t) in the x- and y-directions,
respectively. For simplicity, we model this as a Wiener process,
with distribution[

δx(t)
δy(t)

]
∼ N

([
0
0

]
,

[
σ2t 0
0 σ2t

])
(16)

where σ is given in [1] as

σ = f0
√

qw (17)

qw = 4.2 × 10−7 (18)

where σ is in units of m
√

s, and qw is in units of rad/s.
To determine the sampling rate, we must find the cutoff

frequency of the power spectral density (PSD) of the random
process, i.e.,

i(xo, yo, t) = i (xo − δx(t), yo − δy(t), 0) . (19)

For simplicity, consider a 1-D version of the problem, i.e.,

i(xo, t) = i (xo − δ(t), 0) . (20)

The PSD of i(xo, t) is the Fourier transform of its autocorre-
lation function. The autocorrelation function is

R(τ) = E {i(xo, 0)i (xo − δ (|τ |) , 0)} . (21)

Treating o as a random process and breaking up the ex-
pectation into expectation over o and δ in turn, we get the

Fig. 4. Function pδ(δ; τ) for δ = σ = 1, as a function of τ .

following:

R(τ) = E(δτ) {Eo {i(xo, 0)i (xo − δ (|τ |) , 0)}} (22)

=
∫

pδ(δτ)
[∫

po(o)i(xo, 0)i(xo − δ, 0)do
]

︸ ︷︷ ︸
Ri(δ)

dδ

= E(δτ) {Ri(δ)} . (23)

Thus, the autocorrelation function of a pixel is the expected
value of the autocorrelation of a single frame of the image. The
expected value is taken with respect to a spatial shift of δ, where
δ is normally distributed as in (16), and the time variable τ
is a parameter of the distribution pδ(δ; τ). This distribution is
shown as a function of τ in Fig. 4.

Taking the Fourier transform of R(τ) with respect to τ and
then representing Ri(δ) in terms of its Fourier transform, we
get the following:

S(f) =
∫ [∫

pδ(δτ)Ri(δ)dδ

]
e−j2πfτ dτ

=
∫ ∫

pδ(δτ)
∫

Si(ν)ej2πνδdνdδe−j2πfτ dτ

=
∫ ∫

Si(ν)
[∫

pδ(δτ)ej2πνδdδ

]
e−j2πfτ dν dτ. (24)

The bracketed term in the last line of (24) is the Fourier
transform of a Gaussian, which is itself a Gaussian; hence

S(f) =
∫

Si(ν)
[∫

e−(2π2σ2ν2)|τ |e−j2πfτ dτ

]
dν. (25)

The bracketed term in (25) is the Fourier transform of a two-
sided exponential, which can also be computed via a lookup
table, i.e.,

S(f) =
∫

Si(ν)
[

σ2ν2

π2σ4ν4 + f2

]
dν. (26)
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If a similar analysis is performed in 2-D, the result analogous
to (26) can be shown to be

S(f) =
∫ ∫

Si(μ, ν)
[

σ2(μ2 + ν2)
π2σ4(μ2 + ν2)2 + f2

]
dμ dν. (27)

Equation (27) cannot be further simplified without assuming
a specific form for Ri(δx, δy) or, equivalently, for Si(μ, ν).
However, note that we have previously assumed that Si(μ, ν) =
0 for

√
μ2 + ν2 ≥ νc. Moreover, the bracketed term in (27) will

rapidly drop off for f > πσ2(μ2 + ν2). Thus, (27) has an ap-
proximate cutoff frequency of πσ2ν2

c , yielding an approximate
Nyquist temporal sampling criterion of

ft � 2πσ2ν2
c |νc=

1
2Δpixel

= 2πf2
0 qw

(
1

4Δ2
pixel

)

=
π

2
f2
0 qw

Δ2
pixel

. (28)

Thus, a rough bound for the maximum sampling interval is

Ts ≤
(

2
π

) Δ2
pixel

f2
0 qw

. (29)

The rate of variance increase σ2 has units of square meters
per second and the frequency νc has units of per meter; hence,
ft has units of hertz.

