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Algorithms and Bounds for Distributed TDOA-Based
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Abstract—One main drawback of using time difference of ar-
rival (TDOA) methods for source localization and navigation is that
they require centralization of multiple copies of a signal. This paper
considers blindly estimating the location of a cyclic prefix (CP)
in an orthogonal frequency division multiplexing (OFDM) signal,
enabling distributed TDOA computation up to an integer ambi-
guity. This ambiguity can be resolved using integer least-squares
methods, if enough TDOAs are available, requiring only minimal
cooperation between receivers. The contributions of this paper are
development of an algorithm for simultaneously resolving the in-
teger ambiguities and obtaining a position estimate; and deriva-
tion of the Cramér–Rao lower bound (CRLB) on locating the CP,
and hence, on the underlying source localization and navigation
problems.

Index Terms—Cramér–Rao lower bound (CRLB), orthogonal
frequency division multiplexing (OFDM), source localization, time
difference of arrival (TDOA), navigation.

I. INTRODUCTION

P OSITION awareness of mobile devices is becoming
important in a variety of applications, including emer-

gency response, law enforcement, military reconnaissance,
location-based billing, resource allocation and tracking, and
even handheld games. Two common positioning problems are
source localization [1], [2], in which a network of nodes wishes
to locate the source of a radio transmission, and navigation via
signals of opportunity [3]–[5], [6], in which mobile users wish
to determine their locations by exploiting commercial radio
infrastructure. The latter problem arises in military contexts
when the global positioning system (GPS) cannot be relied
upon, or in commercial contexts when GPS signals are blocked
by walls or terrain.
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Radio frequency (RF) based positioning is typically accom-
plished through some combination of angle of arrival (AOA) [1],
received signal strength (RSS) [2], [7], time of arrival (TOA)
[8], or time difference of arrival (TDOA) [9] measurements.
AOA and RSS measurements are simple to obtain and use, but
they require a dense network of receivers for high accuracy.
TOA measurements require precise temporal synchronization
and training between the transmitter and receiver [8]; thus, while
they are quite accurate, they are not always practical. TDOA
measurements are very accurate, but they typically require a
bandwidth-intensive cross correlation between receivers [10],
[11], [12]. Each of these methods has its distinct merits, but
in this paper we focus on making TDOA measurements more
practical.

The main drawback of using TDOA methods is that they
require centralization (retransmitting each received signal to
a central location) of multiple copies of a signal in order to
perform cross-correlation. Centralization wastes bandwidth and
power. For signals with a cyclic prefix (CP), such as orthogonal
frequency division multiplexing (OFDM) or single-carrier
cyclic-prefixed signals, the amount of centralization of data
can be dramatically reduced by only comparing the temporal
locations of the CPs rather than comparing the entire signals
[13], [14]. To use the image registration parlance, this approach
can be though of as a “feature based” method, as opposed to
“area based” methods such as cross correlation. CP detection
can be done blindly, without a priori knowledge of the data
contained in each CP [15], [16]. Thus, the TDOA computation
can be distributed, and the data-sharing burden will be greatly
reduced; but the final position estimation based on the TDOAs
will still be centralized.

In this paper, we show how TDOA estimation and positioning
can be performed for OFDM signals without any cross correla-
tion of received signals. This involves locating the CPs within
each received data stream, then resolving integer ambiguities in
the TDOAs by exploiting the underlying positioning problem.
Since CPs occur at regular intervals, finding a CP leaves an in-
teger ambiguity in each TDOA—the actual TDOA may be the
estimated TDOA plus any integer times the OFDM block length.
This integer must be estimated, which is sometimes called in-
teger ambiguity resolution. Previous work removed this ambi-
guity by cross-correlating a small amount of data [13], [14],
whereas this paper leverages some mathematical similarities
with integer ambiguity resolution in GPS research [17]–[19].
Thus, several aspects of this contribution are related to existing
literature, but the formulation as a whole is new.

We also derive the Cramér–Rao lower bound (CRLB) on
how accurately a CP can be located, and use this to derive the
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CRLBs on source localization and navigation that use the CP
rather than cross-correlation to estimate TDOA. The CRLB
on estimating the time delay of the CP has not appeared in
the literature before. Although much previous work discusses
the CRLB of TDOA-based positioning, existing work assumes
that the TDOAs are computed via cross-correlation, either
between sensors [10], [11], [20] or with a known training
signal (i.e., by TOA) [21], [22]. The former requires a large
amount of bandwidth between nodes, and the latter requires
training; whereas in this paper, the TDOA is estimated blindly
and in a distributed fashion, by comparing the delays of the
CPs (estimated as in [15] and [16]) in pairs of received signals.
Moreover, previous work for the navigation problem assumed
that one of the receiver positions was known, whereas our
CRLB treats the positions of both receivers as unknown.

