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Abstract 

A Model Validation Level (MVL) is an objective, automatable metric scored from 0-9 that 
quantifies how much trust can be placed in the results of a model to represent the real world. 
MVLs aim to provide utility both for decision makers to quickly evaluate model risk, and for 
model developers to identify model improvement areas. Additionally, the MVL framework 
supports digital engineering via automation to continuously perform validation and by 
quantifying trust in preexisting models for new use cases. This paper walks through the entire 
MVL process, from determining MVL applicability to interpreting and acting on the results. This 
paper provides background on the key concepts of validation, discusses required data 
collection, and details how the MVL is calculated, with appendices containing full mathematical 
documentation. An MVL R tool and user guide are also available which automate the framework 
described here. 

Keywords: model validation levels, validation, modeling and simulation, digital 
engineering, fidelity, test and evaluation 
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Introduction 

Modeling and simulation (M&S) has become pervasive throughout the Department of Defense 
(DOD), especially as the workforce further shifts toward digital engineering. These models are 
relied upon to aid in decision making, particularly in cases where live data is unsafe or 
prohibitively expensive to obtain. For models to be considered trustworthy for decision making, 
they must be validated for a given intended use case. DoDI 5000.61 defines validation to be, 
“the process of determining the degree to which a model or simulation and its associated data 
are an accurate representation of the real world from the perspective of the intended uses of the 
model” (2018). In practice, however, validation is often binary, meaning a model is either valid or 
not; static, meaning the model once valid is considered valid forever; and subjective, where 
validation is only a qualitative comparison between the model results and subject matter expert 
(SME) expectations. Many of these validation shortcomings result from the lack of a rigorous, 
easy-to-implement, broadly applicable approach to validation. Several validation frameworks 
have been developed to try to combat these issues; however, they are often either easy to use 
but lacking rigor or rigorous but difficult to apply (Ahner et al., 2023). Additionally, to support the 
shift toward digital engineering, a validation framework should be automatable, such that it can 
be integrated into digital infrastructure and support validation across a digital ecosystem. 

The Scientific Test and Analysis Techniques Center of Excellence (STAT COE) developed 
Model Validation Levels (MVLs) to provide an objective, automatable metric that quantifies the 
degree of trust that can be placed in the results of a model to represent the real world. The MVL 
framework can be quickly applied to a broad range of predictive models, enabling continuous 
validation of models as they evolve and more data becomes available. In addition, the MVL 
framework enables legacy models to be evaluated for new intended use cases, helping to 
reduce duplicated efforts and stove-piping. Previous publications on MVLs have developed the 
conceptual and mathematical foundations for MVLs (Ahner et al., 2023; Provost et al., 2022; 
Weeks et al., 2022; Stafford et al., 2024b). This paper aims to provide comprehensive 
documentation and guidance for MVLs and all underlying methods, as well as discussing 
practical considerations for incorporating MVLs into validation plans. This paper can be used in 
tandem with the MVL R tool (Provost et al., 2024; Jones et al., 2024), which automates the 
calculation process described here. First, the Background section describes the conceptual 
foundations for MVLs, including the three pillars of validation: fidelity, referent authority, and 
scope. The MVL Framework Applicability section discusses when MVLs can and should be 
used, as well as the requirements for the calculation: a well-defined intended use case, model 
data, and referent data. The following sections, Defining and Quantifying the Scope of Intended 
Use and Data Collection, decribe how these requirements can be collected. Next, the MVL 
Calculation section walks through the MVL calculation process step-by-step, with references to 
appendices for full mathematical details. Finally, the Outputs, Interpretations, and Actions 
section discusses MVL framework outputs, their interpretation, and next steps for model 
improvement. Ultimately, the MVL will provide utility to decision makers by yielding a quickly 
interpretable level of trust on a standardized scale and to model developers by identifying areas 
for model improvements. 

Background 

The MVL framework defines validation in terms of three key pillars which must be carefully 
considered when determining the degree to which a model can be considered valid: fidelity, 
referent authority, and scope. Due to the many terms and definitions contained in this paper, 
Appendix A compiles key definitions for reference. 
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Fidelity 
The first of the validation pillars is fidelity. Fidelity is the level of consistency between a model 
and a referent, defined in the three dimensions of accuracy, repeatability, and resolution. The 
referent is defined to be a codified body of knowledge representing real system behavior. 
Conceptually, fidelity can be understood to be a quantitative comparison between model outputs 
and referent data, where the model is treated as a black box: in other words, fidelity does not 
depend on the level of complexity or detail intrinsic to the model, only on the closeness of model 
outputs to referent data.  

Fidelity is defined in terms of accuracy, repeatability, and resolution. Accuracy is the degree to 
which a parameter or variable, or a set of parameters or variables, within a model or simulation 
conforms exactly to reality or to some chosen standard or referent (Modeling and Simulation 
Enterprise, 2021). Repeatability refers to the similarity of the results obtained from the same 
model (or referent) over multiple observations under the same input conditions. Lastly, 
resolution is the degree of granularity with which a parameter or variable can be determined 
(Pace, 2015). Repeatability and resolution can be considered equivalent to the terms aleatory 
and epistemic uncertainty, respectively, which are commonly used in the field of uncertainty 
quantification. These dimensions are depicted in Figure 1. While accuracy is a comparison of 
model and referent, repeatability and resolution are properties of either a model or referent 
alone. When determining fidelity, both similarity in mean behavior (accuracy) and similarity in 
variability must be considered, where variability comprises both repeatability and resolution. In 
most cases, real system behavior shows random variation even when conditions are held 
constant. Models must be able to predict this variability to provide a complete picture of how the 
real system will behave.  

Figure 1 
 Dimensions of Fidelity 

Referent Authority 
Referent authority is the second pillar of validation and refers to the strength of credibility of a 
referent’s claim to be a high-fidelity representation of reality.  

For validation to serve as a means for building trust in models, it must be based on a 
comparison of the model to authoritative referents. Because a referent is a representation of 
reality, it has some authority, but not all referents are equally authoritative. For example, a set of 
recorded performance data for a system and the judgement of a subject matter expert (SME) 
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may both be drawn from observation of the same real-world event, but one is more objective 
than the other and is considered to be a closer representation of the real world. The amount of 
trust placed in a referent determines how much trust can be placed in a model that was 
validated against it.  

For the MVL framework to objectively handle referent authority, referents must be assigned a 
quantifiable level of trust. To assign trust, the MVL framework leverages Technology Readiness 
Levels (TRLs), summarized in Table 1.  

Table 1 
Technology Readiness Levels 

TRL System Description 

1 Idea, preliminary design, and/or documented requirements 

2 Preliminary design using accepted physical principles & heuristics 

3 Critical components or technologies demonstrated in lab environment 

4 Basic integration of system components demonstrated in lab environment 

5 Lab-scale integrated system demonstrated in relevant/simulated environment 

6 Full-scale prototype system demonstrated in relevant/simulated environment 

7 Full-scale prototype system demonstrated in operational test environment 

8 Production-ready system demonstrated in operational test environment 

9 Full-scale system deployed in real environment 

TRLs are a standard tool for assessing the maturity of new technologies in Government 
acquisition and development programs (Government Accountability Office, 2020). Typically, 
TRLs are applied to technologies to indicate their technical maturity (e.g., a lab-scale prototype 
wing design demonstrated in a wind tunnel might have TRL 5). On the other hand, a referent is 
typically a body of data, not a technology (e.g., the data collected from testing the prototype 
wing in a wind tunnel), and so should not be thought of as having a TRL itself. However, an 
authority level for a referent can still be inferred from the TRL that referent would support 
assigning to the system that produced it (e.g., the wind tunnel prototype test was sufficient to 
decide if the wing design met TRL 5, so the data collected that supported that conclusion of the 
wing’s TRL is a referent with an authority level of 5). This line of inference supports the 
assignment of authority levels to referents based on the maturity (or nearness to real-world 
operational expectations) of the systems from which they were derived. Ultimately, models will 
be used to make decisions about real-world system operations; thus, operational data, while 
potentially more noisy than more controlled referents, is the most authoritative referent for 
model validation because it is what the warfighter will experience. A set of representative 
referents that might be associated with each TRL and are therefore said to have a set of 
corresponding authority levels, is given in Table 2.  

In practice, the MVL framework may be applied to many different types of simulations. However, 
regardless of the object represented by the simulation, the same authority scale can be applied 
by defining what is considered the ‘system’. This concept is further discussed in Appendix B, 
which aims to answer common questions on how the authority level should be determined. The 
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application of these authority levels to determine model validity is discussed further in the MVL 
Calculation section. 

Table 2 
Referent Authorities from Relevant TRLs 

Authority 
Level 

Relevant Referent 

1 SME Judgement 

2 First Principles/Physics Predictions 

3 Component Lab Test Data 

4 Integrated Component Lab Test Data 

5 Lab-Scale System Test Data 

6 HWIL & SWIL Data 

7 Prototype Field Test Data 

8 Live System Test Data 

9 Operational Real-World Data 

Scope 
The final pillar of validation is scope, which includes the set of inputs, outputs, assumptions, and 
limitations representing the mission-relevant system parameters, environmental conditions, 
constraints, and requirements, and their allowable values. The MVL framework considers three 
different scopes: the model scope, the referent scope, and the scope of intended use, as 
represented by Figure 2.  

Figure 2 
Intersecting Scopes of Model, Referent, and Intended Use 

The model scope is defined first by where the model can be run, and second by where model 
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output has been obtained for validation. The referent scope is the scope where data has been 
obtained from any of the referents listed in Table 2. To validate a model, the model and referent 
scopes must be overlapping to assess fidelity of shared output(s). Fidelity can only be assessed 
when input conditions are shared. The intended use of a model is generally a description of the 
problem addressed by a model or simulation and its associated data, including the system or 
process being represented (US Department of Defense, 2012). The scope of intended use 
further specifies the set of dimensions, ranges, and assumptions of the model inputs and 
outputs needed to represent and assess system behavior. Definition of this intended use scope 
is further discussed later in this paper. The validity of a model is assessed over the scope of 
intended use, which ideally is covered by both model and referent scopes. If the model scope 
does not overlap with the scope of intended use, the model is either not suited to the intended 
use or there is a need to collect more outputs. If the referent scope does not overlap with the 
scope of intended use, more data needs to be collected to enable the model to be validated. 
Multiple referents may be used together to validate different regions of the intended use scope. 

MVL 
The MVL is mathematically derived from model and referent data with a defined scope of 
intended use. This process uses a combination of metrics based on methodical assessments of 
fidelity, referent authority, and scope. The result is a continuous score between zero and nine, 
rating the level of trust that can be placed in the outputs of a model for the specific intended use. 
The remainder of the paper will discuss the steps required to obtain the MVL as well as 
interpretation of the result. Additionally, a tool is available in R which automates the calculation 
of the MVL given model data, referent data, and a defined scope of intended use (Provost et al., 
2024; Jones et al., 2024). 

MVL Framework Applicability 

M&S includes a diverse range of models across many disciplines with various objectives, levels 
of detail, and modeling mechanisms. The MVL framework aims to be broadly applicable to any 
model which produces a quantitative or measurable prediction about the behavior of a real 
system or object. This prediction can then be validated against referent data quantifying that 
same behavior. The MVL framework is not necessarily applicable to models without a predictive 
objective. For example, MBSE models supporting the conceptual design phase do not yet have 
algorithms implemented that predict system behavior. MBSE can help guide validation needs, 
such as defining the scopes for the model and the intended use, and later be validated itself as 
it evolves into a digital twin with detailed descriptions of system behavior. Another example of a 
non-predictive model could be mechanical or electrical computer-aided design (CAD) models 
that are purely descriptive and do not make predictions about behavior. Some CAD models may 
go further than pure description, such as a model of a full mechanism or electrical system with 
simulated behavior, and in these cases MVLs could be applied. 

Predictive models exist at various levels of detail, from theater or mission level simulations down 
to subcomponent engineering models. For any of these models or simulations, they must have 
identifiable outputs or measures which can be validated against referent data. The types of 
referents which will be used to validate models will vary drastically depending on the object 
being validated. For example, miss distance of a projectile could be validated against live test 
data, while a red threat model may be validated against physics predictions based on system 
intelligence. Appendix B further discusses determining referent authority for various referents, 
accounting for the type of object being modeled, whether it be a system of systems, system, 
component, etc. 
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Many modeling mechanisms may be used within a model; however, because the MVL 
framework considers the model to be a black box and compares the outputs, a key classifier 
becomes whether the model is stochastic or deterministic. Stochastic models produce random 
outputs mimicking the variable behavior of reality, while deterministic models provide only point 
predictions of behavior. The MVL framework is best applied to stochastic models since fidelity is 
assessed in terms of both accuracy and match in variability. For deterministic models or 
outputs, the MVL framework can still be applied. Ideally, resolution and propagated 
uncertainties should be quantified for deterministic models to quantify variability. However, if 
uncertainty is not quantified, an accuracy MVL, MVLa, may be most appropriate, where the MVL 
user accepts risk that the model cannot predict variability of real behavior.  