Consider the specific cases of a PSD with a triangular or a
rectangular cross section, i.e.,

Stri
i (μ, ν) =

{
1 −

√
μ2 + ν2/νc,

√
μ2 + ν2 ≤ νc

0, else
(30)

Srect
i (μ, ν) =

{
1,

√
μ2 + ν2 ≤ νc

0, else.
(31)

The triangular PSD is representative of most imaging de-
vices. On the other hand, the rectangular PSD will give us
a bound on performance and force us to choose the most
conservative sampling frequency, since it has the most high-
frequency content of all PSDs with a cutoff frequency of νc.
Converting (27) into polar coordinates, we get the following:

S(f) =

2π∫
0

νc∫
0

Si(ρ, θ)
[

σ2ρ2

π2σ4ρ4 + f2

]
ρ dρ dθ. (32)

Making the substitutions z = σρ/
√

f and zc = σνc/
√

f and
substituting in the two example PSDs, we get the following:

Stri(f) =
2π

σ2

zc∫
0

(
1 − z

zc

)
z3

π2z4 + 1
dz (33)

Srect(f) =
2π

σ2

zc∫
0

z3

π2z4 + 1
dz. (34)

The first integral can numerically be evaluated as a function
of zc, allowing numerical evaluation of Stri(f) in terms of

Fig. 5. PSD of a pixel over time, recentered using the INS measurements,
assuming a triangular or a rectangular PSD for a single observed image frame.

f/(πσ2ν2
c ). The latter integral can be evaluated in closed

form as

Srect(f) =
1

2πσ2
ln
(

1 +
π2σ4ν4

c

f2

)
. (35)

The two resulting PSDs are shown in Fig. 5. Note that they
exhibit a delta-function-like behavior in that, at f = 0, they go
to infinity, but the spikes are infinitesimally narrow with a finite
area.

To obtain an approximate temporal Nyquist sampling crite-
rion, consider the fraction of the energy in each PSD within
−Δ < f < Δ. For the triangular image PSD, this must be
numerically evaluated, but for the rectangular image PSD, it
can be shown that∫Δ

−Δ Srect(f)df∫∞
−∞ Srect(f)df

=
2
π

tan−1(γ) +
γ

π
ln(1 + γ−2) (36)

γ
Δ=

Δ
πσ2ν2

c

. (37)

One minus the ratio in (36) and the analogous numerical
result for the triangular PSD are plotted in Fig. 6. The ap-
proximate bound in (28), corresponding to γ = 1, captures all
but 30% of the energy for the conservative bound (from the
rectangular image PSD) and all but 20% of the energy of the
more representative bound (from the triangular image PSD).
The amount of energy that causes temporal aliasing will drop
to 2% to 3% if the sampling frequency is increased by an order
of magnitude.

VI. EGOMOTION EFFECTS ON TEMPORAL SAMPLING

In the previous section, the effects of egomotion on the
formation of the image are presented. In this section, the ego-
motion effects on temporal sampling are illustrated. Reducing
the spatial dimensionality of the problem from two to one is
performed to illustrate the effects of egomotion on temporal
sampling in a manner that is easier to visualize.
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Fig. 6. Fraction of energy of the PSD outside of −Δ < f < Δ. The solid
curve was analytically evaluated, and the dashed curve was numerically
evaluated.

Fig. 7. Camera image array. The camera imager consists of an (M × N)
array of pixels. The physical height and width of the array are represented by
H and W , respectively.