Although we do not attempt to mitigate the multipath, we do
evaluate its deleterious effects on the CRLB. There exist means
of mitigating multipath in TDOA-based localization, such as
[23], [24], and such a method could be used in conjunction with
our approach to improve performance. Several related papers
have also considered the CRLB for multipath channels; in [24],
the CRLB on positioning is derived as a function of erroneous
TDOA measurements, in [25] a geometric view was used to
show the benefits of node cooperation on positioning, and in
[26] the TDOA on ranging in multipath, but the multipath was
assumed to be known. However, none of these cases addressed a
more efficient means of TDOA computation and the associated
CRLB, which is one focus of this paper.

In summary, the contributions of this paper are i) a new
TDOA-based positioning algorithm that completely removes
the requirement of cross-correlation between receivers, and ii)
derivation of CRLBs for the positioning problem, where the
“observations” can be either the full received data streams or
just their autocorrelations. Both the cases of multipath absent
and present are considered.

The remainder of this paper is organized as follows. Section II
defines the system model and notation. Section III derives the
position estimation algorithm. Section IV derives the CRLB on
estimating the temporal location of a CP in an OFDM signal.
This in turn is used to derive CRLBs on source localization and
navigation algorithms that are based on only using the block
synchronization of OFDM signals, without cross-correlation.
Section V provides simulation results, and Section VI concludes
the paper.

II. MODEL, NOTATION, AND ASSUMPTIONS

Section II-A discusses the two aspects to the system model:
the geographical layout and the RF signal model. Then
Section II-B discusses our assumptions.

A. System Model and Notation

First, consider the geographical layout, as depicted in Figs. 1
and 2 for the two similar problems of “navigation via signals
of opportunity” and “source localization,” respectively. In the
navigation problem, there are transmitters at known locations
and two receivers at unknown locations. The th TDOA corre-
sponds to transmitter , and is determined by the two receivers.

Fig. 1. Geographical layout for navigation via signals of opportunity. There are
� transmitters at known locations and two receivers at unknown locations. The
�th TDOA corresponds to transmitter �, and is determined by the two receivers.

Fig. 2. Geographical layout for source localization. There are � receivers at
known locations and one transmitter at an unknown location. The �th TDOA is
determined by receiver � and receiver 1.

Throughout, denotes a two-dimensional position vector with
Cartesian coordinates and . The transmitter locations are de-
noted and the mobiles are at
locations and . There
may also be a significant clock offset between the two mobiles.

In contrast, source localization involves receivers at known
locations and one transmitter at an unknown location, and the

TDOAs are jointly determined by the receivers. The
receiver locations are denoted
and the source is at location . The receivers are as-
sumed to coordinate to remove any clock offsets between them.

In the model for the RF signals, unless otherwise noted, we
focus on a single transmitter and receiver and drop subscripts
for clarity. We assume that the reader is somewhat familiar with
OFDM and CPs. The OFDM transmitter uses a fast Fourier
transform (FFT) size of , a CP length of samples, and a
bandwidth of Hz. The transmitter sends one block of

samples of every seconds. The set denotes
the set of in which is in a cyclic prefix (the first of each

samples), the set denotes the indices of the unique
samples in the middle of each samples, and the set denotes
the indices of the last of each samples (which get copied
into the CP).

The receiver uses an oversampling factor of , and thus has a
sampling period of . The receiver samples a total of

blocks, or samples. In the presence of multipath, with
resolvable paths separated by and a line-of-sight (LOS) path
present, the received signal to be sampled is

(1)
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TABLE I
THE PRINCIPAL NOTATION USED IN THIS PAPER, FOR THE NAVIGATION (NAV)
AND/OR SOURCE LOCALIZATION (SL) PROBLEMS. UNITS ARE IN BRACKETS,

AND “RX” MEANS “RECEIVER”

where is the transmitted data sequence (inverse FFT output
and CP), is a raised-cosine pulse shape, is the time delay
to be estimated in units of samples, denotes the
delay in seconds, and are the multipath coefficients. Like
the transmitter, the noise is assumed to have a bandwidth
of Hz. The signal power and noise power are and
per sample, respectively, and the signal-to-noise ratio (SNR) is

. The transmitted data is assumed to be white (aside from
the presence of the CP), and the noise is assumed to be com-
pletely white over the spectrum of interest.

Note that any TDOA algorithm will suffer in the presence
of multipath. The primary goal of this paper is not multipath
mitigation, but rather analyzing and improving existing TDOA
estimators. Once TDOAs are estimated, multipath mitigation
can be incorporated into the positioning algorithm by discarding
inconsistent TDOAs that are suspected to be corrupted due to
multipath. That said, the CRLB and root mean squared error
(RMSE) will be computed both in the absence of and in the
presence of multipath.

We will use ticks to denote derivatives, e.g.,
; and subscripts “o” for normalization, e.g.,

. Throughout, the speed of light will be used
to convert temporal quantities into ranges as appropriate. The
principal notation is summarized in Table I.