To be able to compute the MVL for a model, the user must have: 
1. Intended use: a well-defined scope of intended use describing the outputs and inputs for

which the model must be validated.

2. Model data: output(s) collected from a predictive model, including the inputs or
conditions under which those output(s) were obtained.

3. Referent data: data from one or more referents with matched inputs to model data and

assigned referent authority levels for each referent.

Given these prerequisites, other qualifications determine which variation of an MVL may be 

calculated. The process to determine the applicable MVL is depicted in Figure 3.  

Figure 3 
Flowchart to Determine Applicable MVL 
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The variations of MVLs include an MVL, MVLa, or an MVL that uses a referent interpolator. An 

MVLa is used as an alternative to the MVL when model uncertainty has not been quantified. 

Since model uncertainty is a key component for assessing a model’s predictive ability, an MVLa 

should be interpreted with this limitation in mind. Calculating an MVLa only is best for 

deterministic models or when ability to predict variability is not desired. An MVL that uses a 

referent interpolator is necessary when model and referent inputs are not matched, and the 

referent must be interpolated to compare against the model. Additionally, when referent 

observations are not replicated, an interpolator (or statistical model) of the referent is needed to 

quantify referent variability, which is required to assess fidelity. In these cases, the MVL user 

must create the interpolator and accept any assumptions made in its construction. These 

variations allow model trust to be quantified when not all requirements are met for the MVL. 

The objective of an MVL is to provide a quick, interpretable measure of model validity while 

additionally identifying areas for increasing model trust; however, the MVL framework is far from 

the only methodology for performing model validation. MVLs can and should be augmented with 

other statistical methods that can be tailored to the specific validation scenario. The Institute for 

Defense Analysis (IDA) Handbook on Statistical Design and Analysis Techniques for Modeling 

& Simulation Validation discusses many such validation methods (Wojton et al., 2019). 

Calculating an MVL is well suited to be an initial validation step that is easily performed for a 

wide range of scenarios, and it can enable a fast pace in a digital engineering environment. 

MVLs can provide initial insight to point to additional analysis and model improvement steps.  

Defining and Quantifying the Scope of Intended Use 

The scope of intended use defines the inputs and outputs over which the model needs to be 
validated and must be well-defined for an MVL to be calculated.  

Responses 
The first step in defining the scope of intended use is defining the outputs or responses which 
the model will be used to predict. Often due to the complex nature of DOD systems, 
decomposing system functions into smaller elements is key to understanding the performance 
of each critical component. This decomposition process can help with identifying responses, the 
measurable outputs of either a model or test event. A model will often have multiple responses 
that support one or more requirements and may vary from mission level outcomes to 
component behavior. The intended use specifies which responses are needed, first to help 
guide the level of detail required for model building and second to assess the validity of those 
responses. The MVL is calculated for each response, so each different response may have a 
different level of validity.  

A key consideration in choosing a response is whether it is continuous or categorical. 
Continuous data types are preferred due to containing more information than categorical data 
types (e.g., Hit/Miss, Pass/Fail), meaning continuous data results in lower resource costs and 
improves analysis (Ortiz, 2018). Effort should be made to convert categorical responses to 
continuous whenever possible. The MVL can be computed for both continuous and categorical 
responses; however, it will be a more informative and reliable indicator of validity when 
continuous data is used. 



8 

Factors 
In addition to responses, the inputs or factors that influence those responses must be 
documented as part of the scope of intended use, including the factor values or ranges over 
which the model will be validated. Factors could include system configurations, physical and 
ambient conditions, etc. They are known to have an effect on a response, where the effect is 
ideally both operationally meaningful and known to be statistically significant though results from 
a designed experiment. Different responses may have different factors that affect them and for 
which they need to be validated. Model factors should mirror the physical factors varying in 
testing and operations. There may be additional parameters that can be varied within the model 
that affect model outputs but have no physical equivalent (e.g. time-step, mesh size); therefore, 
these parameters should not be included in the MVL scope definition but should be recorded for 
documentation purposes and evaluated with sensitivity analysis. Like responses, factors should 
also be made continuous when possible due to the increased amount of information and ability 
to interpolate between factor values.  

Factors in the intended use should be classified as varied or held constant. For factors which 
vary, a continuous range of values or categorical list of levels is part of the scope of intended 
use definition. Including a constant factor in the scope of intended use indicates that the model 
will only be used at that constant level and that the model should only be validated against 
referent data collected at that same factor level. In contrast, factors not included in the intended 
use may take on any value and still be incorporated into the validation.  

Other Considerations 
Additionally, constraints on factors should be documented as part of the scope of intended use. 
Constraints can be used to limit factor combinations where the model will be used (e.g. “the 
model will not be used for high speeds at low altitude”) as well as to exclude disallowed 
combinations (e.g. “aircraft model X does not have X radar installed”). These constraints can be 
defined through Boolean logic or mathematically defined relationships. These constraints 
combined with the varied factor ranges and constant conditions define the scope of intended 
use where the model will be validated. 

The STAT COE Test Planning Guide (Adams et al., 2022) and IDA Handbook on Statistical 
Design and Analysis Techniques for Modeling & Simulation Validation (Wojton et al., 2019) 
provide additional insight for identifying responses (outputs) and factors (inputs) during test 
planning. The User Guide for the MVL R tool (Jones et al., 2024) provides templates for defining 
and structuring the scope of intended use for input into the MVL R tool. 

Thus far, discussion has focused on defining a single scope of intended use for a model; 
however, multiple scopes of intended use may need to be defined to properly capture the 
complexity of model validation. For example, when a model has several responses that need 
validation, different factors could affect different responses, resulting in multiple scope domains 
for each unique factor space. Different responses may have different referents which pertain to 
their validation and apply to different scope domains. Scope domains of interest can be defined 
based on where data is available (e.g., a region where high authority data is available and a 
larger region with all available data). Scope division can also occur due to discontinuities or 
physical boundaries (e.g., phase changes, transonic/supersonic/hypersonic), so the response is 
expected to be smoothly varying or continuous across the scope. Multiple scope domains could 
also be defined based on user needs to address different model use cases (e.g., defining one 
scope of the critical mission space and another for all operations). The MVL is evaluated for 
each scope domain to assess model validity for each intended use case. 
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The intended use case(s) for a model may include more detail than what is needed for the 
scope definition, for example, the risk the program is willing to accept when using the model. 
However, this is outside of what factors into the MVL. Once the MVL is obtained, the user can 
evaluate the acceptable level of risk against the resulting MVL. 

Data Collection 

Validation requires both the model and referent data to be collected. This data collection is 
integrated into an overall test and verification, validation, and accreditation (VV&A) strategy. 
Additionally, tests should be designed according to rigorous Design of Experiment (DOE) 
principles.  

Model Data Collection 
Model data should be collected in accordance with the objective of model validation, using 
tailored designed experiments. Models can either be developed specifically for the intended use 
case, or alternatively, existing models from legacy systems can be assessed for a new system’s 
use case. The IDA Handbook on Statistical Design and Analysis Techniques for Modeling & 
Simulation Validation (Wotjon et al., 2019) recommends different test designs for comparing the 
model to live data based on the amount of randomness present in the model, shown in Table 3. 
The handbook additionally provides suggested design types for exploring the model space, 
which can be used to verify model results are as expected, characterize the entire factor space, 
or generate predictions much more quickly than through live testing.  

Table 3 
Simulation Design Recommendations for Comparing to Live Data 

Level of Randomness Recommended Method 

None (Deterministic) Hybrid Design 

Low (E.g., Physics-based with 
calibration factors) 

Classical 

High (E.g., Effects-based, 
Human-in-the-loop) 

Classical with Replications 

Note. Adapted from “Handbook on Statistical Design and Analysis Techniques for Modeling & 
Simulation Validation,” by Wojton et al., 2019, Copyright 2019 by Institute for Defense 
Analyses. 

Model data should be collected to match the conditions where live data is collected. Ideally, 
model output is generated to predict system behavior prior to live testing, so that predictive 
capabilities can be assessed (Miller, 2022). This order ensures the model is not influenced by 
the collected live data. 

Additional Resources: 

• Handbook on Statistical Design and Analysis Techniques for Modeling & Simulation
Validation (Wotjon et al., 2019)

• Computer Experiments: Space-Filling Design and Gaussian Process Modeling (Natoli &
Burke, 2018) 

• Model Selection and Use of Empiricism in Digital Engineering (Jones et al., 2021)

https://www.ida.org/research-and-publications/publications/all/h/ha/handbook-on-statistical-design-and-analysis
https://www.ida.org/research-and-publications/publications/all/h/ha/handbook-on-statistical-design-and-analysis
https://www.afit.edu/images/pics/file/Computer%20Experiments-%20Space%20Filling%20Designs%20and%20Gaussian%20Process%20Modeling.pdf
https://www.afit.edu/images/pics/file/Model%20Selection%20and%20Use%20of%20Empiricism%20in%20Digital%20Engineering.pdf
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Referent Data Collection 
For any physical system acquisition program, live tests will be planned throughout contractor, 
developmental, and operational testing. These tests produce referent data that can serve to 
validate a model. As the program progresses through developmental and operational test, 
higher authority level referents become available. For example, during Technology Maturation 
and Risk Reduction, lab test data may be the most authoritative data available, while a system 
in operation will have operational real-world data for validation. Since high authority data is 
typically more difficult to obtain, many referents may be used in tandem to validate a model 
across its entire scope to cover regions where high authority data cannot be obtained. If only 
one set of referent data is available, the MVL may still be computed with that referent. Referents 
for red threats or of battlespaces may always have limited authority levels due to inability to 
obtain highly authoritative data. Thus, models of these systems and phenomena are expected 
to have lower MVLs than more exhaustively tested systems.  

When no test data is available, model results can be compared against SME judgement, other 
M&S, or data from a legacy system. SME judgement data should be collected independently 
from model data and quantified in terms of estimated mean behavior and standard deviation at 
given inputs. One method for estimating standard deviation is to estimate the range within which 
95% of the observations will fall. Then using a normal distribution assumption, the standard 
deviation is the range width divided by four (95% of normally distributed data falls within ±2𝜎 of 
the mean).  

Models cannot be validated against referent data that was used to train, fit, or update the model. 
When referent data will influence the model, the referent data should be partitioned into 
separate training and validation (holdout) data sets to enable unbiased validation of the model. 
Ideally, model output predictions should be generated prior to obtaining live data so that live 
data does not bias the model and true predictive ability can be evaluated. 

Referent data is most effective when testing is planned with the model validation effort in mind. 
The IDA Handbook on Statistical Design and Analysis Techniques for Modeling & Simulation 
Validation (Wotjon et al., 2019) states that direct matching of points between live testing and 
simulation provides the best validation strategy, and when points are not matched with a 
designed experiment, analysis techniques are limited and less powerful. Thus, referent data 
should be collected using designed experiments to the greatest extent possible. The model’s 
scope of intended use should guide the factor conditions and ranges that need to be varied in 
physical testing. Test designs should also include replication so that the variability of real-world 
behaviors can be understood. The MVL framework requires referent replication and matched 
inputs between model and referent data to make a direct comparison and compute the MVL. 
However, it is possible to calculate an MVL using a referent interpolator when these conditions 
are not met (see Appendix E). All collected data should be inspected for erroneous data due to 
known collection errors. 

The MVL framework can enable continuous validation across the lifecycle, meaning model 
validity can be reevaluated as the model evolves and more referents are obtained. In the 
continuum of test and evaluation (T&E), models can and should be revised and updated as 
more data is obtained on system behavior as part of an iterative cycle. VV&A strategies should 
identify when the model will be used to inform decisions and detail the validation occurring prior 
to those decision-making events, including what referents will be available. MVLs can be used 
to track model validity over time, supporting the shift toward digital engineering and T&E as a 
continuum. 
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Additional resources: 

• Test Planning Guide (Adams et al., 2022)

• Handbook on Statistical Design and Analysis Techniques for Modeling & Simulation
Validation (Wotjon et al., 2019)

MVL Calculation 

This section will walk through the mathematical process for deriving the MVL from model data, 
referent data, and the scope of intended use. Since the MVL calculation is automated using the 
MVL R tool, this section focuses on guiding the reader through the process beginning to end 
while building intuition about the meaning of the MVL and lower-level metrics. Additional 
appendices augment this section to provide full mathematical details. 