A. Reference Frames and Notation

In this paper, three reference frames are used to describe
the general imaging problem. The navigation reference frame
is a 3-D orthogonal basis used to represent locations relative
to the world with respect to an arbitrary origin. A vector
coordinitized in the navigation reference frame is denoted using
the “n” superscript, e.g., pn. The camera reference frame is a
3-D orthogonal basis with origin located at the optical center
of the camera, with the z-axis pointing toward the principal
point (out the front of the camera). The x- and y-axes are
aligned as shown in Fig. 7. A vector coordinitized in the camera
reference frame is denoted using the “c” superscript, e.g., sc.
Finally, the pixel plane reference frame is a 2-D orthogonal
basis used to represent a pixel location on the image plane.
A vector coordinitized in the pixel plane reference frame is

denoted using the “pix” superscript, e.g., spix. The pixel plane
reference frame is measured in units of pixels. For simplicity,
it is assumed that the inertial sensor is rigidly mounted to the
imaging device such that motion of the camera with respect to
the inertial frame is observed. This assumption can be made
without loss of generality as any camera motions are captured
whether the camera/IMU sensor is mounted on a pan/tilt rig or
when mounted on a 6-degree-of-freedom platform.

B. Projection Theory

The camera optical properties define the relationship be-
tween the scene and the projected image. Recalling the simple
camera model (see Fig. 2), the lens focuses the incoming irradi-
ance pattern (i.e., scene) onto the image plane. For a theoretical
thin lens, the projection is a function of the focal length of
the lens and the distance from the lens. This relationship is
expressed by the fundamental equation of the thin lens [3], i.e.,

1
Z

+
1
z

=
1
f0

(38)

where Z is the distance from the object to the lens, z is the
distance from the lens to the image plane, and f0 is the focal
length.

As the aperture of the thin lens decreases to zero, the system
can be modeled as a pinhole camera. In this model, all incoming
light must pass through the optical center and is projected on an
image plane located at a distance f from the lens. The resulting
image is an inverted projection of the scene.

This model can further be simplified by placing a virtual
image plane in front of the optical center. Given a point source
at location sc ∈ 3, the resulting location of the point source
on the image plane, relative to the optical center of the camera,
is given by

sc
proj =

(
f0

sc
z

)
sc = f0sc (39)

where sc
z is the distance of the point source from the optical

center of the camera in the zc direction. The underline indi-
cates a vector expressed in homogeneous notation, which is
given by

sc =
1
sc

z

sc. (40)

To interpret the calculated projection in a digital image,
the physical image plane coordinates must be converted to
a coordinate system based on pixel location. The following
development defines the pixel coordinate system and derives
the transformation from the physical image plane to the pixel
location. The image plane consists of an (M × N) grid of
rectangular pixels with height H and width W , shown in Fig. 7.
The origin of the projection frame is located at the physical
center of the array. The origin of the pixel coordinate system
is located beyond the upper left corner of the array, such that
the center of the upper left pixel corresponds to the (1, 1) pixel
coordinate. This definition of pixel coordinates corresponds to
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Fig. 8. Target to image transformation geometry. The relationship between
the camera position (p) and the target location (t) can be expressed in pixel
coordinates using transformations based on the navigation state and intrinsic
camera parameters.

the elemental matrix locations when the image is stored in a
computer. This can be expressed as a two-element vector, i.e.,

spix =
[
u

v

]
(41)

where u and v are the row and column corresponding to the
pixel of interest, with units of pixels.

The transformation from the projection coordinates to pixel
coordinates is given by

spix =
[− 1

Δx
0 0

0 1
Δy

0

]
sc
proj +

[
M+1

2
N+1

2

]
(42)

where Δx and Δy are the sizes of the pixels in the x-and y-
directions, respectively, which are defined as

Δx =
H

M
(43)

Δy =
W

N
. (44)

Combining (39) and (42) and expressing the projected pixel
location vector using homogeneous coordinates yields the fol-
lowing affine transformation from the camera frame to the pixel
location:

spix =

[
− f0

Δx
0 M+1

2

0 f0
Δy

N+1
2

]
sc (45)

=Tpix
c sc. (46)

A transformation from a landmark location in navigation
frame coordinates to pixel coordinates can now be derived
based on the navigation state. The geometry is shown in Fig. 8.
The line-of-sight vector s is the vector difference between
the target location t and the camera position, which are both
available in navigation frame coordinates, i.e.,

sn = tn − pn. (47)

The resultant vector can be transformed to the camera ref-
erence frame using the navigation-to-camera frame direction
cosine matrix, i.e.,

sc = Cc
nsn. (48)

Finally, the pixel location is calculated using (46).