B. Assumptions and Approximations

Throughout the paper, the base station positions are assumed
to be known. In the source localization problem, the relative
clock offsets between the base stations are assumed to be
known; this could be accomplished by comparing TDOA
estimates from a beacon transmitter at a known location (hence
with known TDOAs). In the navigation problem, the clock

offset between receivers is unknown, and is estimated. It is
assumed that there are no CFOs and that the transmitter param-
eters , and are known.

The CRLB on time delay estimation is fundamentally con-
cerned with continuous-time signals. However, provided that
the transmitted signal and the noise are bandlimited, it is suffi-
cient to assume that the received signal is sampled at the Nyquist
rate [27, p. 54], i.e., , which makes adjacent samples un-
correlated (although the proposed position estimation algorithm
does allow for oversampling). The samples are still functions of
continuous parameters (such as delay), so it is legitimate to dif-
ferentiate the samples and functions thereof. Thus, all CRLB
derivations are done in the context of baud-rate sampled data;
however, the RMSE is evaluated both with and without over-
sampling.

We expect the RMSE to exhibit limiting effects at both high
and low SNRs. At high SNRs, the performance of some esti-
mators may be limited by the sampling period when the CRLB
drops below the sample resolution. For example, the maximum
likelihood (ML) algorithm of [15] does not interpolate be-
tween samples, hence its variance is at least that of a uniform
random variable distributed over , which
is . At low SNRs, the CRLB becomes arbitrarily
large. However, since the search space for the CP location is
a time window of seconds, the worst any estimator can
do is to guess within this window with a uniform distribution,
with a variance of s . This prior knowledge
of the search space causes a bias to the estimator at low SNR,
potentially allowing the RMSE to be below the (unbiased)
CRLB. Thus, a standard deviation of m will be
marked in the simulations as “upper bound,” and at low SNRs
the RMSE will tend to this line rather than the CRLB.

III. ESTIMATION ALGORITHMS

Position estimation is typically accomplished in two steps.
First, the TDOAs are estimated from the RF data; and second,
the position coordinates are estimated from the TDOAs.
Section III-A reviews van de Beek’s synchronization algorithm
for OFDM [15] and discusses how it can be used to partially
accomplish TDOA estimation. Section III-B discusses how
to combine these partial TDOA estimates with the position
estimation problem to simultaneously resolve the remaining
integer ambiguities in the TDOAs and produce position esti-
mates. The novelty lies in a) formulating the OFDM TDOA
problem in terms of integer ambiguity resolution, b) using
a prior uncertainty region, the bound on the noise, and
the triangle inequality to restrict the search space as much as
possible, and c) modifying integer ambiguity resolution and
TDOA linearization algorithms from the GPS literature, and
applying them to this problem. Each of these steps is not that
challenging in and of itself, but no one has attempted anything
like this for OFDM-based positioning so far as we know.

A. TDOA Estimation

In [15], a ML algorithm was derived to jointly estimate the
temporal location of the CP and the carrier frequency offset
(CFO), but no CRLB was derived. In this paper, for simplicity,
we assume there is no CFO. The ML algorithm of [15] assumed
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no oversampling, i.e., , hence it is not necessarily ML for
. Accordingly, we will refer to it and its generalization

as the van de Beek (vdB) algorithm. The vdB synchronization
algorithm, generalized to allow for oversampling and averaging
over blocks, is given by

(2)

(3)

(4)

(5)

We will also consider a slight simplification of the vdB algo-
rithm, given by

(6)

The subscript “acrr” emphasizes the fact that this algorithm only
uses the autocorrelation of the received signal, without the nor-
malizing terms of the vdB algorithm. This is motivated by the
fact that is approximately constant over , especially if
the amount of averaging is large; and the term van-
ishes at low SNR.

Each receiver can synchronize to each transmission indepen-
dent of the other transmitters and receivers. For the source local-
ization problem (e.g.), two receivers and can estimate their
TDOA by subtracting their synchronization estimates

(7)

Since the underlying positioning problem requires working in
distances, all TDOAs will be converted from time to range dif-
ferences via a factor of , as in (7), and the terms “TDOA”
and “range difference” will be used interchangeably. (Note that
range difference between two receivers is different from the dis-
tance between them, since range difference is with respect to a
separate transmitter.) There will still be an integer ambiguity
and measurement noise in the estimate

(8)

where and are the true distances between receivers
and the source, is the length of an OFDM block con-
verted to meters, is the unknown integer ambiguity, and
and are the synchronization errors converted to distances.
Without loss of generality, . Throughout, will be
used for a distance and will be used for a range difference (i.e.,
a TDOA). The next section discusses how the underlying posi-
tion estimation problem can be used to resolve the collection of
integer ambiguities (one per TDOA).