Prior to calculation, the user must provide codified model data, referent data, and the scope of 
intended use. Additionally, the user must assign the appropriate authority level to each referent. 
Based on the scope of intended use, an MVL will be calculated for each defined response, 
quantifying the level of trust that can be placed in each response from the model. 

Figure 4 pictures an example scenario for calculating an MVL. In this scenario, the scope of 
intended use includes two factors of interest, Factor A and Factor B, and the relevant ranges for 
those factors, creating the square scope region shown. Model and referent data are available at 
each of nine validation points, which are points within the scope of intended use where a 
response was collected under the same input conditions from both the model and at least one 
referent. Both live system test data and SME judgement are used as referents to validate the 
model, with SME judgement used to augment live system test data where it is more challenging 
to obtain. The following sections will describe MVL calculation steps using Figure 4 for 
visualization. Note that while Figure 4 depicts a simple two-dimensional example, the MVL 
framework is extensible to much more complex cases. 

Figure 4 
Example MVL Scenario 

Finding validation points 
Based on the provided observations and input conditions, the MVL algorithm finds validation 

https://www.afit.edu/STAT/page.cfm?page=1949
https://www.ida.org/research-and-publications/publications/all/h/ha/handbook-on-statistical-design-and-analysis
https://www.ida.org/research-and-publications/publications/all/h/ha/handbook-on-statistical-design-and-analysis
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points where both model and referent data are available at the same combination of input 
conditions. For continuous responses, each validation point requires at least two model 
observations and at least two referent observations, from the same or different referents, to 
allow the MVL to be calculated. This amount of data allows both model and referent variability to 
be estimated. For validation points with only one model observation and at least two referent 
observations, the model variability cannot be estimated (meaning these points cannot support 
MVL calculation), but these validation points can still support calculation of an MVLa. For cases 
where there are limited validation points due to limited replication or lack of points at the same 
input combinations, the MVL may be calculated using a referent interpolator (see Appendix E). If 
the response is known to follow a binomial, exponential, or Poisson distribution, one data point 
from both model and referent is sufficient for the MVL calculation (see Appendix C). Together, 
the validation points represent the intersection of the three scopes in Figure 2, the model scope, 
referent scope, and scope of intended use.  

At each validation point 
The validation points provide the locations where the fidelity can be determined by comparing 
the model and referent responses under the same inputs and quantifying their consistency. 
When validating a model, each validation point should be treated separately to first understand 
if a model is valid at that single point. This is pictured in Figure 4 with the magnification of one of 
the validation points. Then, analysis can be combined across many validation points to 
understand model validity across an entire scope domain. This section walks through the 
analysis that takes place at each validation point, including pooling referents with Bayesian 
power priors, computing fidelity, and determining model authority. 

Pooling Referents with Bayesian Power Priors 
If referent data is available from multiple referents, analysis first requires referent data to be 
pooled together to provide an overall understanding of system behavior based on the different 
referents available. For example, in Figure 4, two of the validation points have referent data 
from both live system test and SME judgement; these data sources must be pooled so that the 
model can be compared against a single body of data.  

The MVL framework employs a Bayesian Power Prior method to pool referent data together in a 
manner consistent with the amount of authority each referent holds (Stafford et al., 2024b). 
Bayesian Power Priors allow information from different sources to be assigned a weight and 
pooled together to form a single distribution representing system behavior. The goal of this 
pooling is to determine a pooled referent mean, standard deviation, and resolution. These 
measures correspond to accuracy, repeatability, and resolution, and when quantified, they allow 
fidelity to be determined.  

The weights assigned to different referents in the pooling are derived by applying the geometric 
scale in Equation 1 to the nine-level referent authority scale in Table 2. Table 4 shows the 
resulting weighted scale (Provost et al., 2022). Additionally, the weights assigned to each 
referent can be interpreted as modulating the value placed on a data point from that referent. 
For example, using the weighting scale, approximately 20 data points collected from a 
component lab test carry the same amount of influence as one observational real-world data 
point.  

𝑤𝑙 = 𝑒
−
1
2
(9−𝑙) ,   𝑙 = 1,… ,9 (1) 
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Table 4 
Weights of Referent Authority Levels and Effective Number of Equivalent Points 

Authority 
Level 

Relevant Referent Weight 
Equivalent 
Number of 
Data Points 

1 SME Judgement 0.0183 54.60 

2 First Principles/Physics Predictions 0.0302 33.12 

3 Component Lab Test Data 0.0498 20.09 

4 Integrated Component Lab Test Data 0.0821 12.18 

5 Lab-Scale System Test Data 0.1353 7.39 

6 HWIL & SWIL Data 0.2231 4.48 

7 Prototype Field Test Data 0.3679 2.72 

8 Live System Test Data 0.6065 1.65 

9 Operational Real-World Data 1.000 1.00 

Conceptually, this weighting scale means that whenever multiple referents are available at a 
validation point, the higher-level referents more heavily influence the resulting pooled 
distribution. When there is disagreement between referents, the pooled distribution expresses 
this disagreement through a larger pooled standard deviation than if referents agreed; in other 
words, because referents do not agree, there is not as much repeatability in system behavior.  

To conduct referent pooling, the user must designate the appropriate distribution for each 
response. For example, continuous data (e.g., pressure) may be assumed to follow a normal 
distribution, while binary data (e.g., hit/miss) may be modelled with a binomial distribution. The 
type of data collected should guide the choice of distribution. As of this document’s publication, 
the MVL R tool supports normal (continuous data), binomial (binary data), exponential 
(continuous data, failure time data), and Poisson (count data) distributions.  

Appendix C contains the complete mathematical details for performing referent pooling with 
Bayesian Power Priors and for deriving the pooled referent mean, standard deviation, and 
resolution.  

Computing Fidelity 
Once referent data had been pooled, fidelity can be determined by comparing model outputs to 
pooled referent behavior. For example, Figure 4 shows a fidelity score that might be calculated 
at one validation point. Since model and referent behavior vary across the scope, fidelity is 
calculated independently at each validation point. If only one referent is used and referent 
pooling is not needed, the model is compared directly to that referent. In Figure 4, seven of the 
nine validation points have only one referent and do not require pooling. 

Fidelity is based on both similarity in mean behavior (accuracy) and similarity in variability, 
where variability comprises both repeatability and resolution. The MVL framework uses a fidelity 
metric which is scored between zero and one, where zero indicates no fidelity and one is perfect 
fidelity between the model and referent (Weeks et al., 2022). The fidelity metric is given in 



14 

Equation 2, where 𝑥̅m is the model response mean, 𝑥̅p is the pooled referent mean, 𝑠m
∗  is the 

model variability, and 𝑠p
∗ is the pooled referent variability. Variability, 𝑠∗, is defined is Equation 3, 

where 𝑠 is the sample standard deviation and δ is the resolution. Appendix C and Appendix D 
discuss how each of these inputs are obtained for the referent(s) and model, respectively. 

𝑓 = 𝑒
−
1
2(
𝑥̅m−𝑥̅p
𝑠p
∗ )

2

𝑒
−
(𝑠m
∗ −𝑠p

∗ )2

𝑠m
∗ 𝑠p

∗ (2) 

𝑠∗ = √𝑠2 +
δ2

12
(3) 

The fidelity metric is the product of two lower-level metrics, the accuracy metric 𝑓a and the 
variability metric 𝑓v,   defined in Equations 4 and 5, respectively. 

𝑓a = 𝑒
−
1
2(
𝑥̅m−𝑥̅p
𝑠p
∗ )

2

(4) 

𝑓v = 𝑒
−
(𝑠m
∗ −𝑠p

∗ )2

𝑠m
∗ 𝑠p

∗ (5) 

The accuracy metric scores fidelity between zero and one based on the difference between the 
model and referent means, normalized by the amount of variability in the referent. In other 
words, the referent variability creates a scale to tell what difference in means is meaningful. 
Examples of accuracy metric scores as the model and referent means diverge are shown in 
Figure 5. Note that a separation of model and referent means that is equal to the pooled 
referent variability 𝑠p

∗ (such that 𝑓a = exp(−1/2) = 0.6065) results in a fidelity score that is the 

same as the base in the geometric sequence in Equation 1 (which defines the authority weights 
in Table 4). This means that a fidelity score of 0.6065 results in 1-level decrease in model 
authority from the referent to the model, regardless of the level of the referent.  

Figure 5 
Visualizing the Accuracy Metric 

Similarly, the variability metric scores fidelity between zero and one based on the difference 
between the model and referent variabilities. Figure 6 illustrates the variability metric for different 
cases.  
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Figure 6 
Visualizing the Variability Metric 

Fidelity must be high in terms of both the accuracy and variability metrics to achieve a high 
fidelity score overall. If one or both metrics are low, the fidelity will also be low. Alternatively, an 
MVLa could be calculated, which only takes the accuracy metric into account. 

Figures 5 and 6 use a normal distribution to illustrate the model and referent distributions; 
however, the fidelity metric is broadly applicable to many types of distributions. Appendix C 
discusses how referent statistics are calculated for normal, exponential, binomial, and Poisson 
distributions. Appendix D discusses how model statistics are determined for those distribution 
types. These statistics can then be inputted into the fidelity metric. 

Determining Model Authority 
When referents have been pooled and the fidelity has been calculated, the final step at each 
validation point is to determine the amount of authority that is passed from the referent to the 
model. If a referent has high authority but poor fidelity with the model, the model cannot be 
considered very authoritative. Similarly, if the model has excellent fidelity with the referent, but 
the referent is not very authoritative, then the model also cannot be considered very 
authoritative. The model authority at a single validation point can be expressed as the product of 
the fidelity and the referent authority weight from Table 4. When multiple referents are pooled 
together, the referent authority at that validation point is the same as the authority of the 
highest-level referent incorporated into the pooling. Equation 6 gives the model authority weight 
𝑤m at a given validation point, where max(𝑤r) is the maximum referent authority at that point 
and 𝑓   is the fidelity. 

𝑤m = max(𝑤r) ∙ 𝑓 (6) 

Conceptually, the model authority weight quantifies the weight of authority that has been passed 
from the referent(s) to the model at a single validation point, and it is an intermediate score in 
the MVL calculation. The model authority weight is on the zero-to-one weighted scale, but it can 
be converted back to the zero-to-nine scale of Table 4, so the user can understand the level of 
authority which has passed to the model. This conversion from an authority weight to an 
authority level uses the inverse of Equation 1 and is given Equation 7. For example, in Figure 4, 
the magnified validation point has a level 8 referent with an authority weight of 0.6065; the 
fidelity between the model and referent at that point is 0.325, so the weight passed to the model 
is 𝑤𝑚 = 0.6065 ∗ 0.325 = 0.197. When inserted into Equation 7, the authority level of the model 
at that validation point is 5.75. The model authority level will never be higher than the level of 
the referent used to validate it. 

𝑙m = 9 + 2 ln(𝑤m) (7) 

Note that because the geometric scale in Equation 1 uses a base of exp(−1/2) = 0.6065, a 
fidelity score of 0.6065 results in a one-level drop in authority from the referent to the model. 
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This fidelity score is the same as the accuracy fidelity score obtained from the model and 
referent means being one 𝑠p

∗ apart.  

Across All Validation Points 
Once the model authority weight has been determined at each validation point, the model can 
be assessed for validity across the entire scope of intended use. For example, in Figure 4, the 
model authority weight is calculated for each of the nine validation points to understand how 
much authority can be transferred to the model at those points; however, the validation points 
are not necessarily representative of the scope of intended use. Scope coverage must be 
assessed and combined with model authority to determine a model’s MVL. 

Quantifying Scope Coverage 
For a model to be considered valid for a given intended use, it must be shown that the validation 
points produce enough evidence to demonstrate validity for the entire intended use scope, not 
just at validation points where data was collected. When a scope domain is well-covered with 
validation points, the validity determined at validation points also covers the space between 
points.  

