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Introduction 
 
Programs conduct testing to assess whether requirements are met; since Bayesian statistics 
views probability as describing the belief that a statement is true, Bayesian methods offer 
natural ways of making decisions that programs must make. Frequentist statistics, which are 
typically used, set a significance level prior to data collection, and offer techniques that control 
the probability that a null hypothesis will be incorrectly rejected, to this level of significance, 
when data have been collected. As stated by Kruschke and Liddell (2018; p.192), “frequentist 
hypothesis testing can only reject or fail to reject a particular hypothesis. It can never show 
evidence in favor of a hypothesis.” Programs frequently ask about the evidence in favor of a 
hypothesis, and Bayesian methods offer a way of doing this. This best practice will show how to 
use Bayesian methods to assess if requirements have been met in a common example 
situation, where the data acquired are only whether the system succeeded in a function or not.  
 
Background 
 
This document will introduce Bayesian methods to assess the plausibility of a hypothesis. It will 
discuss how to use the outputs of a Bayesian analysis tool produced by the Homeland Security 
Community of Best Practices (HS COBP) to make decisions about whether requirements have 
been shown to have been met in the light of test results. The document assumes that the reader 
has a basic knowledge of statistics, such as is covered in the HS COBP STAT workshop, which 
is training available to Department of Homeland security employees as a three-day short 
course. Many readers will also have taken a semester course in statistics as a part of their 
education. This Best Practice will use some of the general concepts that they learned in that 
course. It is also assumed that the reader has some basic knowledge of Bayesian statistics, 
such as the steps in fitting a Bayesian model to data.  
 
A frequently encountered situation is one in which a program wishes to assess the probability of 
a system working. The data are records of either success (the system works) or failure (the 
system does not work). This is referred to as a binomial response. Because the HS COBP must 
help programs with this kind of analysis, it will be used to illustrate ideas about Bayesian 
hypothesis testing. This paper will assume that the team needs to show that a system has a 
probability of success greater than some required value, so methods will be presented for doing 
this. Prior to conducting the test, the program will need to decide what amount of risk can be 
accepted of failing to reject a system that does not meet the requirement. The risk can be 
treated as a threshold for subjective probability. Bayesian methods will be used to assess if the 
subjective probability of the system not meeting the requirement is acceptable. Occasionally, 
programs are concerned about the possibility of incorrectly rejecting a system that meets a 
requirement, so this risk will also be mentioned.  
 
When hypotheses are tested with frequentist methods, they are evaluated by two types of 
possible errors, which are related to two hypotheses. As this paper will describe later, 
Bayesians can also quantify the risk, but they do so differently. The frequentist selects a null 
hypothesis, which is assumed true until it is disproved. The null hypothesis can be rejected 
when it is actually true, which is called Type I error, and tests are designed so that the 
probability of incorrectly rejecting the null is 𝛼𝛼. The alternative hypothesis is some statement that 
is only accepted if the null hypothesis is rejected, which is when the calculated p-value is less 
than 𝛼𝛼. We can also fail to reject the null hypothesis when the null hypothesis is false, which is 
called Type II error, which has a probability expressed as 𝛽𝛽. Hypothesis tests are discussed in 
Kensler & Freeman (2022), Hogg, McKean, & Craig (2013), and Montgomery & Runger (2014). 
The design of binomial tests is covered in Scientific Test and Analysis Techniques Center of 
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Excellence (STAT COE) Best Practices by Truett (2022), Ortiz (2022), and Burke, Key, & 
Wurscher (2022). It is also discussed in Montgomery & Runger (2014). After testing, a 
frequentist will say that the null hypothesis has been rejected, or not, at a given significance 
level, with a test designed with a given power based on an estimate of what will be observed.   
 
