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Using Alpha Shapes to Approximate Signal Strength
Based Positioning Performance

Richard K. Martin

Abstract—Received signal strength (RSS) is a common tool
for locating a transmitter via a sensor network. It is considered
common knowledge that RSS performs well if the transmitter is
inside the convex hull of the sensor network, and poorly otherwise.
However, this positioning rule of thumb is binary, vague, and not
always accurate. In this letter, we consider the alpha shape, which
is a generalization of the concept of a convex hull. We show that
the alpha shape gives a more accurate estimate of localization
performance than the convex hull, and we show how to use it to
obtain a quasi-continuous and quantitative (rather than binary
and qualitative) estimate of a sensor network’s performance. We
then compare this rule of thumb to more detailed, computationally
intensive performance limits generated by the Cramer–Rao lower
bound, with very good agreement.

Index Terms—Alpha hull, alpha shape, Cramer–Rao lower
bound, received signal strength.

I. INTRODUCTION

P OSITION awareness is important in applications such as
law enforcement, military reconnaissance, emergency re-

sponse, location-based billing, resource allocation and tracking,
and electronic games. In source localization or geolocation, a
Wireless Sensor Network (WSN) is used to locate the source of
a Radio Frequency (RF) transmission [1], [2].
Geolocation may be accomplished through Received Signal

Strength (RSS), Angle of Arrival (AOA), Time of Arrival
(TOA), and/or Time Difference of Arrival (TDOA) measure-
ments. Though each measurement type has its own merits, this
paper focuses on RSS. RSS measurements can be obtained via
cooperative or noncooperative approaches. In cooperative sys-
tems, such as cell phone handset geolocation by base stations,
the digital signal can be demodulated and segregated from
additive noise, so the reported RSS just contains the signal
and not the noise. In noncooperative systems, such as locating
emitters in a hostile environment, the RSS may be determined
by integrating the observed Power Spectral Density (PSD), and
as such it includes noise power as well.
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In this letter, we are interested in estimating the geolocation
performance of a WSN based on its geometry. It is considered
common knowledge that RSS performs well if the transmitter
is inside the convex hull of the sensor network, and poorly oth-
erwise [3]–[5]. However, this positioning rule of thumb is bi-
nary and qualitative, yielding only a “good or bad” judgment.
Moreover, it is not always accurate, particularly if the WSN has
an irregular shape and/or varying density of node placement. In
this letter, we consider the alpha shape, which is a generaliza-
tion of the concept of a convex hull. The key contribution of
this paper is that we show that the alpha shape gives a more
accurate estimate of localization performance than the convex
hull, and we show how to use a set of alpha shapes to obtain a
quasi-continuous and quantitative (rather than binary and qual-
itative) estimate of a sensor network’s performance. The pro-
posed approach provides discrimination of performance within
the network’s convex hull, which is not provided by the binary
rule of thumb. That binary rule of thumb is the baseline that
we are comparing to, as it is the only existing rule of thumb
in the literature that we are aware of. The “ground truth” that
we compare to is the performance bound determined by the
Cramer–Rao Lower Bound (CRLB). However, the CRLB is im-
possible to estimate visually, which is themotivation for the pro-
posed rule of thumb.
Often, the position estimation in [2]–[5] involves coopera-

tively estimating many node locations based on a small set of
anchor nodes. However, this is often accomplished iteratively,
by using the anchor nodes to determine the location of a nonan-
chor node, then adding it to the list of anchor nodes. As such,
the process is mathematically similar to that of using a WSN to
locate a single transmitter. Thus, the binary rule of thumb can
be (and frequently is) applied to either problem.
Most papers on RSS-based positioning largely ignore the

practical effects of range limitations. Since sensor ranges are
limited in practice, in this paper we will use the RSS model
developed in [6], which incorporates range limits into RSS
by comparing the RSS value from the standard model to the
background noise power. However, the results in this paper can
be applied to the standard model as well, since the range limits
can be removed by setting the background noise power to zero.