C. Apparent Pixel Motion Calculations

The previous development is extended to illustrate the appar-
ent pixel motion of a point feature due to relative motion. The
development begins by recalling the camera-to-pixel transfor-
mation shown in (39)–(48), i.e.,

spix = Tpix
c sc = Tpix

c sc/sc
z (49)

where the camera frame line of sight vector sc is given by

sc = Cc
n[tn − pn]. (50)

The apparent pixel motion is derived by taking the derivative
of spix with respect to time, i.e.,

ṡpix = Tpix
c ṡc (51)

where

ṡc =
sc

z ṡ
c − scṡc

z

(sc
z)

2 . (52)

The time derivative of the camera frame line-of-sight vector
is given by

ṡc = Cc
nΩn

cn[tn − pn] + Cc
n[ṫn − ṗn] (53)

where Ωn
cn is the skew-symmetric form of the angular rate

of the camera to the navigation frame, which is expressed in
the navigation frame. The skew-symmetric form is defined in
[20]. Expressing the rotations in the camera frame yields the
following equivalent form:

ṡc = −Ωc
ncs

c + Cc
n[ṫn − ṗn]. (54)

An analysis of (54) shows that the change in line-of-sight
vector is a function of both the camera rotation and relative
translational motion between the camera and landmark of
interest.

In many cases, the landmark motion relative to the navigation
frame is insignificant and can be neglected. Applying this
assumption and coordinitizing the camera translational motion
in the camera frame yields

ṡc = −Ωc
ncs

c − vc (55)

where vc is the velocity of the camera, relative to the navigation
frame, coordinitized in the camera frame. Combining (51), (52),
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and (55) results in the well-known optical flow equations [21],
which are the apparent motion in the x- and y-directions, i.e.,

u̇ = − f0

Δx

(
−ωy − vx

sc
z

+
sc

xsc
y

(sc
z)

2 ωx −
(

sc
x

sc
z

)2

ωy

+
sc

y

sc
z

ωz +
sc

x

(sc
z)

2 vz

)
(56)

v̇ =
f0

Δy

(
ωx − vy

sc
z

−
sc

xsc
y

(sc
z)

2 ωy +
(

sc
y

sc
z

)2

ωx

− sc
x

sc
z

ωz +
sc

y

(sc
z)

2 vz

)
(57)

which is expressed using the scalar components of the rotation,
velocity, and line-of-sight vectors referenced in (55).

The temporal sampling constraint proposed in the previous
section indicates that it is desirable to sample such that the
apparent pixel motion is limited to no more than one pixel
of change per image in both the x and y spatial dimensions,
provided that the image is sampled at spatial Nyquist frequency.
Given a sample interval Ts, the maximum pixel motion compo-
nent Kmax can be approximated by

Kmax =
√

u̇2 + v̇2Ts (58)

which is subject to the following constraint:

Kmax ≤ 1 (59)

to guarantee nonaliased tracking.
In the next section, the derived apparent pixel motion is

analyzed for a representative scenario that illustrates the dif-
ficulty in achieving samples from traditional imaging systems
that do not violate the temporal sampling constraints presented
above. The key idea is to determine the required frame rates
required to eliminate the effects of temporal aliasing, assuming
that each image is spatially sampled at or above the Nyquist
spatial frequency. It will be shown that to ensure temporal
sampling constraints, either relatively high frame rates will
be required or antitemporal aliasing filtering will be required.
Finally, we propose a solution for eliminating temporal aliasing
by incorporating IMU data.