B. Position Estimation and Ambiguity Resolution

Here, we focus on source localization for clarity, but a similar
discussion holds for the navigation problem. We also work in
2D rather than 3D for simplicity, but the approach generalizes
easily. A TDOA estimate (8), expressed in distance rather than
time, can be solved for the integer ambiguity as

(9)

With receivers, there are TDOAs (all other TDOAs
are linear combinations of these). However, there are
integer ambiguities and two source coordinates, making
unknowns. Thus the set of nonlinear location equations is under-
determined. However, it can be easily shown that the unknown
integers are bounded and there often exists a unique solution.
The outline of our position estimation algorithm is as follows:

1. Difference the synchronization estimates from a pair of re-
ceivers to obtain a TDOA estimate with an integer ambi-
guity. Repeat for all possible TDOAs.

2. Use the triangle inequality and “ rule” to bound the un-
known integers.

3. Partition the geographic search space into a number of
smaller areas. Within each area, compute the integer
bounds from step 2, temporarily assuming the source is
within that area.

4. Linearize the TDOA equations and solve for the position
and unknown integers, analogous to the methods used in
[18], [28], [29], [30]. Repeat for each “small area” from
Step 3.

5. Choose the “small area” that yields the solution whose es-
timated TDOAs from step 1 and predicted TDOAs (from
the integer choices and position estimate in step 4) are most
consistent.

There are two methods for bounding the unknown integers.
The first is based on the triangle inequality and the rule (an
unbounded Gaussian noise can be viewed as bounded by ),
i.e.

(10)

(11)

where is the variance of and , and
is the known distance between receivers and (not to be con-
fused with , the range difference between and ). If is
unknown, it can be approximated from the CRLB given later in
this paper. Then by (9), we derive the bound

(12)

where and are the ceiling and floor operators, since
is an integer.

The second bound on the unknown integers is based on an as-
sumption that the source is located within a circular area which
is centered at with a radius

(13)
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In practice, we always have some kind of rough prior knowledge
of the location of the source, since in terrestrial applications
there is a limit on wireless communication ranges. Moreover, if
our prior knowledge is very rough, a large area can be portioned
into many smaller areas, and for each smaller area, the constraint
(13) can be applied. We assume this partitioning is required in
the rest of this section and in the simulations. From (13), the
triangle inequality bounds and by

(14)

(15)

where . Then from (8) and the rule, the
unknown integer is bounded by

(16)

Taking the intersection of the intervals in (12) and (16) yields
the overall bound on each unknown integer.

The next step in position estimation is to linearize the non-
linear TDOA location equations by Taylor expansion. We parti-
tion the large search space into smaller areas, and use the center
of each small area in turn as . Besides tightening the bounds
on the unknown integers, another benefit of the partitioning is
mitigation of the error caused by linearization. This lineariza-
tion is given by

(17)

Substituting two instances of (17) into (8), stacking the
TDOAs to obtain a matrix-vector formula-
tion1 and rearranging yields

where is a vector with th element is a
vector containing the unknown integers

, and

(18)

generally has full column rank, provided that
we have a sufficient number of receivers and receivers are not
clustered together. Assuming each is Gaussian, the max-
imum likelihood estimates of and must solve

(19)

where is constrained element-wise by bounds and , and
is the covariance matrix

of . Here, is a vector of ones. This is a box-

1The TDOAs �� are another possible choice.

constrained mixed integer least squares problem, since we have
both the box-constrained integer unknowns and unconstrained
real unknowns .

We convert (19) to a standard form by using a Cholesky de-
composition . Then , and

.

(20)

Let be the QR-decomposition of matrix . Then let
be obtained by deleting the first two columns of . By

“cancelling” as in [18], this equation can be converted to an
underdetermined box-constrained integer least squares problem

(21)

where is of dimension with
full column rank, and .

Equation (21) is underdetermined with rank deficiency 2. The
theory of this underdetermined box-constrained integer least
squares problem has been developed for sphere decoding in
multiple-input–multiple-output (MIMO) systems. With minor
modification, the method of [28, Sec. 3] can be applied here
to transform (21) to an overdetermined box-constrained integer
least squares problem. Essentially, this method regularizes the
problem by adding a penalty term to the cost function of the min-
imization problem. The penalty is proportional to the energy of
the extra two variables in the solution’s search space.

Once the problem has been regularized, we apply the fast al-
gorithm of [29] to solve the transformed (21). This involves two
steps. First, is reduced to upper triangular form for efficiency
of the search process [29, Sec. II.A]. Second, the DEC search
algorithm of [29, Sec. II.B] is used to search through the con-
strained search space. Each element of is searched in turn until
the best solution satisfying the constraints is found.

Applying a similar procedure to each small area, we obtain
multiple integer solutions, i.e., a set of vectors . We substitute
each of them back into (8) to get unambiguous range difference
measurements, and use the linear method in [30] to calculate the
estimated source location. At this point, we have a set of possible
solutions (vector and the corresponding source location ),
one for each small area. We then select the one that makes the
cost function (22) smallest as our final solution

(22)

Essentially, we are checking for the best consistency (in the ML
sense) between the estimated TDOAs and the TDOA pre-
dicted by the and from each region. This procedure will
be validated in Section V.