The MVL framework quantifies coverage of the scope of intended use using a metric scored 
between zero and one, where zero indicates no coverage and one indicates complete coverage 
of the scope domain. The details of how the metric is computed depends on the data types of 
the factors that define the intended use scope. When all factors are continuous, the coverage 
metric is broken down into two lower-level metrics, as in Equation 8, where 𝐶 is the coverage, 

𝐶𝑉 is the volume coverage metric, and 𝐶𝐷 is the density coverage metric (Provost et al., 2022). 
Both 𝐶𝑉 and 𝐶𝐷 are also metrics scored between zero and one, and both must be high in order 
to obtain a high scope coverage score. 

𝐶 = 𝐶𝑉𝐶𝐷 (8) 

Conceptually, these lower-level metrics are understood as pictured in Figure 7, where volume 
coverage is high when it is possible to interpolate anywhere in the space from validation points, 
and density coverage is high when validation points densely populate the scope. For example, 
in the upper left case in Figure 7 (which matches the scenario in Figure 4), 𝐶𝑉 = 1 and 𝐶𝐷 =
0.978, resulting in 𝐶 = 0.978. Appendix D provides complete mathematical formulations for each 
of these metrics. 
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Figure 7 
Volume Coverage Versus Density Coverage for Continuous Factors 

When factors are categorical instead of continuous, coverage is assessed in terms of the 
fraction of combinations that are covered. When factors are a mix of continuous and categorical 
factors, a hybrid approach is used which assesses volume and density coverage within different 
categorical combinations. These approaches are described in detail in Appendix D.  

Putting It All Together: Calculating the MVL 
The MVL is mathematically derived from the methods and metrics quantifying each of the three 
model validation pillars: fidelity, referent authority, and scope. Specifically, the average authority 
transferred to the model at validation points combines with the coverage score to determine the 
MVL. Similar to Equation 7, which converts model authority weight at a single point to a zero-to-
nine level, the weighted average of model authority and coverage are converted into a zero-to-
nine score using the inverse of Equation 1.  

Equation 9 defines the MVL, where 𝐶 is the coverage, 𝑝 is the number of validation points, 

max(𝑤r𝑖) is the maximum referent authority weight available at validation point 𝑖, and 𝑓𝑖 is the 
fidelity between the model and referent(s) at validation point 𝑖.. The MVL is a continuous score 
between zero and nine, with higher scores indicating higher model validity and that more trust 
can be placed in the results of that model. The MVL can be up to as high, but no higher than, 
the level of highest authority data used to validate the model. 

MVL =  max [9 + 2 ln(
𝐶

 𝑝
∑max(𝑤r𝑖) ∙ 𝑓𝑖

𝑝

𝑖=1

) , 0] (9) 

Equation 9 uses the maximum function so that the MVL can be no lower than zero, which would 
otherwise occur for poor scores across all pillars. 
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Outputs, Interpretations, and Actions 

This section discusses the interpretation of several different MVL framework outputs, including 
the MVL itself as well as lower-level metrics and improvement metrics which provide additional 
information. Additionally, depending on the outputs generated, different risk-management and 
model improvement actions are discussed.  

Interpreting the MVL 
The MVL is a mathematically derived metric scored continuously between zero and nine that 
rates the validity of a model output for a given scope of intended use. The score is interpreted 
on an absolute scale, where the MVL indicates the level of trust that can be placed in model 
results by mapping to quantified levels of trust that are placed in different data sources. This 
interpretation is shown in Table 5. For example, a MVL of 5 indicates that the model results are 
as trustworthy lab-scale system test data. 

Table 5 
Interpretation of MVL in Terms of Trust Placed in Different Data Sources 

MVL of: Is as Trustworthy as: 

1 SME Judgement 

2 First Principles/Physics Predictions 

3 Component Lab Test Data 

4 Integrated Component Lab Test Data 

5 Lab-Scale System Test Data 

6 HWIL & SWIL Data 

7 Prototype Field Test Data 

8 Live System Test Data 

9 Operational Real-World Data 

While Table 5 shows a discrete one-through-nine scale, the MVL is scaled continuously 
between zero and nine and will likely fall somewhere between those discrete levels. The MVL 
can be no higher than the highest authority level of data used to validate the model. This 
property results from the concept that the model is only as trustworthy as the referent data used 
to validate it, and that trust is passed from the referent to become trust in the model through 
validation. Additionally, when interpreting the MVL, recall that the referent authority and MVL 
scales are interpreted with respect to what is considered the ‘system’ for the model’s intended 
use.  

Models are often relied upon to make decisions about systems that cannot be tested or 
observed under some or all operational conditions due to safety or restrictive cost (e.g., space 
systems). In these cases, because the referents used for validation will be of lower authority, the 
model may never obtain a high MVL. While the model may in fact be highly representative of 
operations, this cannot be known until operational data is obtained. On the other hand, for a 
system where operational data is easy to obtain, the MVL could be as high as level nine. 
Comparing these two cases, one MVL is lower than the other; however, both models may be 
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suitable for their respective intended uses. MVLs are a tool for understanding the trust that can 
be placed in the results of a model on an absolute scale, but the acceptable level of risk varies 
between programs, thus changing how the MVL affects decision making. A low MVL does not 
necessarily mean that the model is not acceptable for the use case. 

Since the MVL is a mathematically derived metric, it is not guaranteed to increase by 
progressing in the timeline of model development, though this is usually the goal. Instead, the 
MVL is based only on the model data, referent data, and scope of intended use available at the 
time of evaluation and may increase or decrease over time depending on the data. Since 
higher-level referents are typically obtained over time, if no severe fidelity changes occur, the 
MVL can be expected to increase over time. For instance, early in the system lifecycle, a low-
MVL model may only be sufficiently trustworthy for selecting test points, while later, the now-
high-MVL model may be used to evaluate the system against requirements.  

Accuracy and Variability MVLs 
Besides the MVL, many lower-level scores can also be reported to increase understanding of 
model validity and point to areas of improvement. Accuracy and Variability MVLs evaluate the 
model’s validity using only one component of the fidelity metric. Recall, the fidelity metric is 
composed of accuracy and variability components which assess similarity of mean behavior and 
similarity of variabilities, respectively, between the model and the referent. The accuracy MVL 
can also be the only MVL reported in cases where the model uncertainty is not quantified, and 
the user accepts that the model's ability to predict behavior variability is not validated. 

The accuracy MVL, MVLa, is defined in Equation 10, where 𝐶 is the coverage, 𝑝 is the number 

of validation points, max(𝑤r𝑖) is the maximum referent authority weight available at validation 
point 𝑖, and 𝑓a𝑖 is the accuracy fidelity between the model and referent(s) at validation point 𝑖. 

MVLa =  max [9 + 2 ln(
𝐶

 𝑝
∑max(𝑤r𝑖) ∙ 𝑓a𝑖

𝑝

𝑖=1

) , 0] (10) 

The variability MVL, MVLv, is defined in Equation 11, where 𝑓v𝑖 is the variability fidelity between 
the model and referent(s) at validation point 𝑖. 

MVLv  =  max [9 + 2 ln(
𝐶

 𝑝
∑max(𝑤r𝑖) ∙ 𝑓v𝑖

𝑝

𝑖=1

) , 0] (11) 

Each of these metrics (if/when they can be calculated) will be higher than the MVL since they 
quantify trust using only one aspect of fidelity, where the MVL takes both aspects into account, 
providing a more complete picture of validity.   

Lower-level Metrics 
While the MVL provides a high-level understanding of model trust, lower-level metrics are 
essential for gaining a deep understanding of model risk as well as for identifying opportunities 
to reduce that risk. Since the MVL framework is built on the three pillars of fidelity, referent 
authority, and scope, these pillars provide the areas for understanding a model’s risk at a 
deeper level. Table 6 shows an example of a summary table that may be produced when 
calculating an MVL based on the scenario in Figure 4, including several lower-level metrics. 
This type of table can be produced for each of the responses of interest, and it is automatically 
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generated as part of the MVL R tool output when computing an MVL. 

Table 6 
Example MVL Summary for a Response 

MVL 6.690 

        MVLa 7.246 

        MVLv 6.865 

No. of validation points 9 

Average fidelity 0.732 

        Average fa 0.903 

        Average fv 0.816 

Average authority level 7.777 

Coverage 0.978 

        CV 1.000 

        CD 0.978 

In addition to the MVL, MVLa, and MVLv discussed above, this table first shows the number of 
validation points, which is useful to understand how many data points are present where the 
model and referent(s) can be directly compared, since it may differ from the total number of data 
points. Each validation point requires at least one model point and two referent points, from the 
same or different referents, to be counted. This amount of data allows 𝑓a and therefore MVLa to 

be calculated. For 𝑓v, MVLv, and the MVL to be calculated, at least two model points are 
required at a validation point, so that model variability can be calculated and compared to 
referent variability. 

It is important to recall that fidelity of a model is not calculated directly for an entire model; 
instead, it is calculated at each validation point, and is understood at the model-level using the 
average fidelity, which summarizes fidelity across all validation points. The average 𝑓a and 𝑓v 
scores provide more insight into where poor fidelity may stem from. If 𝑓a is low, the model has 
accuracy issues, if 𝑓v is low, the model does not capture the real-world variability. These 
average fidelities are summarized in Table 6. 

Because the MVL framework allows multiple referents to be used together to validate across the 
scope of intended use, the referent authority can be summarized using an average authority 
level of all referents used to validate, as in Table 6. This average uses the authority weights in 
Table 4 and is defined in Equation 11, where 𝑝 is the number of validation points, and max(𝑤𝑟𝑖) 
is the maximum referent authority weight available at validation point 𝑖. 
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Average authority level = 9 + 2 ln(
1

 𝑝
∑max(𝑤𝑟𝑖)

𝑝

𝑖=1

) (12) 

Finally, the coverage score(s) are essential for understanding the degree to which the data that 
has been collected can serve to validate the entire scope of intended use. Depending on the 
data types of the factors (e.g. continuous or categorical), different metrics can be reported to 
deepen understanding of coverage. Table 6 shows an example of metrics reported in the case 
that all factors are continuous. In this case, high 𝐶V indicates no extrapolation is required to 

validate the entire scope of intended use, while high 𝐶D indicates validation point coverage is 
dense. Appendix E provides more details on coverage outputs produced in other data-type 
cases. 

Improvement Metrics 
In addition to MVL summary and breakdown in Table 6, the MVL R tool also produces a table of 
improvement metrics that can help the user scope what actions would be most effective for 
increasing the MVL. An example of improvement metrics that could be generated based on the 
scenario in Figure 4 are shown in Table 7, including their interpretations. 

Table 7 
Improvement Metrics for an MVL 

MVL = 6.690 

Metric Improved MVL Change Interpretation 

Fidelity 7.732 1.042 If fidelity was 1 everywhere, the MVL would be 7.732 

    fa 6.865 0.175 If fa was 1 everywhere, the MVL would be 6.865 

    fv 7.246 0.556 If fv was 1 everywhere, the MVL would be 7.246 

Authority 8.332 1.641 If data was level 9 everywhere, the MVL would be 8.332 

Coverage 6.735 0.044 If coverage was 1, the MVL would be 6.735 

 CV 6.690 0.000 If volume coverage was 1, the MVL would be 6.690 

 CD 6.735 0.044 If density coverage was 1, the MVL would be 6.735 

Essentially, the improvement metric table shows how the MVL might have been higher if a 
perfect score would have been obtained for different lower-level metrics. The change column 
shows the amount of improvement from the original score and can be used to help prioritize 
MVL improvement options based on which could have the most impact. In Table 7 improving 
authority is shown to have the biggest impact, followed by fidelity, where variability has the 
biggest impact. When interpreting these scores, recall that fidelity, authority, and coverage all 
depend on the model and referent data used to generate the MVL and in most cases do not 
change independently of each other. For example, if coverage were to be improved by 
gathering more referent data in a previously uncovered region, that new data would also 
influence the fidelity and authority (e.g., if the new data does not match model well or is of lower 
authority than previous data). Therefore, the “Improved MVL” may not be obtainable to the 
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degree in Table 7, because changes affect more than just a single lower-level metric and 
because improvement efforts often do not result in a “perfect” score (e.g., 1 for fidelity). 

Actions for Risk Management and Model Improvement 
The MVL and each of the accompanying outputs enable informed decision making on model 
use. Importantly, the MVL does not determine whether the model should be used; rather, it 
quantifies the level of risk, and allows the decision maker to decide if that level of risk is 
acceptable for the needs of the program. 

The first possible outcome from an MVL assessment is that the model is acceptable for the 
intended use case and no further action is necessary. Recall, the acceptable level of risk varies 
between programs and between the models used by any given program, changing how the MVL 
affects decision making. A low MVL does not necessarily mean that the model is not acceptable 
for the use case. 