VII. ILLUSTRATIVE CASE STUDY

In this section, the apparent pixel motion is calculated for
a selection of representative imaging scenarios. As previously
developed, the generalized sampling characteristics of a given
imaging sensor are a function of a number of parameters. In this
scenario, we will assume that the camera intrinsic parameters
(i.e., Δx, Δy , f0, D, and λ) are fixed in such a way to guarantee
proper spatial sampling. For this case, we are interested in the
resulting temporal sampling rate (ft) that is consistent with the
temporal sampling constraints derived in the previous section.
Note that changing the frame rate will not affect the resolution
of the images; however, it will affect the rate of change of each
pixel over time, which directly affects the presence of temporal

TABLE I
CAMERA INTRINSIC PARAMETERS. THE CAMERA INTRINSIC

PARAMETERS ARE CHOSEN TO BE REPRESENTATIVE OF CURRENTLY

AVAILABLE MACHINE VISION CAMERAS AND ARE

CHOSEN TO ELIMINATE SPATIAL ALIASING

aliasing. The camera intrinsic parameters are chosen to be
representative of currently available machine vision cameras.
These parameters are shown in Table I.

The first case study is a simple 5◦/s horizontal pan, with no
translational motion. The resulting motion parameters for this
condition are given as follows:

vc =

⎡
⎣ 0

0
0

⎤
⎦(m

s

)
(60)

ωc
nc =

⎡
⎣ 5 π

180
0
0

⎤
⎦( rad

s

)
. (61)

Substituting these motion parameters and the intrinsic cam-
era parameters into (56) and (57) yields

Kmax =
6 mm
4.4 μm

Ts

⎧⎨
⎩
(

sc
xsc

y

(sc
z)

2

)2

+

[
1 +

(
sc

y

sc
z

)2
]2
⎫⎬
⎭

1/2

5π

180
.

(62)

As evinced in (62), the pixel motion is primarily a function
of the camera motion with second-order effects related to the
position of the point source within the image. The worst-
case condition occurs at the extreme extents of the image.
Substituting these conditions into (62) yields

Kmax =
6 mm
4.4 μm

Ts{1.233} 5π

180
(63)

= 146.7Ts. (64)

Applying the temporal sampling constraint and solving for
Ts yields

Ts ≤ 1
146.7

(s) (65)

which results in a minimum frame rate of 146.7 Hz and,
consequently, a maximum exposure time of 6.8 ms.

As shown in (56) and (57), the relationship between pan and
tilt rates and the required sampling rate is linear. In addition,
the relationship between the roll rate and the required sampling
rate is linear and is strongly related to the location of the object
in the image (e.g., objects far from the center of rotation have
greater apparent motion).

In the next example, the effects of translational motion are
investigated. Here, the camera is moving at 300 m/s with a
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fixed orientation. The distance to the terrain is 10 000 m, which
represents a high-altitude cruise profile for an aircraft. The
resulting motion parameters for this condition are given as
follows:

vc =

⎡
⎣ 300

0
0

⎤
⎦(m

s

)
(66)

ωc
nc =

⎡
⎣ 0

0
0

⎤
⎦( rad

s

)
. (67)

Substituting these motion parameters and the intrinsic cam-
era parameters into (56) and (57) yields

Kmax =
6 mm
4.4 μm

Ts

{
300 m

s
10 000 m

}
(68)

Kmax = 40.9Ts. (69)

Applying the temporal sampling constraint and solving for
Ts yields

Ts ≤ 1
40.9

(s) (70)

which results in a minimum frame rate of 40.9 Hz and a
maximum exposure time of 24.4 ms.

The final example represents the conditions expected during
a low-level high-speed dash profile. As in the previous example,
the camera is moving at 300 m/s with a relatively fixed orienta-
tion. However, in this case, the distance to the terrain is reduced
to 300 m. The resulting motion parameters for this condition
are given as follows:

vc =

⎡
⎣ 300

0
0

⎤
⎦(m

s

)
(71)

ωc
nc =

⎡
⎣ 0

0
0

⎤
⎦( rad

s

)
. (72)

Substituting these motion parameters and the intrinsic cam-
era parameters into (56) and (57) yields

Kmax =
6 mm
4.4 μm

Ts

{
300 m

s
300 m

}
(73)

Kmax = 1363.6Ts. (74)

Applying the temporal sampling constraint and solving for
Ts yields

Ts ≤ 1
1363.6

(s) (75)

which results in a minimum frame rate of 1363.6 Hz and a
maximum exposure time of 733 μs.