The algorithm developed in this section has been for the
source localization problem. In the analogous navigation
problem, a similar algorithm could be developed. The steps
in such an algorithm would parallel the five steps listed at
the beginning of this subsection, but steps 3–5 would have to
be generalized if the positions of more than one receiver are
unknown.
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IV. CRLB DERIVATION

First, we derive the CRLB on estimating the delay of the CP
given the entire observation record. Next, we consider the CRLB
on estimators that only use the autocorrelation function of (3)
to locate the CP. That is, we compute the bound on TDOA es-
timation for which the autocorrelation function of (3) is con-
sidered to be the “observations,”, and otherwise the received
data stream is not used. The resulting bound only applies to
auto-correlation based estimators, e.g., (6); however, this in-
cludes most practical synchronization algorithms. This bound is
derived both in the absence of and in the presence of multipath.
Finally, we discuss how these bounds on the TDOA estimates
affect the bounds on the position estimates, in both the naviga-
tion and positioning problems.

A. CRLB on Synchronization

As stated in Section II-B, in this section, there is no need for
oversampling, i.e., . The unknowns are the time delay

and the nuisance parameters in , consisting of the
unique samples of in each of the blocks. The full CRLB
calculation requires computing the matrix CRLB on the vector
of all parameters, and then examining the scalar bound
on the parameter of interest. One possible alternate approach is
to use the Modified CRLB (MCRLB) [31], in which the CRLB
is evaluated as a function of the nuisance parameters, and then
an expectation is computed over the nuisance parameters. Since
the full CRLB is mathematically tractable here, we will not need
to resort to the MCRLB. However, we will invoke ergodicity
arguments to enable averaging over the nuisance parameters, in
order to obtain bounds that are not dependant on .

The log-likelihood of the received vector is

(23)

(24)

(25)

The Fisher information matrix (FIM) has a block structure

(26)

where is 1 1, is , and is . In each
dimension, the first element of corresponds to , and then
each successive set of elements corresponds to a block of
(unprefixed) independent data samples .

The (scalar) submatrix , evaluated at for simplicity,
is

(27)

(28)

(29)

Again for and are given element-wise by

(30)

(31)

(32)

Due to the repetition induced by the CP

(33)

For a Nyquist pulse shape, (33) becomes

(34)

where is the Kronecker delta function. Thus

(35)

(36)

(37)

where is the Kronecker product. (Note that only indexes
the last of each samples of .) Using Schur comple-
ments to perform the matrix inversion in block fashion, the top
left element of the CRLB is given by

(38)

(39)

In (39), there are three summations over the index . The first
summation includes all , including the CP set, ; the data set,

; and the data in the ends of blocks, . The second summation
only includes the data in the middle of each block, and the third
summation only includes the data in the ends of blocks.

Breaking the sums from (39) into their constituent parts
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Noting that “ ” is equivalent to “ .”

(40)

(41)

Observe that the terms when are zero. Moreover, we
always have , and the pulse shape factor is nearly zero
except when is small. Thus, the terms that contribute
most to the summation are the boundary terms, i.e., when is
just outside of .

Equation (41) is the CRLB, and cannot be simplified further
without approximations. However, in order to gain intuition,
consider the case of large , which enables the approximation

(42)

where the set is the data in block of . Then, given that the
data is uncorrelated (aside from the repetition in the CP),

(43)

where the last line follows by tabulating all values of and al-
lowed by the double summation and then counting occurrences
of their difference .

Since the TDOA is a subtraction of two delay estimates , its
bound doubles relative to (43), hence

(44)

Equation (44) is the approximate CRLB, valid for values of
large enough to produce an averaging effect in (41). For raised
cosine pulse shapes with excess bandwidths of 0, 0.25, and 0.5,
the factor is 0.63, 0.82, and 1.49, respectively.

For purposes of comparison, consider the CRLB on time-
delay estimation using cross-correlation [10], [11] (as opposed
to using the CP). Assume that samples are used for the
cross-correlation (distinct from our parameter , the number of
CPs used in the autocorrelation). This bound is typically stated
in terms of power spectra [10], [11], but an analogous bound has

been derived for signal shift estimation in the context of images
[32], in an equivalent time domain (or spatial domain) form.
With a little manipulation, the bound of [32] can be shown to be

(45)

For raised cosine pulse shapes with excess bandwidths of 0,
0.25, and 0.5, the factor is 0.39, 0.48, and 0.78, respectively.
The bound in (44) is quite similar to that of (45), save for the
factor in and the dependence on rather than . Since
the factors and are both on the order of unity, comparable
values of the two bounds can be obtained by cross-correlating

samples of two signals or by auto-correlating one signal
using OFDM blocks with , yielding a total dura-
tion of samples. Thus, although our approach requires far
less bandwidth use between the cooperative nodes, it requires a
longer observation window to obtain a given accuracy.