However, if the MVL is deemed unacceptable for the intended use, risk reduction or model 
improvement actions are necessary. The MVL framework provides several outputs which guide 
the user in selecting the appropriate actions. Different actions are recommended based upon 
which MVL pillar needs improvement: fidelity, referent authority, and/or coverage. The summary 
table (Table 6) and improvement metric table (Table 7) guide which pillars carry the most risk 
and which will be most impactful on the MVL when improved. The recommended actions are 
summarized in Table 8. Any combination of these actions is also possible, as multiple pillars can 
be improved together.  

Table 8 
Appropriate Risk Reduction Actions by Risk Area 

Risk Area Action(s) 

Low Fidelity 

• Reduce scope to high fidelity regions

• Improve model in low fidelity regions

• Choose a different model (if an option)

• Collect more replicates

Low Referent Authority 
• Collect higher authority data

• Reduce scope based on data availability

Low Coverage 
• Reduce scope of intended use

• Collect data in uncovered scope regions

One common action across all risk areas is reducing the scope of intended use. If fidelity is high 
for some input combinations within the scope and low for others, one option for reducing model 
use risk is to only use the model in the regions where fidelity is high. Fidelity outputs from the 
MVL R tool can be used to determine boundaries for these regions (such as through clustering 
methods). The MVL can then be recalculated for the newly defined scope of intended use. 
Similarly, if referent authority varies across the scope, the intended use can be reduced to only 
areas where high authority data is available. Finally, coverage can be improved by reducing the 
scope to be more covered by validation points, with less extrapolation. 

If reducing the scope is not desired, alternative improvement actions are possible. To improve 
fidelity without reducing the scope, the model itself must be improved, whether by altering 
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modelling mechanisms, solvers, or using another model entirely. Another option is to use 
multiple models to cover the full scope, where each model may be valid for different regions. 
Fidelity can also potentially be improved by collecting more replicates to get better estimates of 
the mean and standard deviation. To improve referent authority, higher authority referents must 
be collected at existing or new validation points. When obtaining these referents is not feasible, 
improvement must occur in either fidelity or coverage, or the decision-maker may need to 
accept more risk due to the limited data. Recall the MVL may only be as high as the highest 
authority data available. Lastly, when coverage is poor, more data can be collected in 
uncovered regions, of any authority level, to reduce extrapolation and/or interpolation risk. 
Lower-level referents may be easier to collect in uncovered regions than higher-level referents, 
and can drastically increase coverage, although with moderate reduction to authority. 

Discussion 

The MVL framework provides a way to quickly communicate model trust to decision makers, 
who must evaluate the MVL against the level of trust needed to support decision making. 
However, there are risks MVLs do not account for such as tool availability, documentation, post 
processing required, model integration risks, etc., which must also be weighed in decision 
making.   

When implemented throughout system and model development, the MVL can be used to track 
the level of trust as it changes with the system model. The Model-Validate-Design-Test-Validate 
paradigm summarizes how models can be built and validated (Collins, 2023). MVLs can be 
incorporated first in ‘Model’ to assess trust in historical models for a new intended use case. 
Then, in the first ‘Validate,’ MVLs can validate early model outputs on physics predictions, early 
technology demonstrations, and historical data. In the final ‘Validate’ step, MVLs can validate 
model outputs against test data obtained in the ‘Test’ step. As the state of digital engineering 
continues to evolve, the MVL framework can automate these processes through integration into 
digital infrastructures containing shared data and models. 

While MVLs are excellent for quickly quantifying model trust for a broad range of models, they 
can and should be augmented with other statistical methods that can be tailored to the specific 
validation scenario. These tailored methods can help overcome limitations of MVLs created by 
their generality. For example, hypothesis tests tailored to the data type can inform on the 
statistical significance of differences between model and referent behavior.  

This paper describes the MVL methodology and is augmented by the MVL R tool and user 
guide which automate the calculation described here. For case studies showing the application 
of MVLs to different models, see Stafford et al, 2024a. Future work includes updating this paper 
and the R tool as needed to incorporate lessons learned from the M&S and T&E communities 
as MVLs are applied.  

Conclusion 

As M&S continues to be used and relied upon to inform system decisions, particularly in the 
shift toward digital engineering, the MVL framework provides an essential tool for quickly 
quantifying and communicating the amount of trust (and therefore risk) held by model results. 
MVLs provide a detailed understanding of model validity in terms of the three pillars of 
validation: fidelity, referent authority, and scope. The summary of lower-level MVL scores 
assessing each of these pillars provides vital information for identifying risk-reduction actions 
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when the model does not meet the trust level required for decision making. The automation of 
MVLs through the MVL R tool enables users to easily incorporate MVLs into validation plans, as 
well as into digital environments, to understand model validity and how it changes over time. 
MVLs can be implemented to assess trust in a wide variety of models, across all stages of 
system development and operation, providing utility to both decision makers and model 
developers to use M&S in the DOD more effectively. 
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Appendix A 
Key Definitions 

To ensure a common understanding of the subject, the following definitions are used throughout 
this paper:  

accuracy: the degree to which a parameter or variable, or a set of parameters or 
variables, within a model or simulation conforms exactly to reality or to some chosen 
standard or referent (Modeling and Simulation Enterprise, 2021). 

aleatory uncertainty: uncertainty arising from an inherent randomness in the properties 
or behavior of the system under study (Helton, 2011).  

convex hull: the smallest possible convex space that contains a set of data points. 

epistemic uncertainty: uncertainty derived from a lack of knowledge about the 
appropriate value to use for a quantity that is assumed to have a fixed value in the 
context of a particular analysis (Helton, 2011).  

fidelity: the level of consistency between a model and a referent, defined in the three 
dimensions of accuracy, repeatability, and resolution.  

model: a physical, mathematical, or otherwise logical representation of a system, entity, 
phenomenon, or process (US Department of Defense, 2018).  

model validation level (MVL): an objective, automatable metric that quantifies how much 
trust can be placed in the results of a model to represent the real world. 

modeling and simulation (M&S): the use of models, including emulators, prototypes, 
simulators, and stimulators, either statically or over time, to develop data as a basis for 
making managerial or technical decisions (Modeling and Simulation Enterprise, 2021).  

referent: a codified body of knowledge representing real system behavior. 

referent authority: the strength of credibility of a referent’s claim to be a high-fidelity 
representation of reality.  

repeatability: the similarity of the results obtained from the same model (or referent) over 
multiple observations under the same input conditions.  

resolution: the degree of granularity with which a parameter or variable can be 
determined (Pace, 2015).  

scope: the set of inputs, outputs, assumptions, and limitations representing the mission-
relevant system parameters, environmental conditions, constraints, and requirements, 
and their allowable values.  

scope of intended use: the set of dimensions, ranges, and assumptions of the model 
inputs and outputs needed to represent a system’s relevant mission parameters, 
environmental conditions, constraints, and requirements, combined with the additional 
constraints imposed by the target modeling environment. 
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simulation: a method for implementing a model over time (US Department of Defense, 
2018).  

validation: the process that determines the degree to which a model has fidelity relative 
to an appropriate referent(s) for a specific intended use.  

validation point: a factor combination where both model and referent data are available 
to validate a response. 

validity: the fidelity of a model over a pre-specified scope relative to an appropriate 
referent(s). 
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Appendix B 
Determining Referent Authority using the Referent Authority Scale 

This appendix aims to provide guidance on choosing the appropriate referent level for a given 
referent. Table B1 contains the referent authority scale for ease of reference. The application of 
these authority levels is covered in the MVL Calculation section, which discusses the mapping 
of referent levels to a continuous absolute scale and the method of combining data from multiple 
referents to build a consolidated expectation of performance while respecting the authority 
levels of the source referents. 

Table B1 
Referent Authorities from Relevant TRLs 

Authority 
Level 

Relevant Referent 

1 SME Judgement 

2 First Principles/Physics Predictions 

3 Component Lab Test Data 

4 Integrated Component Lab Test Data 

5 Lab-Scale System Test Data 

6 HWIL & SWIL Data 

7 Prototype Field Test Data 

8 Live System Test Data 

9 Operational Real-World Data 

In practice, the MVL framework may be applied to many different types of simulations. However, 
regardless of the object represented by the simulation, the same authority scale can be applied. 
Whether the simulation represents a system of systems, a component of a larger system, or an 
environment containing many interacting systems (such as a mission engineering simulation or 
wargame covering a full battlespace), the primary object being modeled should be considered 
the “system” for the purposes of applying the referent scale. In the case of a model of a sub-
system or component of a larger system, the referents used should pertain to that component. 
In this case, the referent levels (and MVL produced) for that model would view that component 
as a system. Since data for the behavior of a component does not describe how the component 
interacts with other components in a larger target system (or any emergent behaviors that come 
from those interactions), when it is used as a referent for the full system it has a lower authority 
than when used as a referent for only the component. 

In some cases, the nature of the model or the system being modeled may raise questions about 
how to interpret some of the levels. Some of the more common cases are addressed here. 

First, not all referent levels may be relevant or obtainable for every type of system. For example, 
a model of a subcomponent may not have referents for components of that subcomponent, if it 
cannot be further decomposed. Alternatively, for a red system threat, lab-scale data certainly 
exists, but it is unlikely the user has access to that data. Thus, the user should evaluate what 
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referents may be available for their given system. 

In the case of SME judgement, the MVL framework requires that SME judgement be quantified 
in terms of a predicted mean value and standard deviation for defined input values. This data 
should be collected independently from model results. The scale makes no distinction between 
SMEs based on experience or education level. This is because it is difficult to quantify the 
impact of experience or education on the SMEs’ ability to correctly predict the expected mean 
and spread of values that might be observed in the response of a system at various conditions. 
In many cases, this may only be quantifiable by referring to data for the events on which the 
SMEs’ knowledge is based, but if such data is available, it should be preferred as a more 
authoritative referent.  

The treatment of predictions from physics equations and/or other first principles may also 
present confusion, as many such models are widely used and trusted. Broad use of physics 
models built on known first principles is often considered an objective goal for DE. Indeed, many 
high-quality physics models have been built and used extensively in many fields with excellent 
results. However, physics models have limitations. The first principles represented by any 
physics model are typically subject to a set of bounding assumptions, and no single set of first 
principles completely describes all sources of variability that would act on a real system. Despite 
their esteem, physics and other first-principles models receive authority level 2 because they fail 
to account for these other sources of variability. If higher authority referents are available to 
validate that a physics model is robust to certain outside sources of variation, then the model’s 
MVL may be determined and used in place of the default level.  

Another potential point of confusion is the use of legacy system data as a referent for a new 
system model. The legacy data can act as a surrogate referent for similar systems, or for 
upgrades or replacements to the original system. A legacy system is not the system of interest 
and does not represent the new system in every respect. The similarity between the systems, 
and therefore the applicability of the legacy system data to the new system model, is best 
captured by the similarity in scope between the new system and the legacy system. The legacy 
data is rated on the referent authority scale according to how it was gathered for the legacy 
system, but the MVL may ultimately be discounted due to the dissimilarity in scope, even if the 
legacy data is high authority. Additionally, a user might desire to reuse a legacy model as a 
representation of a new system, in which case the legacy model should be validated with an 
MVL against legacy system referents to determine its authority level; however, even if the MVL 
of the legacy model is high, due to the dissimilarity in scope the new system model MVL could 
be much lower than the MVL of the legacy model used to validate it. 
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Appendix C 
Referent Inputs to Fidelity Calculation 

This appendix contains the complete mathematical for deriving the pooled referent mean, 
standard deviation, and resolution (Stafford et al., 2024), which are used to calculate fidelity 
(Equation 2). Bayesian power priors allow referents of various authorities to be pooled together 
to form a single distribution representing system behavior. Additionally, this appendix discusses 
how to calculate fidelity inputs when only one referent is used for validation. 

Bayesian Power Prior Pooling of Referents 
Bayesian power priors provide a framework for incorporating previous information into analysis, 
where previous data is weighted relative to “current”, more authoritative data (Ibrahim & Chen, 
2000). In the context of the MVL framework, all referents are pooled together, with weights 
assigned relative to highest authority referent being pooled. Note the highest authority referent 
may or may not be the most current data, but it sets the standard by which other referents are 
weighted. Table C1 shows the relative scale for referent weighting during pooling, which is 
derived from the absolute scale in Table 4 but defines weights relative to the authority level of 
the highest available referent at a given validation point. These weights are determined by 
Equation C1, where 𝑤𝑟 is the weight of referent 𝑟, 𝑙𝑟 is the 1-9 authority level of referent 𝑟, and 

𝑅 is the total number of referents at a given validation point. 