In this example, the relationship between the of velocity
of the camera and the range to the target becomes apparent.
To first order, the apparent motion of a feature in an image
due to translational motion is proportional to the ratio of the

velocity of the camera and the range to the target. Determining
the minimum sampling constraints for general motion requires
knowledge of the maximum velocity-to-range ratio expected
based on the imaging conditions, as well as the maximum
rotational rates between the camera and the world reference
frame.

These case studies illustrate the frame rates required to sam-
ple at the Nyquist frequency. In general, the desired frame rates
are not readily attainable using common hardware and lighting
conditions. In many current correspondence search schemes
(e.g., [10], [22], and [23]), the Nyquist sampling frequency
for point sources is simply ignored, and the search scheme
seeks the so-called “strong” features that are consistent between
frames and geometrically consistent within a collection of other
features [e.g., RANdom SAmple Consensus (RANSAC)]. It is
our assertion that these feature extraction and correspondence
techniques are effectively applying low-pass anti-temporal-
aliasing filters that eliminate the higher frequency components
that are corrupted by temporal aliasing.

As mentioned previously, there is a strong coupling between
changes in camera pose and the apparent pixel motion. In the
next section, measurements from an inertial sensor are used to
mitigate the effects of temporal aliasing.

VIII. INCORPORATION OF INERTIAL

SENSOR MEASUREMENTS

As shown in the previous section, nonaliased temporal sam-
pling can require relatively high frame rates, even for relatively
simple imaging scenarios. High frame rates can present a
number of challenges for a given imager, including high com-
munication bandwidth requirements and short exposure times,
requiring more sensitive (and expensive) sensors. We propose
to exploit the information provided by inertial sensors to re-
duce the image sampling rates required to deliver antialiased
measurements. The development of the aided sampling theory
is presented as follows.

Inertial sensors can provide 3-D measurements of both the
angular rate and the specific force (i.e., the sum of acceleration
with respect to inertial and gravity) [24]. When combined
with a kinematic model, this information can be exploited to
produce an estimate of the trajectory. For the purposes of this
illustration, the error dynamics can sufficiently be modeled
using the following method.

When target motion was assumed to be effectively stationary,
the apparent pixel motion [see (56) and (57)] was a function
of the camera rotation rate and velocity with respect to the
navigation frame and the relative location of the landmark.
Strapdown inertial sensors measure both the angular rotation
increment Δθc

ic and the specific force increment Δvc with
respect to the inertial reference frame. When combined with
knowledge of the gravity vector, kinematic equations can be
used to estimate the position, velocity, and attitude of the
sensor. The inertial measurement errors, initial navigation state
uncertainty, and errors in the gravity model all contribute to
the inevitable unstable error growth experienced by all unaided
strapdown INSs. A thorough development of these properties
can be found in [24].
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While all INSs experience unstable error growth over time,
the relatively short durations between images allow us to model
the errors between successive images using a simpler model.
The first approximation assumes that the navigation reference
frame is effectively an inertial reference frame over the short
term. The second approximation assumes a general knowledge
of the navigation state (e.g., the system is reasonably aligned)
such that any errors in the navigation state itself do not domi-
nate the pixel motion prediction between frames. Finally, in the
cases where the camera is experiencing translational motion,
prior knowledge of the range to the target is implicitly assumed.
This information can be obtained using a number of techniques,
both passive and active. See [25] for more details.