A. Related Work

In [7], alpha shapes were used to estimate the coverage area
of a WSN. However, their goal was to determine a binary ap-
proximation of the coverage area such that an event occurring
within the coverage area was within range of at least one sensor,
and thus could be detected. In contrast, we are interested in po-
sition estimation performance, and we seek a quasi-continuous
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(rather than binary) performance estimate. In [7], there was no
discussion of how to choose the shape parameter (or even
what value of was used in the simulations); whereas we re-
late the value of to the expected position error, to quantify
the performance estimate. Moreover, [7] required all sensors to
exchange local information and report to a central node before
the coverage area is estimated, whereas our approach is strictly
geometric. In [8], the WSN determined the alpha shape in a dis-
tributed fashion, which, coupled with our results, may enable a
node to determine how important it is to the localization process.
Optimal receiver geometries were examined in [9]–[11]. The

results therein can be used to determine the optimal geometries
if the sensors can be placed at will. In contrast, our work fo-
cuses on quickly evaluating a geometry that may or may not be
optimal. If there are constraints on where the sensors may be
placed, the optimal geometry may not be achievable, and our
results can be used to quickly suggest alternate geometries that
still perform well.
Notation: denotes matrix transpose. Matrices and vec-

tors are upper and lowercase boldface letters, respectively.

II. ALPHA SHAPES

Consider a set of points (known sensor positions in our case)
. The alpha shape of is a

uniquely defined region that approximates its intuitive “shape”
[12], [13]. Formally, for negative real , the alpha hull is the in-
tersection of closed complements of discs of radius
that each completely contain . The alpha shape is the straight
line graph formed by connecting points of that are neighbors
on the boundary of the alpha hull, essentially replacing con-
cave arcs of the alpha hull by lines. An example is shown in
Fig. 1. The alpha shape can be described qualitatively by rolling
a hoop of radius around the edges of the point cloud. If the
hoop touches two points and there are no additional points in the
hoop’s interior, then the line segment containing the two points
is on the boundary of the alpha shape.
Definitions: The Delaunay triangulation is the set of trian-

gles (simplexes) with vertices in such that no triangle’s cir-
cumcircle contains any point in ; the alpha shape is a subset of
the Delaunay triangulation of . The alpha complex is the set
of all simplexes of the Delaunay triangulation that are in the in-
terior of the alpha shape; this is actually the region that will be
shaded in Section IV, and its boundary is the alpha shape. The
convex hull of is the smallest convex set containing ; think
of placing a rubber band around the points of . The convex
hull is equal to the alpha shape generated by (or any
greater than half the largest intra-point separation).
The alpha complex can be constructed by examining each

simplex in the Delaunay triangulation and accepting or rejecting
it per the conditions in [12]. Computationally, in two dimensions
the Delaunay triangulation takes time, and its re-
sulting size is . Thus, computation of the alpha shape is

. Moreover, if we are interested in a range of values
of (which is the case in this paper), the Delaunay triangula-
tion only needs to be computed once, and only the step
of accepting or rejecting simplexes must be repeated for each
choice of . Furthermore, note that if , then the shape

Fig. 1. Example alpha shape computation in aWSN. The radius for the green
circles was 11 m. The blue dots are node locations and the red lines indicate the
boundary of the alpha shape. Note the two “holes” within the shape where the
sensor density is low.

of is contained in that of . Thus, by starting at a large
and working downwards, the set of simplexes for each de-
creases continually, further limiting the complexity.
Since there are only a finite number of edge lengths in the

Delaunay triangulation, the set of possible alpha shapes is dis-
crete and finite. Thus, as we will see in Section IV, the use of
alpha shapes for performance assessment is necessarily discrete
in nature, but there are generally enough choices of leading
to distinct alpha shapes to provide a quasi-continuous perfor-
mance assessment.

III. CRAMER–RAO LOWER BOUND

We will judge the geolocation performance of a WSN by its
CRLB, which provides an algorithm-independent performance
bound on the position estimation problem. The CRLB will be
considered the “ground truth” performance assessment, which
we want to approximate. The RSS model and associated CRLB
are reviewed in this section. We then compute the CRLB for a
uniform geometry in order to relate the values of an alpha
shape to an associated approximate position error, as a sort of
calibration.
The transmitter is at an unknown position , at a

distance

(1)

from sensor . Before considering fading or background noise,
the RSS is modeled by

(2)

(3)
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where is the transmitted power as measured at a short refer-
ence distance (typically 1 m), and is the path loss exponent
(2 in free space, but as large as 4 in some environments). In [6],
it was shown that if the RSS incorporates a background noise
floor at a power level of (in dB), the distribution of the RSS
can be approximated as

(4)

(5)

where is the fading standard deviation in dB.
Often, the parameters and are unknown, so the vector of

unknowns is . The 4 4 CRLB is

(6)

(7)

(8)