Table C1 
Referent Weights According to Difference in Authority Level from Highest Authority Referent 

Authority 
Level 

Difference 
Weight 

Equivalent 
Number of 
Data Points 

0 1 1 

1 0.6065 1.65 

2 0.3679 2.72 

3 0.2231 4.48 

4 0.1353 7.39 

5 0.0821 12.18 

6 0.0498 20.09 

7 0.0302 33.12 

8 0.0183 54.6 

𝑤𝑟 = 𝑒
−
1
2
[max(𝑙1,⋯,𝑙𝑅)−𝑙𝑟] (C1) 

The general equation for deriving the pooled distribution (posterior distribution) of parameter(s) 
𝜃 is given in Equation C2. The parameter(s) 𝜃 described by the pooled distribution depend on 
the type of data being pooled; for instance, binomially distributed data has one parameter of 
interest, 𝑝, the probability of success, while normally distributed data has two parameters of 
interest, 𝜇 and 𝜎, the mean and standard deviation, respectively. In Equation C2, 𝑃(𝜃|𝐷1, . . . , 𝐷𝑅)
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is the posterior distribution of 𝜃 given observed data sets 𝐷1, . . . , 𝐷𝑅, 𝐿(𝜃|𝐷𝑟) is the likelihood of
observing the data set 𝐷𝑅 for different parameter values, and 𝜋0(𝜃) is the prior distribution. The 
form of the likelihood function depends on the data distribution (e.g. binomial, normal), and the 
prior is chosen to be non-informative. The weights 𝑤𝑟 in Equation C2 serve to weight the 
influence of each referent’s likelihood on the posterior distribution. 

𝑃(𝜃|𝐷1, . . . , 𝐷𝑅) ∝ (∏ 𝐿(𝜃|𝐷𝑟)
𝑤𝑟

𝑅

𝑟=1
) ∙ 𝜋0(𝜃) (C2) 

Figure C1 shows an example of pooling exponentially distributed data (commonly used for 
modeling reliability), where the parameter of interest is the mean time between failures (MTBF) 
for a system. This example demonstrates how higher-level referents have a greater impact on 
the pooled distribution and on the predicted MTBF. Additionally, Figure C1 demonstrates how 
the number of data points factors into the impact a referent has on the pooled distribution: a 
lower-level referent has more impact when it contains more data. Specifically, in Figure C1, the 
level 8 referent outweighs the level 9 referent in its impact on the MTBF since it has more data 
points. On the other hand, in the level 1 referent case, the increased data cannot overcome the 
drastic difference in authority.   

Figure C1 
Example of Pooling a Level 9 Referent (15 data points) with a Lower-Level Referent (30 data 

points) 

Due to the wide variety of data in DOD testing, the MVL R tool is tailored to support four 
different data distribution types: normal, exponential, binomial, and Poisson. The choice of 
distribution defines the likelihood component in Bayesian pooling. The MVL user can specify the 
distribution type for a response, and referent data can then be pooled together under that 
distribution assumption. The normal distribution is the most common distribution used to model 
continuous data and can be applied in many situations. The exponential distribution is a 
continuous distribution commonly used in reliability to model failure times. The distribution has 
one parameter, 𝜆, the rate parameter, which for reliability applications can be interpreted as the 
inverse of the MTBF. The binomial distribution is commonly used to model binary data (e.g., 
hit/miss data), and gives the probability of observing 𝑥 successes in 𝑛 trials, given the 

probability of success 𝑝. Note that the terms ‘success’ and ‘failure’ are used generally here and 
can be understood as the two possible binary outcomes for any given situation. The Poisson 
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distribution can be used to model count data, specifically the number of events occurring in a 
fixed interval of time. The rate parameter, 𝜆, indicates the average number of events in the 
given time interval. 

Given a specific data distribution for the likelihood, the prior is chosen to be a conjugate prior, 
which allows the pooled distribution to be obtained in closed form. It is also chosen to be non-
informative, so the pooled distribution is driven by referent data rather than the chosen prior. 
The priors for the four distributions covered here are given in Table C2. Jeffrey’s prior is a 
common type of non-informative prior that is used for the exponential, binomial, and Poisson 
distributions, while the normal distribution prior is defined such that the pooled estimates of 
mean and standard deviation are unbiased. Due to the properties of conjugate priors, the 
pooled distribution can be derived in closed form as a function of the collected referent data. 

Once the pooled distribution has been obtained, it can be used to make a point estimate, or 
“best estimate”, for the parameter(s). While 𝜃 denotes the parameter distributed by the pooled 

distribution, 𝜃 will be used to denote the point estimate for that parameter. The parameter point
estimates derived for each of the four distributions discussed here are given in Table C2. In 
each of these cases the expected value of the pooled distribution (the distribution mean) is used 
to make the point estimate. These parameter point estimates then allow for calculation of the 

inputs to the fidelity metric, the pooled mean, 𝑥̅p, and the pooled variance, 𝑠p
2. For the normal 

distribution, the parameters of mean and variance directly correspond to the inputs into the 
fidelity calculation. For other data distributions, mean and variance are properties of the 
distribution, and while they may not directly correspond to the distribution parameter(s), they 
can be directly calculated from the parameters(s). For example, the variance of the exponential 

distribution is 1/𝜆2, where 𝜆 is the rate parameter of the exponential distribution. Table C2 gives 

the expressions for obtaining 𝑥̅p and 𝑠p
2, so they can be used to calculate fidelity.

The expressions for the normal distribution point estimates in Table C2 are formulated in terms 
of individual data points or observations; however, they can also be formulated in terms of 
summary statistics (mean and standard deviation of each referent). This alternate formulation is 
given in Equations C3 and C4, and it is especially useful for referents which are only expressed 
in terms of summary statistics, such as a SME estimate of mean and standard deviation. When 
a SME estimate is used, 𝑛𝑟 = 2 should be used in Equations C3 and C4 to represent the 
number of pieces of information provided (mean and standard deviation). If the SME estimates 
for mean and standard deviation were derived from more pieces of information (e.g., three 
quantile estimates) another value for 𝑛𝑟 may be appropriate. 

𝑥̅p =
∑ 𝑤𝑟𝑛𝑟𝑥̅𝑟
𝑅
𝑟=1

∑ 𝑤𝑟𝑛𝑟
𝑅
𝑟=1

(C3) 

𝑠𝑝
2 =

1

∑ 𝑤𝑟𝑛𝑟
𝑅
𝑟=1 −1

[∑ 𝑤𝑟𝑠𝑟
2𝑅

𝑟=1 (𝑛𝑟 − 1) + ∑ 𝑤𝑟𝑛𝑟𝑥̅𝑟
2𝑅

𝑟=1 −
(∑ 𝑤𝑟𝑛𝑟𝑥̅𝑟

𝑅
𝑟=1 )

2

∑ 𝑤𝑟𝑛𝑟
𝑅
𝑟=1

] (C4) 
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Table C2 
Parameter Point Estimates and Fidelity Inputs for Pooling Different Distribution Types 

Distribution 
Type 

Parameter(s) Prior Point Estimate(s)1 
Pooled 
Mean 

Pooled 
Variance 

Normal 
Mean: 𝜇 

Variance: 𝜎2 
𝜋0(𝜇, 𝜎

2) ∝
1

𝜎4

𝜇̂ =
∑ ∑ 𝑥𝑟,𝑖 ∗ 𝑤𝑟

𝑛𝑟
𝑖=1

𝑅
𝑟=1

∑ 𝑤𝑟𝑛𝑟
𝑅
𝑟=1

𝜎̂2 =
∑ ∑ (𝑥𝑟,𝑖 − 𝜇̂)

2
∗ 𝑤𝑟

𝑛𝑟
𝑖=1

𝑅
𝑟=1

∑ 𝑤𝑟𝑛𝑟
𝑅
𝑟=1 − 1

𝑥̅p = 𝜇̂ 𝑠p
2 = 𝜎̂2

Exponential2 Rate parameter: 𝜆 𝜋0(𝜆) ∝
1

𝜆
𝜆̂ =

∑ 𝑤𝑟𝑛𝑟
𝑅
𝑟=1

∑ 𝑤𝑟𝑛𝑟𝑥̅𝑟
𝑅
𝑟=1

𝑥̅p =
1

𝜆̂
𝑠p
2 =

1

𝜆̂2

Binomial3 Success probability: 𝑝 𝜋0(𝑝) ∝
1

√𝑝(1 − 𝑝) 𝑝̂ =
∑ 𝑤𝑟𝑘𝑟
𝑅
𝑟=1 +

1
2

∑ 𝑤𝑟𝑛𝑟
𝑅
𝑟=1 + 1

 𝑥̅p = 𝑝̂ 𝑠p
2 = 𝑝̂(1 − 𝑝̂)

Poisson Rate parameter: 𝜆 𝜋0(𝜆) ∝ √
1

𝜆
𝜆̂ =

∑ 𝑤𝑟𝑛𝑟𝑘̅𝑟
𝑅
𝑟=1 +

1
2

∑ 𝑤𝑟𝑛𝑟
𝑅
𝑟=1

 𝑥̅p = 𝜆̂ 𝑠p
2 = 𝜆̂ 

1Where R is the number of referents, 𝑤𝑟 is the weight of referent 𝑟, and 𝑛𝑟 is the number of observations. Normal: 𝑥𝑟,𝑖 is the observed response for 

the 𝑖th observation in the 𝑟th referent. Exponential: 𝑥̅𝑟 is the mean time to event. Binomial: 𝑘𝑟 is the number of successes in referent 𝑟. Poisson: 𝑘̅𝑟  
is the mean number of events observed in 𝑛𝑟 time intervals for referent 𝑟. 
2The exponential point estimate expression can also be used for censored data, where 𝑛𝑟 is the number of non-censored events and 𝑥̅𝑟 is the total 

test time (censored and non-censored events) divided by 𝑛𝑟, the number of non-censored events. 
3The pooled mean and variance expressions assume one trial so the mean is a proportion bounded between zero and one.
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Determining Pooled Resolution 
While the previous section describes how to obtain the pooled mean 𝑥̅p and the pooled variance 

𝑠𝑝
2 for the fidelity metric, this section discusses further how to obtain the pooled resolution. 

 
Recall resolution is defined as the degree of granularity with which a parameter or variable can 
be determined (Pace, 2015), and it can be considered equivalent to the epistemic uncertainty, 
which is defined as the uncertainty derived from a lack of knowledge about the appropriate 
value to use for a quantity that is assumed to have a fixed value in the context of a particular 
analysis (Helton, 2011). Lazarus et.al provide an overview of uncertainty quantification, where 
epistemic uncertainty is a key concept, in the T&E context (2022). In the MVL framework, 
resolution should be specified for both the model and each referent for a given response. For 
example, a model with numerical approximations may have a known quantifiable error 
associated with its results, which contributes to the epistemic uncertainty on the response. This 
uncertainty is reducible, such as by using a higher order approximation or a finer numerical 
mesh. On the other hand, aleatory uncertainty, which represents the inherent noise in the 
system, is not reducible. In addition to numerical approximations, epistemic uncertainty of model 
inputs contributes to output uncertainty; therefore, uncertainties should be propagated through 
the model to quantify the epistemic uncertainty of a model output. For referent data collected 
from a physical test, epistemic uncertainty may be present due to known measurement error, 
significant figures, etc.; however, uncertainties are often mixed, meaning the epistemic 
uncertainty is confounded with the inherent noise. In this case, measured noise may be a good 
estimate for the total uncertainty.  
 
For models and referents with a known resolution, the MVL R tool currently supports entering 
resolution for arbitrary continuous or normally distributed data only. The resolution, in this case, 
is understood as the width of an interval around observed data points. In other words, each data 
point 𝑥𝑟,𝑖 in a data set can be understood to have upper and lower bounds as in Equation C5, 

where 𝛿 is the resolution. 
 

 
(lower bound, upper bound) =  (𝑥𝑟,𝑖 – 

𝛿

2
, 𝑥𝑟,𝑖  +  

𝛿

2
) (C5) 

 
This understanding of each observation allows the epistemic uncertainty of individual 
observations to be propagated through the Bayesian pooling, to determine a resolution for the 
pooled data. This process uses the following steps: 
 

1. Pool referent data “as-is” to calculate the pooled mean, 𝑥̅p, and the pooled variance, 

𝑠𝑝
2. 