B. Bound for Autocorrelation-Based Methods

This section derives the CRLB for estimators that only use the
autocorrelation data , as in (6), without oversampling

. Since in this subsection we assume that preprocessing of the
data is performed to evaluate , the values of will be
treated as observations, and the only unknown is the time delay
. This may seem contrary to the spirit of the CRLB, which is

estimator-independent. However, the idea is that for a given set
of observations, the bound is estimator-independent, yet in this
section we restrict the observations. Thus, Section IV-A pro-
vided the bound for any algorithm that operates on the raw re-
ceived data, and this section provides a higher bound for the
subset of estimators that operate on the autocorrelation of the
received data. It is higher since the preprocessed data provides
less information than the raw data.

For later use, consider the following definitions, which are
needed for Sections IV-B and -C only

(46)

(47)

(48)

(49)

(50)

(51)

(52)

With a considerable amount of straightforward algebra (omitted
here for conciseness), it can be shown that the second-order sta-
tistics of are

(53)

(54)

In the remainder of this subsection, we will ignore multipath
(i.e., is an impulse), but we will return to it in the next
subsection.
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Let be the vector of
samples of the autocorrelation function from (3), with mean
vector . If is large enough ( appears adequate), then
by the Central Limit Theorem, samples of have a Gaussian
distribution, and the log-likelihood function of given the delay

is

(55)

(56)

Defining , the Fisher information is given by

(57)

(58)

where is a vector of samples of the time derivative of .
Given the triangular shape of , its derivative has a magnitude
of for a range of samples, and is zero otherwise

(59)

(60)

Factoring out constants and simplifying

(61)

where the value of has been evaluated numeri-
cally, and is constant regardless of the value of . Simplifying

(62)

However, for real and complex Gaussian time-domain signals,
and , respectively. Thus, for OFDM (typically

complex Gaussian in the time-domain)

(63)

As in (44), the bound for the TDOA is doubled,

(64)

The limiting cases are

(65)

As expected, the bound of (64) is uniformly higher than the
bound of (44), since only the autocorrelation of the received data
is used in the estimator.

Interestingly (and counter-intuitively), both (44) and (64) are
independent of the fraction of each block consisting of the CP,
i.e., the fraction . Thus, a short CP is as good as a long CP
for purposes of blind delay estimation under the assumptions in
this subsection (e.g., the absence of multipath). In Section V,
this will be shown to be true for the RMSE of estimator perfor-
mance as well.

The reason (65) levels off at high SNR is that the observations
are based on an auto-correlation of random signal data.

Even in the absence of noise, the signal (and hence its autocor-
relation) still has some variability, which can only be mitigated
by averaging over more data (increasing ).

C. Effects of Multipath on Autocorrelation Methods

We now consider a multipath channel . In order to gain
intuition, consider a simple multipath channel, with a LOS path
of strength and a single nonline-of-sight (NLOS) path of
additional delay and attenuation . A complex phase could
be added to each tap, but only the tap magnitudes squared affect
the autocorrelation function , hence the phases can be ig-
nored. Then

(66)

(67)

(68)

In order to not affect the received SNR, let .
Similar to the previous subsection, the log-likelihood func-

tion of given the delay and the nuisance parameters
is

(69)

From ([27, p. 47]), the FIM is given by

(70)

The partial derivatives of the mean vector are

(71)

(72)

(73)

where is a vector of samples of , with nonzero
samples at the same locations as the nonzero samples of .
The channel (but not the delay) affects the scale factor , but
otherwise does not affect . Thus,

(74)

(75)

(76)

The various products needed for the cross-terms of the first term
of (70) can be shown to be

(77)

(78)

(79)

(80)
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(81)

(82)

(83)

regardless of the value of .
Putting all of this together, the 3 3 FIM is given by

(84)

Using the cofactor method of obtaining elements of the inverse
of a matrix, the element of the inverse of the FIM can be
found, yielding

(85)

where comparatively smaller terms were dropped for compact-
ness. The full numerically-determined value and this approxi-
mate value agree very well at low SNR and to within 10% at
high SNR, for typical parameter values. The approximation is
reported here in order to gain intuition. As in (44) and (64), the
bound for the TDOA is doubled

(86)

where .
Remarks: First, if and , (86) almost reduces

to (64), though (86) is slightly larger. In fact, for all possible pa-
rameter values, (86) is larger than (64). Second, if , then

, and the bound becomes singular. This is because the
function changes from a sharp peak to a flat-topped plateau.
Thus, locally, the likelihood as a function of is a constant. In
practice, the variance of the delay estimator will not blow up,
but the delay estimates will be evenly distributed across the de-
lays of the two paths. The fact that the (finite) variance is below
the (infinite) bound is due to estimator bias: in this case, the esti-
mator is biased by half the temporal separation of the LOS path
and the NLOS path, as depicted in Fig. 3.