Thus, the simplified inertial sensor model represents the
measurement as the sum of the true value plus an error and is
given as

ω̃c
nc =ωc

nc + δωc
nc (76)

ṽc =vc + δvc (77)

where ωc
nc is the true angular rotation rate, and vc is the

true velocity. The tilde represents the corrupted measurement
as received from the inertial sensor. The inertial measurement
errors δωc

nc and δvc can be represented as random vectors with
the following statistics over the interval Ts:

E [δωc
nc] =03×3 (78)

E
[
δωc

ncδωcT

nc

]
= qw (79)

E[δvc] =03×3 (80)

E
[
δvcδvcT

]
=
(
σ2

v0
+ qaTs

)
I3×3. (81)

The gyroscopic and accelerometer error sources are assumed
to be collectively independent. Substituting the velocity and
angle increment measurements from the inertial sensor algo-
rithm into the pixel motion equations from (56) and (57) and
integrating the error terms results in the residual pixel motion
error rate due to inertial measurement errors, i.e.,

δu̇ = − f0

Δx

(
− δωc

ncy
− δvc

x

sc
z

+
sc

xsc
y

(sc
z)2

δωc
ncx

−
(

sc
x

sc
z

)2

× δωc
ncy

+
sc

y

sc
z

δωc
ncz

+
sc

x

(sc
z)2

δvc
z

)
(82)

δv̇ =
f0

Δy

(
δωc

ncx
−

δvc
y

sc
z

−
sc

xsc
y

(sc
z)2

δωc
ncy

+
(

sc
y

sc
z

)2

× δωc
ncx

− sc
x

sc
z

δωc
ncz

+
sc

y

(sc
z)2

δvc
z

)
(83)

where δu̇ and δv̇ are the random pixel location errors rates in
the x- and y-directions, respectively. The standard deviation of

the residual pixel errors is given by calculating the variance of
pixel errors after integrating over an interval of Ts, yielding

σu =
f0

Δx

[
Ts

(
qw+

σ2
v0

+qaTs

sc
z

+
sc

xsc
y

(sc
z)2

qw+
(

sc
x

sc
z

)2

qw

+
sc

y

sc
z

qw+
sc

x

(
σ2

v0
+qaTs

)
(sc

z)2

)]1/2

(84)

σv =
f0

Δy

[
Ts

(
qw+

σ2
v0

+qaTs

sc
z

+
sc

xsc
y

(sc
z)2

qw

+
(

sc
y

sc
z

)2

qw+
sc

x

sc
z

qw+
sc

y

(
σ2

v0
+qaTs

)
(sc

z)2

)]1/2

.

(85)

The temporal sampling constraint can be applied in a similar
manner as before; however, in this case, the constraint is
applied to the standard deviation of residual error of pixel
motion versus the total pixel motion considered in the unaided
case, i.e.,

σKmax =
√

σ2
u + σ2

v . (86)

Enforcing the temporal sampling constraint on the residual
random pixel motion requires selecting a confidence interval
such that the residual pixel motion is constrained to less than
one pixel uncertainty. This can be accomplished by evaluating
the resulting probability distribution function of the residual
pixel errors.

The preceding development is illustrated using a simple
example. In this example, a consumer-grade inertial sensor is
available with the following random walk parameters:

qw = 4.2 × 10−7 rad2

s
(87)

qa = 1.9 × 10−5

(m
s
)2

s
. (88)

As a further simplification, the pan components are isolated
by assuming relatively distant targets (e.g., sc

z → ∞). This
results in the following pixel uncertainties:

σu =
f0

Δx
[Tsqw]1/2 (89)

σv =
f0

Δy
[Tsqw]1/2. (90)

Applying a 3-σ bound to the prediction errors results in the
following temporal sampling constraint:

3σKmax = 3f0[Tsqw]1/2

√(
1

Δx

)2

+
(

1
Δy

)2

≤ 1. (91)

For simplicity, assume the pixel sizes are equivalent (Δx =
Δy = Δpixel), i.e.,

3σKmax =
3f0[2Tsqw]1/2

Δpixel
≤ 1. (92)
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TABLE II
COMPARISON OF AIDED AND UNAIDED TEMPORAL IMAGE SAMPLING

REQUIREMENTS FOR THE BASELINE CAMERA CONFIGURATION.
SCENARIO DESCRIPTIONS ARE PROVIDED IN SECTION VII

Solving for the sampling interval yields

Ts ≤
Δ2

pixel

18f2
0 qw

(93)

which corresponds to γ = 36/π (derived in Section V). From
Fig. 6, this sampling constraint captures approximately 98%
of the signal energy, depending on the frequency response
characteristics of the lens.