2. Pool the referent data using all the lower bounds to obtain a lower bound on the pooled 
mean, 𝑥̅p,l. 

3. Pool the referent data using all the upper bounds to obtain an upper bound on the 
pooled mean, 𝑥̅p,u. 

4. Calculate the pooled resolution, 𝛿p = 𝑥̅p,u − 𝑥̅p,l. 

 
Equation C6 shows how this pooled resolution can then be combined with the pooled variance 
to determine the pooled variability, 𝑠𝑝

∗, which is input into the fidelity equation (Equation 2). 

 
 

𝑠p
∗ = √𝑠p

2 + δp
2 12⁄  (C6) 
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Single Referent Inputs to Fidelity Calculation for Different Data Types 
When only one referent is used for validation, referent statistics are calculated from only that 
referent to be inserted into the fidelity metric. While calculating the mean and sample standard 
deviation uses well known equations, when the distribution of data is known, mean and 
standard deviation can be derived from the maximum likelihood estimators. The equations for 𝑥̅p 

and 𝑠p
2 used in the MVL framework for just one referent are summarized in Table C3. 

 
Note that for the binomial and Poisson cases, the MVL framework uses Bayesian estimation 
with a Jeffrey’s prior, similar to when pooling multiple referents, such that non-zero variance 
estimates are still possible when, for example, only successes are observed, or no events are 
observed during a time period.  
 

Table C3 
Single Referemt Fidelity Inputs for Different Distribution Types 

 

Distribution 
Type 

Model Mean Model Variance 

Arbitrary 
Continuous 
or Normal1 

𝑥̅p =
∑ 𝑥r,𝑖
𝑛r
𝑖=1

𝑛r
 𝑠r

2 =
∑ (𝑥r,𝑖 − 𝑥̅r)

2𝑛r
𝑖=1

𝑛r − 1
 

Exponential2 𝑥̅r =
∑ 𝑥r,𝑖
𝑛r
𝑖=1

𝑛r
 𝑠r

2 =
∑ 𝑥r,𝑖
𝑛r
𝑖=1

𝑛r
 

Binomial3 𝑥̅r =
𝑘r +

1
2

𝑛r + 1
 𝑠r

2 =
(𝑘r +

1
2) (𝑛r − 𝑘r −

1
2)

(𝑛r + 1)
2

 

Poisson4 𝑥̅r =
∑ 𝑘r,i
𝑛r
𝑖=1 +

1
2

𝑛r
 𝑠r

2 =
∑ 𝑘r,i
𝑛r
𝑖=1 +

1
2

𝑛r
 

1Where 𝑛r is the number of observations and 𝑥r,𝑖 is the observed response for the 𝑖th observation.  
2Where 𝑛r is the number of non-censored observations and 𝑥r,𝑖 is the observed response for the 𝑖th 
observation.  
3Where 𝑛r is the number of observations and 𝑘r is the number of successes. 
4Where 𝑛r is the number of time intervals and 𝑘r,𝑖 is the number of events observed in the 𝑖th time interval. 
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Appendix D 
Model Inputs to Fidelity Calculation 

 

This appendix describes how to obtain the model mean, 𝑥̅m, and the model variance, 𝑠m
2 for 

inputting into the fidelity metric. While calculating the mean and sample standard deviation uses 
well known equations, when the distribution of data is known, mean and standard deviation can 

be derived from the maximum likelihood estimators. The equations for 𝑥̅m and 𝑠m
2 used in the 

MVL framework are summarized in Table D1. Note that some distribution types use different 
methods depending on whether the model is stochastic or deterministic. In the stochastic cases, 
the MVL framework uses Bayesian estimation with a Jeffrey’s prior, similar to in Appendix C, 
such that non-zero variance estimates are still possible when, for example, only successes are 
observed, or no events are observed during a time period.  
 

Table D1 
Model Fidelity Inputs for Different Distribution Types 

 

Distribution 
Type 

Model Mean Model Variance 

Arbitrary 
Continuous 
or Normal1 

𝑥̅m =
∑ 𝑥m,𝑖
𝑛m
𝑖=1

𝑛m
 𝑠m

2 =
∑ (𝑥m,𝑖 − 𝑥̅m)

2𝑛m
𝑖=1

𝑛m − 1
 

Exponential2 𝑥̅m =
∑ 𝑥m,𝑖
𝑛m
𝑖=1

𝑛m
 𝑠m

2 =
∑ 𝑥m,𝑖
𝑛m
𝑖=1

𝑛m
 

Binomial3 

Deterministic: 𝑥̅m =
𝑘m

𝑛m
 

Stochastic: 𝑥̅m =
𝑘m+

1

2

𝑛m+1
 

Deterministic: 𝑠m
2 =

𝑘m(𝑛m−𝑘m)

𝑛m
2  

Stochastic: 𝑠m
2 =

(𝑘m+
1

2
)(𝑛m−𝑘m−

1

2
)

(𝑛m+1)
2  

Poisson4 
Deterministic: 𝑥̅m =

∑ 𝑘m,𝑖
𝑛m
𝑖=1

𝑛m
 

Stochastic: 𝑥̅m =
∑ 𝑘m,i
𝑛m
𝑖=1 +

1

2

𝑛m
 

Deterministic: 𝑠m
2 =

∑ 𝑘m,𝑖
𝑛m
𝑖=1

𝑛m
 

Stochastic: 𝑠m
2 =

∑ 𝑘m,i
𝑛m
𝑖=1 +

1

2

𝑛m
 

1Where 𝑛m is the number of observations and 𝑥m,𝑖 is the observed response for the 𝑖th observation.  
2Where 𝑛m is the number of non-censored observations and 𝑥m,𝑖 is the observed response for the 𝑖th 
observation.  
3Where 𝑛m is the number of observations and 𝑘m is the number of successes. 
4Where 𝑛m is the number of time intervals and 𝑘m,𝑖 is the number of events observed in the 𝑖th time 

interval. 
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Appendix E 
Scope Coverage Methodology 

Since many DOD systems and models have both continuous and categorical factors which 
affect system behavior, coverage must be computed differently depending on the types of 
factors present. This appendix walks through how coverage is quantified in three cases, 
separated by factor types present: (1) continuous factors only, (2) categorical factors only, and 
(3) both continuous and categorical factors. All three cases produce a coverage metric 𝐶
between 0 and 1, where 0 indicates the given scope domain is not covered at all and 1 indicates
full coverage of the scope domain.

Continuous Factors Only 
In the first case, where only continuous factors are present in the scope domain, coverage can 
be decomposed into two dimensions of volume coverage and density coverage. One reason 
they are broken down this way is because continuous factors allow for interpolation, which is not 
the case with categorical factors. The first dimension, volume coverage, quantifies the volume of 
the domain where the response could be predicted through interpolation. Interpolation is critical 
to quantify since extrapolation carries much more risk. The second, density coverage, quantifies 
the density of validation points across the scope of interest, which ensures the whole domain 
can be validated, with small amounts of interpolation and extrapolation. The distinction between 
the two metrics is conceptually shown in Figure E1. 

Figure E1 
Volume Coverage versus Density Coverage for Continuous Factors 

The coverage metric for continuous factors is mathematically comprised of a volume coverage 
component, 𝐶V, and a density coverage component, 𝐶D, as in Equation E1, where both 
components are metrics rating coverage between 0 and 1.  

𝐶 = 𝐶𝑉𝐶𝐷 (E1) 
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Volume Coverage  
The volume coverage metric is derived from the interpolation volume between validation points. 
The interpolation volume is equivalent to the volume of the convex hull generated by the 
validation points, where the convex hull is the smallest possible convex space that contains a 
set of data points. In other words, the convex hull defines the region of interpolation between 
validation points. The volume metric is generally defined in Equation E2. 
 

 𝐶V = (
Covered Volume

Scope Volume
)
1/dimensions

 (E2) 

 
Provost et al. (2022) describe the mathematical details and construction of this metric. Note that 
to obtain nonzero coverage with 𝑑 continuous factors, at least 𝑑 + 1 unique validation points 
must be gathered. For example, in two dimensions, 3 points are needed to make a shape with 
nonzero area. 

 
Validation points can either be inside or outside of the scope. A validation point is inside if it falls 
within all the factor bounds and constraints defined in the intended use; otherwise, it is outside. 
Outside points can increase the interpolation volume, however only the interpolation region 
within the scope contributes to the coverage metric, as seem in Figure E2. The covered volume 
is therefore the volume of the overlapping region of the interpolation convex hull, which was 
generated from all validation points, and the scope convex hull, which is typically a hypercube 
defined by the factor ranges. 

 
 

 
Figure E2 

Covered Volume resulting from Inside and Outside Validation Points 
  

Figure E2 shows a simple two-dimensional example, however the concept is extended to higher 
dimensions. When the number of continuous factors, 𝑑, is greater than 5, the metric described 
above is no longer computationally feasible, due to the increasing time complexity of computing 
the convex hull. Thus, the MVL framework uses an approximation of the above metric when 
𝑑 >  5, which calculates the convex hull in 5-dimensional projections of the validation points. 
The complete volume coverage metric is given in Equation E3, where 𝑑 is the number of 
continuous factors, 𝑝 =  (𝑑 choose 5) is the number of 5-factor combinations, and 𝑉covered,𝑖 and 

𝑉scope,𝑖 are the 5-dimensional covered volume and scope volume, respectively, in the 𝑖th unique 

5-factor projection. Each volume is calculated with a convex hull around a random sample of 
validation points, where the random sample size is the number of validation points, 𝑛, scaled 
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down to be approximately proportional to the reduction in dimensions: 𝑛sample = ceiling(𝑛 ∗ 5/𝑑). 

Note all validation points (inside and outside the scope) are projected down, where the volume 
covered is again determined by the overlapping region of the validation point convex hull and 
the scope convex hull. 
 

 𝐶𝑉 =

{
 
 

 
 1

𝑝
∑(

𝑉covered,𝑖
𝑉scope,𝑖

)

1/5𝑝

𝑖=1

 for 𝑑 > 5

(
𝑉covered
𝑉scope

)

1/𝑑

 for 𝑑 ≤ 5

 (E3) 

 
Density Coverage 

The second dimension of coverage for continuous factors is density coverage. Provost et al. 
(2021) also describe the construction of this metric. The scope domain and validation points 
must first be rescaled for each factor to be between 0 to 1, with 0 representing the minimum of 
the factor range and 1 representing the maximum of the factor range. This rescaling 
standardizes the density metric between different systems. The density metric uses nearest 
neighbor methods to determine coverage by generating a Latin Hyper Cube (LHC), which has 
high coverage by design, and mapping each LHC point to the nearest validation point within the 
scope. High distance between an LHC point and the nearest validation point indicates poor 
coverage, while low distance indicates good coverage. To provide an intuitive scaling, LHC 

points with distances greater than 𝑀 = √𝑑/2 receive a score of 0, and points with distances less 

than 𝐿 = √𝑑/6 receive a score of 1. Coverage is scored linearly with distance between these 
two bounds. This process is illustrated in Figure E3. 
 

 
 

Figure E3 
Illustration of finding nearest neighbors (a) and mapping distance to coverage (b) 

 
The density coverage metric is the average of coverage scores for the 𝑞 LHC points and is 
given in Equation E4, where 𝑟𝑖 is the distance from the 𝑖th LHC point to the nearest validation 

point inside the scope, and 𝑞 is the total number of grid points. 
 

 𝐶D =
1

𝑞
∑𝑐𝑖

𝑞

𝑖=1

   where     𝑐𝑖 = {

1 for    𝑟𝑖 ≤ 𝐿
𝑟𝑖 −𝑀

𝐿 −𝑀
for    𝐿 < 𝑟𝑖 ≤ 𝑀

0 for    𝑟𝑖 > 𝑀

 (E4) 
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When multiplied together, the volume coverage and density coverage metric fully quantify 
coverage as an overall score between 0 and 1. 
 
Categorical Factors Only 
When only categorical factors are present, the volume and density coverage metrics described 
for continuous factors are no longer applicable. Instead, coverage for categorical factors is 
based on the proportion of possible combinations which are covered by the validation points. 
This is demonstrated for a simple example in Figure E4, with two categorical factors, where a 
validation point is indicated with an ‘X’. 
 

 
 

Figure E4 
Example of Coverage with Two Categorical Factors 

 
In Figure E4, four out of the six possible combinations are covered with a validation point. Thus, 
the coverage for this example would be 𝐶 = 4/6 = 0.667. 
 