Including more NLOS terms into the CRLB involves a
straightforward generalization of (84). However, inverting the
FIM could no longer be done in closed form, hence there would
be little intuition to be gained. In Section V, we will evaluate
the estimator variance and CRLB for various multipath profiles
and strengths.

D. CRLB for Source Localization

Assume synchronized TDOA receivers work together to
locate one OFDM source. Given estimates of the CP delays
and a suitable method for resolving the integer ambiguities [18],

Fig. 3. Strong multipath can bias the delay estimator. This figure assumes � �
� and equal LOS and NLOS paths.

the TDOA between each pair of receivers can be obtained by
subtracting two estimated delays . Thus, the vector of range
difference estimates (converted from time to distance via ) is

(87)

(88)

with covariance matrix lower-bounded by , where

(89)

(90)

where is a vector of ones. (If the SNRs differ
per receiver, then the optimal Gauss-Markov TDOA estimator
and its covariance matrix should be derived using (24)–(27) of
[10].)

From (90) and the general form of the CRLB in [20], the
CRLB on the position estimate can be computed given the co-
variance matrix of a TDOA estimator, as

(91)

(92)

where is a matrix that depends entirely on the
geometries of the transmitter and receivers, with the th
row (for ) given by

(93)

where and are the locations of the source and
receivers, and is the distance from the source to receiver .
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E. CRLB for Navigation

Now consider the case in which OFDM transmitters (sig-
nals of opportunity) are used by two receivers to perform nav-
igation. The transmissions are unrelated to each other, the
transmitter positions are known, the
positions of both receivers are unknown, and the clock offset be-
tween the receiver clocks is unknown. Synchronization with the
transmitter clocks is not required. Thus, there are 5 unknowns
(or 7, in the 3D case): two coordinates for each receiver and one
clock offset

(94)

This section derives the CRLB for estimating these five param-
eters using TDOAs, measured by the pair of receivers to each
transmitter in turn.

Given the estimates of the CP locations and a suitable method
for resolving the integer ambiguities, the range differences be-
tween each pair of receivers can be obtained by subtracting the
two estimated delays

(95)

(96)

The covariance matrix of is lower-bounded by ,
where is the right-hand side (RHS) of (64). Considering the
clock offset between receivers, the range difference estimates
are distributed as

(97)

where is the true range difference vector, which depends on
the unknown coordinates of the two receivers:

(98)

For a Gaussian vector as in (97), the CRLB is ([27, p. 47])

(99)

The partial derivatives are given by

(100)

where the form of each is somewhat different from that in the
source localization problem (93) [20]

and, after inserting (64) for , the CRLB becomes

(101)

Fig. 4. The CRLB and the RMSE versus SNR, for � � ��� � � ��, and
� � �. The estimators are given by (2) and (6). The upper bound corresponds
to a uniform distribution across a span of �� s, as discussed in Section II-B.

Fig. 5. The CRLB and the RMSE versus SNR, for � � ��� � � ��, and
� � ��. The estimators are given by (2) and (6).

The CRLB does not simplify further analytically, but it simple
to compute numerically. (It requires on the order of
operations.)

V. SIMULATIONS

The simulation parameters in this section are comparable to
an IEEE 802.11a system: the FFT size is , the CP
length is , the block size is , and
the Nyquist sampling period is ns. Unless otherwise
specified, the number of blocks is (yielding a 40 s ob-
servation window), , and the raised cosine pulse shape has
no excess bandwidth.

The first set of results (Figs. 4 to 6) investigates the estimation
of the CP delay. The RMSE of the vdB estimator of [15] and the
simplified “acrr” estimator of (6) are compared to square root
of the CRLBs from (44) and (64), using 2000 trials. The only
difference between the figures is the number of blocks used
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Fig. 6. The CRLB and the RMSE versus SNR, for � � ��� � � ��, and
� � ���. The estimators are given by (2) and (6).

Fig. 7. Comparison of the CRLB and the RMSE of Van de Beek’s estimator
versus the CP length � , for various values of SNR. Throughout, � � �� � � ��,
and � � ��.

in averaging. These figures consider both and oversam-
pling using . For all values of , the RMSE must obey
the general bound of (44); however, the “noise” signal in (54) is
not bandlimited even though the noise in the raw signal is
bandlimited. Thus, there is some benefit to oversampling when
using autocorrelation-based methods. In principle, the bound of
(64) could be generalized to account for oversampling; however,
in that case, the correlation between subsampled data makes
the derivation intractable. Thus, (54) is only applicable to the
Nyquist-sampled case, whereas (44) applies regardless of over-
sampling.

Note that in Figs. 4 to 6, the RMSE tends to a “floor” based
on the sampling resolution. That is, since the estimator does not
attempt interpolation between samples, the resolution is limited
by the variance within one sample period.