The factor is due to the noise floor, and can be omitted if
the more traditional RSS model is preferred (equivalent to the
limit ), though realistically this or some similar range-
limiting factor should be imposed.
To compare computational complexity to that of the alpha

shape, the CRLB requires operations (mostly multi-
plies) if and are known, and operations if they
are unknown, per test point. These computations must all be
repeated for each possible test point in the vicinity of
the WSN. Thus, the CRLB complexity scales inversely with
the product of the desired and resolutions, whereas the
alpha shape complexity only scales with the number of selected
values of . Moreover, plotting the CRLB requires computing
and rendering a contour plot, which is computationally expen-
sive; whereas plotting alpha shapes simply involves plotting a
set of triangular patches. As such, the set of alpha shapes can be
computed much faster than the CRLB. More importantly, alpha
shapes can be approximated visually or produced by physical
construction, but the CRLB cannot; so the alpha shape con-
cept can be used by designers to mentally evaluate candidate
geometries.
In order to convert the bound into a scalar with

units of meters, we define the position error bound as
. In order to make a correspondence

between the value of in an alpha shape and the estimated
position error bound, consider the uniform sensor geometry
shown in the inset of Fig. 2. This geometry consists of a
near-infinite number of sensors (4172 in our code), regularly
spaced at the vertices of a tessellation of equilateral triangles
of side length . This side length was chosen because along
the boundary of an alpha shape, the node spacing is about or
slightly less than . For this uniform sensor spacing, the
position error bound was numerically computed, leading to
Fig. 2, whose plots can be represented by

(9)

Fig. 2. Anticipated position error versus sensor spacing in a uniform WSN. A
small window of the 4172-sensor uniform geometry is shown in the inset. The
case “ , ” is the subject of the example in Section IV.

with no dependence on . Equation (9) was determined by
numerically evaluating the CRLB for a variety of values of ,
, and . The factor of 0.156 was determined from the slope of
the curves in Fig. 2 for .
To use (9), first construct a set of nested alpha shapes for a

range of values of ; the Delaunay triangles for smaller values
of will be a subset of those for larger values of , as will be
demonstrated in the example in Section IV. Using the smallest
value of of all alpha shapes that include a given triangle, eval-
uate (9), yielding the estimated position error bound within that
triangle. For an arbitrary geometry, (9) will only give a rough
rule of thumb for the relationship between the error and ; how-
ever, that is still far better than the existing qualitative rule of
thumb that says “inside the convex hull, good; outside, bad.”
Robustness of this approach will also be discussed after the ex-
ample in the next section.

IV. AN EXAMPLE

Figs. 3 and 4 show a numerical example for the 160-node
WSN from Fig. 1. Fig. 3 shows the position error bound, and
Fig. 4 shows the set of alpha shapes for 16 values of , each
labeled with its estimated position error bound. The alpha
shapes were generated by overlaying the Delaunay triangles
from smaller on top of those for larger , which is easily ac-
complished by simply plotting all of them as decreases, and
overwriting any existing triangles with new ones. The convex
hull is shown by the outermost border in Fig. 4. The parameters
were , , , and .
Regarding robustness of this approach, consider the case

wherein the node positions are only approximately known, say
to within meters. The line segment between any two nodes
(and thus the edge lengths of any Delaunay triangle) are thus
known to within meters. If we consider the sizes of rings
that we can or can’t roll between these nodes, the radius of
the ring that just barely fits is known to within meters. By
(9), if and , the uncertainty in the position error
is bounded by about meters. For example, if the node
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Fig. 3. CRLB on RSS-based positioning in a WSN. The colorbar indicates the
position error in meters. For legibility, the contours were truncated above 12 m.

Fig. 4. Various alpha shapes of a WSN. The outermost alpha shape is also the
convex hull. The numbers and colorbar indicate the estimated position error in
meters, calculated by inserting the from each triangle into (9). The actual
error is shown in Fig. 3.

position error is known to within 3 m, then the position error
is known to within about 0.9 m.

V. CONCLUSION

We have shown that the concept of the alpha shape provides a
much better prediction of RSS-based geolocation performance
than the traditional rule of thumb relating to the convex hull of
the sensor locations. Specifically, it provides better performance

discrimination within the convex hull of the sensors. We used
a uniform geometry to provide a quantitative correspondence
between values of and the predicted error bound, as a form
of calibration. The virtues of using the alpha shape as a perfor-
mance predictor are that it has low computational complexity,
it can be approximated visually, and it can be constructed phys-
ically (e.g., for tutorial or illustrative purposes). This visual es-
timation may be helpful for designers, allowing mental evalu-
ation of different sensor geometries in the absence of detailed
computations.
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