In general, coverage for categorical factors is given in Equation E5, where 𝑘 is the number of 

categorical factors, 𝑣 is the number of unique validation points, and 𝑙𝑖 is the number of levels for 
the 𝑖th categorical factor. Note this equation could be modified to account for disallowed 
combinations which need not be covered. 
 

 𝐶 =  
𝑣

∏ 𝑙𝑖
𝑘
𝑖=1

 (E5) 

 
Additional Categorical Coverage Diagnostics 

In addition to the coverage metric in Equation E5, which assesses coverage of all possible 
combinations, metrics that address coverage of lower-level combinations can also be 
calculated. These metrics can help identify the factors or factor combinations that contribute to a 
low coverage score. Specifically, 𝐶𝑡 gives the fraction of t-way factor combinations that are 
covered. For example, 𝐶4 = 0.50 indicates that only 50 percent of the 4-way factor combinations 

are covered. The MVL R tool reports 𝐶𝑡 metrics for 𝑡 =  1…𝑘, where 𝐶𝑘 is equivalent to the 
coverage score in Equation E5. 
 
Both Continuous and Categorical Factors 
When both continuous and categorical factors are present, a combined approach is used to 
calculate the coverage. As seen in Figure E5, the scope domain as well as the validation points 
are first segmented into the possible combinations of categorical factors. In each possible 
combination, the validation points which meet those conditions still vary over the remaining 
continuous factors.  
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Figure E5 
Example of Coverage with Categorical and Continuous Factors 

 
The MVL framework uses the previously described continuous metrics (𝐶 = 𝐶V𝐶D) to determine 
the coverage in each categorical combination; the coverage metrics in each combination are 
then averaged together to give an overall coverage metric. The equation for the case of both 
continuous and categorical factors is given in Equation E6, where 𝐶V,𝑖 and 𝐶D,𝑖 are the volume 

and density metrics for the validation points which match the categorical factors in the 𝑖th 
categorical combination. 
 

 𝐶 =  
1

ℎ
∑𝐶V,𝑖𝐶D,𝑖

ℎ

𝑖=1

  where ℎ =∏𝑙𝑖

𝑘

𝑖=1

 (E6) 

 
The methods for computing 𝐶V and 𝐶D in Equation E6 may still include the use of overlapping 
convex hulls and 5-dimensional projections when the conditions for those methods are met. 
 

Additional Mixed Continuous and Categorical Coverage Diagnostics 
In addition to the coverage metric in Equation E6, the MVL R tool reports the average volume 
coverage, average density coverage, and 𝐶𝑡 scores for 𝑡 =  1…𝑘. The average volume and 
density coverage scores average 𝐶V,𝑖 and 𝐶D,𝑖 over all ℎ combinations and can identify whether 

a poor coverage score is due to low volume coverage or low density. Additionally, the 𝐶𝑡 scores 
can identify if coverage is poor due to failure to cover categorical combinations, and they identify 
at which level of factor interaction that might occur. 
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Appendix F 
Calculating an MVL Using a Referent Interpolator 

 
This appendix describes methods for calculating an MVL either when model and referent inputs 
are not matched or when referent points are not sufficiently replicated. In both cases, a referent 
interpolator, or statistical model of the referent, is needed in order to directly compare the model 
mean behavior and variability to the referent mean and variability. The interpolator serves to 
predict referent behavior where referent data was not collected, and it also must include an 
estimate of the amount of noise or variability in the response. An example of a referent 
interpolator for one factor is shown in Figure F1. As shown in the figure, a referent interpolator 
cannot be used to make predictions that extrapolate beyond the collected referent data. When 
multiple referents are used, multiple referent interpolators may be necessary to compare the 
model against multiple referents at single points in space. 
 

 
Figure F1 

Example of a Referent Interpolator for One Factor 
 
To use these methods, the user is responsible for constructing the interpolator and accepting 
any assumptions required to construct it. Assumptions often include the form of the model (e.g., 
linear, quadratic), independence, constant variance, or normality (Burke, 2017). Due to the 
additional assumptions required to calculate the MVL with an interpolator, it is preferred, when 
possible, to collect the data necessary such that the interpolator is not needed. 
 
The remainder of this appendix discusses applicability of these methods, considerations for 
constructing an interpolator, and changes to the MVL calculation. 
 
MVL from Interpolator Applicability 
Using the flowchart in Figure 3, MVL users can determine if an interpolator is required to assess 
the MVL. Additionally, the flowchart in Figure 3 is continued in Figure F2 to determine if an MVL 
or MVLa would be most appropriate. 
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Figure F2 
Flowchart to Determine Applicable MVL from Interpolator 

To calculate the MVL using the MVL R tool, the user must provide: 
1. Intended use: a well-defined scope of intended use describing the outputs and inputs for

which the model must be validated.

2. Model data: output(s) collected from a predictive model, including the inputs or
conditions under which those output(s) were obtained.

3. Referent data: data from one or more referents with assigned referent authority levels for

each referent, including data that was used to construct the interpolator(s).

4. Interpolator Predictions: The mean predicted by the interpolator at model comparison

points and the variance predicted by the interpolator.

Note that the MVL R tool does not require the interpolator code or equation, only the predictions 

produced by that interpolator. For example, in Figure F1, the user would provide the scope of 

intended use, the 12 model data points, the three referent data points, the referent interpolator 

prediction at the two comparison points in the interpolation region, and the variance predicted by 

the interpolator. The MVL R tool also checks for interpolation/extrapolation to comparison 

points, which becomes important for high numbers of factors where it is challenging to manually 

define the interpolation region. 

When possible, additional data should be collected such that the interpolator is not needed. For 
example, in Figure F1, additional referent data could be collected to replicate the referent data 
already available, and additional model runs could be conducted at the same inputs as where 
there is referent data. This additional data would allow both model and referent means and 
variabilities to be compared without any interpolation or extra assumptions. With early VV&A 
planning, tests can be coordinated for collection of matched model and referent points.  
However, when validation is limited by data availability or budget, interpolator methods still allow 
an MVL to be calculated. In these cases, all assumptions made in constructing the interpolator 
should be thoroughly documented and reported with the MVL. 

Constructing a Referent Interpolator 
A referent interpolator can be constructed through a variety of methods, so long as the 
interpolator predicts both mean behavior and behavior variability. The recommend method is to 
use regression techniques to build a statistical model of the response based on factor levels. 
The statistical model can be used to predict mean behavior at untested factor combinations, and 
the mean square error (MSE) in a regression can be used to estimate the variance. Model 
building should be accompanied by rigorously evaluating regression assumptions. 
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Resources: 

• Model Building Process Part 1: Checking Model Assumptions (Burke, 2017) 
• Model Building Process Part 2: Factor Assumptions (Burke, 2018) 
• Model Building Process Part 3: Model Goodness Metrics (Burke, 2020) 

 
MVL Calculation with Interpolator 
While the MVL calculation process remains largely the same when using a referent interpolator, 
there are a few changes required due to the different type of information given by the user. 
These differences fall into a few areas: determining validation points, Bayesian pooling, 
assessing referent authority, and calculating coverage. Additionally, these differences do not 
affect the reportable results summary and improvement metrics. 
 

Determining Validation Points 
In the standard MVL framework, validation points are defined as points where both model and 
referent data are available to validate a response, and they require at least one model 
observation and two referent observations, from the same or different referents. Interpolator 
methods should only be used when sufficient numbers of model and referent data points are not 
available together. Given this situation, validation points are redefined to be points where model 
data can be compared against the prediction of a referent interpolator. Intrinsic to this definition 
is that an interpolator cannot be used to extrapolate referent data beyond the bounds of where it 
was collected. For example, in Figure F1, there are two validation points, which are the points 
with model data inside the referent interpolation region. When a combination of categorical and 
continuous factors are present, a referent interpolator can still be used, but interpolation is 
usually limited because interpolation is not possible between different categorical levels or 
combinations. Within a given categorical combination, interpolation is possible for any 
continuous factors. The validation points determined in this way are the points where referent 
data is pooled, fidelity is computed, and authority is transferred to the model. 
 

Bayesian Pooling 
When using multiple referents to validate a model, using multiple referent interpolators, or using 
referent interpolator(s) combined with raw referent data, the Bayesian pooling (Appendix C) 
uses the summary statistics predicted by the interpolator, since raw data is not available in 
these cases. For normally distributed cases, the number of data points 𝑛𝑟 at a predicted referent 
interpolator point is assumed to be at least two (one degree of freedom each for mean and 
standard deviation) or equal to the ratio of raw data points to interpolated points, if it is larger 
than two. For binomially distributed data, 𝑛𝑟 is one or equal to the ratio of raw data points to 
interpolated points, whichever is larger. For exponential or Poisson data, the rate predicted at 
each interpolated point is scaled such that the total time observed in raw data is equally divided 
among interpolated points. 
 
In the case that the interpolator is the only referent, the MVL framework uses the interpolator 
statistics directly for inserting into the fidelity metric, and no pooling takes place. For different 
distribution types, the equations for calculating statistics are the same as those for calculating 
model statistics in Appendix D, using the deterministic case when applicable.  
 

Assessing Referent Authority 
To construct a referent interpolator, the user must make assumptions about the behavior of a 
system between points where data was collected; therefore, the interpolator does not hold the 
same degree of authority as the raw referent data. One of the key assumptions that is required 
for the use of an interpolator is that the behavior for each factor varies continuously between 

https://www.afit.edu/images/pics/file/Model%20Building%20Process%20Part%201%20Checking%20Model%20Assumptions%20V2.pdf
https://www.afit.edu/images/pics/file/Model%20Building%20Process%20Part%202%20Factor%20Assumptions.pdf
https://www.afit.edu/images/pics/file/Model%20Building%20Process%20Part%203%20Model%20Metrics%20Final.pdf
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referent data points. The MVL framework accounts for this difference by reducing the authority 
based on the distance of interpolation from the raw referent data to each interpolator prediction 
point. Thus, each interpolator prediction point may have a different referent authority depending 
on the amount of interpolation required. This construct draws on the same methods used to 
define the density coverage score described in Appendix F and uses nearest neighbor methods 
to determine the distance between the interpolator prediction point and the nearest raw referent 
data point. If categorical factors are present, only referent points with the same combination of 
categorical factor levels are used when assessing amount of interpolation to the prediction 
point. This will result in a reduction score between zero and one, where zero means the 
authority is reduced to zero, while one means the interpolator retains all authority of the referent 
used to construct it. To derive the amount of authority reduction, the factor values must first be 
rescaled for each factor to be between zero and one, with zero representing the minimum of the 
factor range and one representing the maximum of the factor range. This rescaling standardizes 
the reduction amount between different systems. Additionally, following the same methods as 

the density metric, a distance greater than 𝑀 = √𝑑/2 receives a score of zero, and points with 

distances less than 𝐿 = √𝑑/6  receive a score of one, where 𝑑 is the number of continuous 
factors. Coverage is scored linearly with distance between these two bounds. Equation F1 gives 
the expression for deriving the reduction factor, 𝛼𝑖, for prediction point 𝑖, where 𝑟𝑖 is the distance 
from distance between interpolator prediction point 𝑖 and the nearest referent data point.  

𝛼𝑖 = {

1 for    𝑟𝑖 ≤ 𝐿
𝑟𝑖 −𝑀

𝐿 −𝑀
for    𝐿 < 𝑟𝑖 ≤ 𝑀

0 for    𝑟𝑖 > 𝑀

 (F1) 

Once, the authority reduction score is determined, the authority inherited by the referent 
interpolator prediction can be calculated. The amount of authority depends on the initial 
authority level held by the referent. Note that each interpolator prediction point may have a 
different amount of authority depending on the amount of interpolation needed. The authority 
weight held by the 𝑖th interpolator prediction point, 𝑤int𝑖, is given in Equation F2, where 𝑤r is the 
authority weight of the referent (determined by Equation 1). 

𝑤int𝑖 = 𝛼𝑖𝑤r (F2) 

Calculating Coverage 
The MVL framework uses validation points to assess coverage of the scope of intended use. 
This does not change when using interpolator methods; however, because validation points are 
defined differently when using interpolator methods, the coverage score is affected. For 
example, in Figure F1, recall there are two validation points where there is model data inside the 
referent interpolation region. These two validation points are used to assess coverage, so even 
though the model and referent alone each cover more of the domain, the points that are used to 
validate do not cover as much. This difference between validation point coverage and model or 
referent coverage could result in a coverage score lower than the user might expect. 