Fig. 7 compares the performance of the vdB estimator for
various values of to the CRLB. As indicated by (44) and (64),

Fig. 8. Performance of position estimation, as in Section IV-D, for � � ��

� � ��, and 10 dB SNR. Each ��� is a sensor, the � is the source, and each �
is a resolved source estimate (200 trials). The outer and inner ellipses indicate
the RMSE and the CRLB, both scaled up by 2 so that the former gives an 86%
confidence interval.

Fig. 9. Effects of varying SNR on position estimation error (in meters), for
� � �� � � ��, and � � � receivers.

the CRLB is not affected by the ratio , i.e., the fraction of
each block devoted to the CP. The RMSE also largely obeys
this trend, although for shorter CP lengths, it is more sensitive
to errors at low SNR.

The next set of results (Figs. 8 and 9) investigates the posi-
tioning step, once the CPs have already been located. Figs. 8
and 9 compare the final RMSE and the CRLB on position esti-
mation, (92). Ambiguity resolution was performed by dividing
the space into nine 3 km 3 km regions, solving for the integer
offsets within each region, and then choosing the region with
the best solution as discussed in Section III-B. In Fig. 9, it can
be inferred that the integer ambiguity resolution method breaks
below about 0 dB SNR. Above that point, the position estima-
tion standard deviation follows the CRLB; whereas below 0 dB
SNR, the performance diverges sharply from the bound, as an
increasing fraction of the integer estimates are wildly incorrect.
The SNR location of this breakpoint tends to drop inversely pro-
portionately to the square root of the value of that is used (i.e.,
quadrupling drops the breakpoint by 3 dB).

The final set of figures (Figs. 10 to 12) shows the effects of
multipath, without any multipath mitigation attempted. Three
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Fig. 10. Effects of multipath on RMSE. There are 1 LOS path and 1 NLOS
path, and � � ��. The NLOS path is deterministic, but the curves for a
Rayleigh-fading NLOS path are indistinguishable from these.

Fig. 11. Effects of multipath on RMSE. There are 1 LOS path and 5 Rayleigh-
fading NLOS paths, and � � ��.

channels were considered: i) a LOS path with a single deter-
ministic NLOS path, as in Section IV-C; ii) a LOS path with a
single Rayleigh-fading NLOS path; and iii) a LOS path with five
Rayleigh-fading NLOS paths. The signal-to-interference ratio
(SIR) is the total power in the NLOS paths over the power of
the LOS path. Fig. 10 shows the results for the single-NLOS
case i), which are indistinguishable from those of case ii); and
Fig. 11 shows the results for the many-NLOS case iii). Fig. 12
plots the results versus the SIR. As discussed in Section IV-C, at
low SIR, the CRLB blows up; at the same time, the estimator be-
comes biased by the increasingly strong NLOS path. The RMSE
of a biased estimator can be lower than the CRLB [27].

VI. CONCLUSION

This paper considers blind, partially distributed positioning
using OFDM signals, using TDOA measurements. The context

Fig. 12. Effects of multipath, at � � �� and an SNR of 10 dB. At low SNRs,
the estimators are biased due to the NLOS path.

is either navigation via signals of opportunity or source localiza-
tion. The method is partially distributed since all of the compu-
tation required for delay estimation is performed within each in-
dividual receiver by locating the temporal locations of the CPs.
Then these time stamps are collected by a single node which
jointly resolves the integer ambiguities (arising from the “which
CP is which?” problem) and estimates the position of the mo-
bile(s).

Under the assumption that the integer ambiguities can be re-
solved, the paper derived/discussed the following bounds:

: (44) is the CRLB on estimating the TDOA by finding
the CP in the received data.

: (45) is the CRLB from the literature on estimating a
TDOA via cross correlation.

: (64) is the CRLB on estimating the TDOA by finding
the CP using only autocorrelation data.

: (86) generalizes to include an unknown 2-ray
multipath channel.

: (92) uses and the general CRLB of [20] to compute
the CRLB on source localization.

: (101) uses and a method generalized from [20] to
compute the CRLB on navigation.

A CRLB does not rely on the estimation method per se; how-
ever, it does rely on the data that is observed. In , the obser-
vations are considered to be the raw received data, whereas in

, the observations are the empirically computed autocorrela-
tion function of the observed data. These bounds do not state
anything about the estimation method, though does require
preprocessing of the raw data to obtain the autocorrelation.
does not simplify to , though they have parallels in struc-
ture. The novelty in and is not simply that the data is
unknown, but that we are exploiting a modulation with a known
structure (namely, the CP in OFDM). and do not apply to
any arbitrary unknown waveform, and a generic bound that as-
sumes an unknown but arbitrary waveform would not be useful
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since it would not exploit the structure of OFDM. Simulation
results were used to demonstrate that van de Beek’s method of
estimating of the CP location, coupled with our method of in-
teger ambiguity resolution, performs close to the CRLB on po-
sitioning accuracy.

A portion of this paper (consisting of a preliminary version
of parts of Sections IV and V) was presented at ICASSP 2009
[33].
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