Substituting the previously presented camera and inertial
parameters yields

Ts ≤ 1
14.06

(s) (94)

which results in a minimum frame rate of 14.06 Hz and a
maximum exposure time of 71.1 ms.

This illustration shows the benefits possible when utilizing
inertial measurements to reduce temporal aliasing. This result
implies that, as long as the rotational motion is within the
bandwidth of the inertial sensor, sampling at ≥14.06 Hz will
give acceptable antialiased results. Thus, when incorporating
inertial measurements for feature anti-temporal aliasing, the
sampling rate is effectively independent of camera motion.

With this result in mind, the required temporal sampling re-
quirements can be compared between the unaided and inertially
aided techniques. The results are shown in Table II. Tightly
coupling inertial measurements can significantly reduce the
image sampling frequency for nonaliased feature tracking and
is effectively independent of the motion scenario. While this
result is representative of a consumer-grade inertial sensor and
camera, the required sampling rate is approximately inversely
proportional to the quality of the inertial sensor. Thus, if a lower
quality inertial sensor was used, qw and qa would increase,
which as shown in (84) and (85), would result in higher required
sample rates to eliminate temporal aliasing.

IX. CONCLUSION AND FUTURE WORK

In this paper, the concepts relating spatial and temporal
image sampling have been explored from first principles with
focus on the consequences for the correspondence search and
feature tracking problem. The sampling theory has been devel-
oped and shown to yield a natural interrelationship between
acceptable spatial and temporal sampling frequencies. As a
result, we have shown that when point source features move
more than one pixel between frames, spatial-temporal aliasing
is occurring. The relationships between apparent feature motion
and temporal sampling requirements have been shown to re-
quire very high (possibly unattainable) temporal sampling rates
to guarantee nonaliased sampling. We believe that this is an

underlying cause that forces designers to exploit complicated
feature tracking algorithms, which, in essence, can be viewed as
sophisticated anti-temporal-aliasing filters. Unfortunately, these
popular feature tracking algorithms are ad hoc in the sense that
they do not directly treat the temporal aliasing problem from a
statistical sampling perspective.

Once the problem is posed from this perspective, the incor-
poration of inertial sensors is a natural choice. Inertial sensors
have been shown to have the capability to statistically constrain
the apparent motion effects, which can result in a significant
reduction in the required temporal sampling rates while allevi-
ating the burden of feature correspondence search. In essence,
inertial sensors have been proposed as a direct method for
reducing or eliminating temporal aliasing, allowing for the
use of sophisticated and efficient/robust correspondence search
algorithms and operation under lower lighting conditions.

Indeed, the use of inertial measurements for aiding the fea-
ture correspondence search task is akin to the use of inertial
measurements in an ultratightly coupled Global Positioning
System and INS, where the inertial information is used to steer
the phase-locked loops in a feedforward mechanization. This
facilitates precise code tracking under dynamic conditions—a
powerful combination of precision and robustness that is the
hallmark of properly fused synergistic sensors [26].

There are a number of issues which require further work and
development. First, applying statistical constraints from inertial
sensors requires some knowledge of the scene to properly ac-
count for translational motion. We propose to address this issue
by incorporating statistical knowledge of the terrain (either
a priori or in situ), which could be dynamically applied to either
control temporal sampling rate or exclude features for which
temporal aliasing is predicted.

Second, this development does not exploit any geometric
constraints regarding the scene itself. In certain cases (e.g., an
aircraft imaging a relatively flat scene), the temporal sampling
rate can be reduced below the worst-case threshold presented in
this paper.

Ultimately, we believe that this theory demonstrates the
complimentary nature of imaging and inertial sensors. As such,
properly incorporating inertial sensors can be a major advan-
tage in developing robust image tracking applications within
reasonable imaging and image processing constraints. Our goal
is to use the theory developed in this paper to serve as a founda-
tion for future research, where we will analyze current feature
matching algorithms from a statistical sampling perspective and
hopefully find ways to improve their performance.
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