Program decision makers frequently wish to talk about the probability of rejecting a system that 
meets requirements or accepting one that does not, in the light of the data collected in testing. 
From a frequentist point of view, this is incorrect. For a frequentist, the hypothesis that the 
system does not meet a requirement either has been rejected, or we have failed to reject it. The 
probability of Type I error has been set and the Type II error has been assumed before the data 
collections, to set the criterion for rejecting the null hypothesis. The Bayesian, however, can talk 
about the probability that the system is acceptable or not, given the data observed. This is 
because the Bayesian thinks of probability as describing the belief that the estimated parameter 
takes on a given value. In the case discussed here, the parameter being estimated is the 
probability of success. The risk that the system is not acceptable is quantified by the posterior 
probability that the probability of success is less than the threshold. The belief that the system 
meets the requirement is measured by the subjective probability of the probability of success 
being greater than the threshold. The topic is discussed in much more detail, in Christensen et 
al. (2011), Gelman et al. (2013), and Reich & Ghosh (2019). 
 
The data we will work with have a binomial response so we will need a Bayesian model for this 
type of data. The reader may recall that we will use Bayes’ rule as a way of going from our prior 
knowledge of the probability distribution of the parameter and a likelihood function that 
describes a model of the observed variable given a fixed value of the parameter, to a posterior 
distribution function of the parameter given a data set. The posterior distribution can be 
computed based on the prior distribution and observed data by 

𝑝𝑝(𝜃𝜃|𝑦𝑦) =
𝐿𝐿(𝑦𝑦|𝜃𝜃)𝑝𝑝(𝜃𝜃)

∫𝐿𝐿(𝑦𝑦|𝜃𝜃)𝑝𝑝(𝜃𝜃)𝑑𝑑𝜃𝜃
, (1) 

where 𝑝𝑝(𝜃𝜃|𝑦𝑦) is the posterior distribution, 𝐿𝐿 is the likelihood function of the data collected, 𝑝𝑝(𝜃𝜃) is 
our prior belief or distribution, and the denominator is the marginal PDF of observing y successes. 
The probability of success is the parameter represented by θ. It turns out that a convenient prior 
is the Beta distribution, 

𝑝𝑝(𝜃𝜃) =
Γ(𝑎𝑎 + 𝑏𝑏)
Γ(𝑎𝑎)Γ(𝑏𝑏)𝜃𝜃

𝑎𝑎−1(1− 𝜃𝜃)𝑏𝑏−1 , 0 < 𝜃𝜃 < 1. (2) 

The parameters of the model are represented by a and b, and Γ is the Gamma function. The 
number of observations is given by n. The likelihood function is the Binomial distribution, 

𝐿𝐿(𝑦𝑦|𝜃𝜃) = �
𝑛𝑛
𝑦𝑦�𝜃𝜃

𝑦𝑦(1− 𝜃𝜃)𝑛𝑛−𝑦𝑦. (3) 
The posterior distribution is another Beta distribution, so the distributions are a conjugate family. 
The posterior is  

𝑝𝑝(𝜃𝜃|𝑦𝑦) =  
Γ(𝑛𝑛 + 𝑎𝑎 + 𝑏𝑏)

Γ(𝑦𝑦 + 𝑎𝑎)Γ(𝑛𝑛 − 𝑦𝑦 + 𝑏𝑏)𝜃𝜃
𝑦𝑦+𝑎𝑎−1(1− 𝜃𝜃)𝑛𝑛−𝑦𝑦+𝑏𝑏−1 , 0 < 𝜃𝜃 < 1. (4) 

The posterior is a Beta distribution with parameters, a’ and b’, where 
𝑎𝑎′ = 𝑎𝑎 + 𝑦𝑦, (5) 

and  
𝑏𝑏′ = 𝑛𝑛 − 𝑦𝑦 + 𝑏𝑏. (6) 

This is the model used in the spreadsheet discussed below, and was selected because, since it 
is a conjugate family of distributions, it has a closed form solution.  
 
Bayesian hypothesis testing, when the hypothesis is simply testing that the parameter is above 
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or below a threshold level, can be done directly by computing the subjective probabilities of 
these events. This method of testing the hypothesis is mentioned by Christensen, Johnson, 
Branscum, & Hanson (2011) on pg. 56. Risks in Bayesian methods are quantified by the 
posterior probability above or below the required probability of success, and frequentists 
quantify risk with confidence levels. It seems plausible to use the value of 1 − 𝛼𝛼 as the value of 
required posterior probability, as they both quantify risk. Since the risks about which the team is 
concerned can be thought of as posterior probabilities, the Bayesian method offers a direct way 
of measuring the risk. This point is discussed in Shi & Yin (2021). The Excel spreadsheet that 
will be discussed later in this paper computes this posterior probability.  
 
Some programs are concerned about both the possibility of rejecting a good system and of 
accepting a bad one, and this is why both have been thought of as risks. Figure 1 shows an 
example where the subjective probability of the variable falling below the threshold is very small. 
In this case, if the system was accepted there would be a very low risk of accepting a bad 
system. Alternatively, if the program rejects the system, there would be a very high risk of 
rejecting a good one. Figure 2 shows an example with a high subjective probability that the 
variable falls below the threshold. If the system is accepted, there is a high risk that it is bad. If it 
is rejected, there is a low risk it is good. The risk levels the program will accept need to be 
determined by program leadership. It is possible that the test is inconclusive. In this case only 
more testing can prove that the system, in its current state, passes.  
 

 
Figure 1 

PDF of a Beta distribution with a = 19 and b = 1 
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Figure 2 

PDF of a Beta distribution a = 17 and b =3. 

A second way to determine the plausibility of the hypothesis that the system meets the 
requirement, compared to the hypothesis that it does not, is to compute the Bayes Factor. 
Specifically, the Bayes Factor measures how much beliefs about the relative plausibility of two 
hypotheses are changed by data. In the example being given here, the team might test to see if 
the hypothesis that the probability of success is above some level is more plausible than the 
alternative. It will be used for this purpose in the spreadsheet described. Bayes Factor (BF) is 
given by Reich & Ghosh (2019),  

𝐵𝐵𝐵𝐵 =  
𝑓𝑓(𝑀𝑀2|𝒚𝒚) 𝑓𝑓(𝑀𝑀1|𝒚𝒚)⁄
𝑓𝑓(𝑀𝑀2) 𝑓𝑓(𝑀𝑀1)⁄ . (7) 

 
The variables M1, and M2, are the two hypotheses. The data collected are represented by y. 
The variable y is shown in boldface to indicate that it may be a vector, though it is not in the 
case examined in this document. If 𝑝𝑝0 is the requirement threshold for the subjective probability 
of the probability of success, M1 is 𝜃𝜃 ≥ 𝑝𝑝0 and M2 is 𝜃𝜃 ≤ 𝑝𝑝0. The numerator is the ratio of the 
probabilities of the two hypotheses given that we have collected data, which is to say as 
estimated by the posterior, and the denominator is the ratio of the probabilities of the models 
under the prior distribution. A large value would indicate that our belief in M2 relative to M1, 
should change significantly due to the observed data. If a Bayes Factor value of 10 or greater is 
observed, one may say that there is strong evidence to prefer M2 (Kass & Raftery, 1995). 
Further evidence thresholds are given in Table 1. 
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Table 1 
Description of the strength of evidence against M1 taken from Kass & Raftery (1995) 

Bayes Factor Evidence against M1  
1 to 3.2 Not more than a bare mention 
3.2 to 10 Substantial 
10 to 100 Strong  
>100 Decisive  

 
Use of the Tool 
 
Inputs Related to Prior Distribution 
The HS COBP has developed an Excel spreadsheet for carrying out the calculations for the 
Bayesian posterior probability of meeting the requirement and the Bayes Factor. This may be 
obtained by U.S. Government agencies and their contractors by emailing 
afit.ens.hscobp@us.af.mil. This document will describe the information that needs to be entered 
and then will look at the outputs. The inputs will include the parameters of the prior distribution, 
and those that describe the data collected. The section of the spreadsheet which describes the 
prior and posterior distributions is shown in Figure 3. The entries shown on the column labeled 
“Prior” are the parameters of a Beta distribution where both parameters are 1. This is an 
example of a reference, or noninformative, prior and gives a uniform prior probability. The 
probability is equally likely that the parameter is any value between 0 and 1. This prior is easily 
overwhelmed by data. If prior knowledge suggested the system would most likely work in a test, 
the team might choose a prior distribution with a mean value near 1 instead. The sum of the a 
and b parameters act as if one has a prior number of tests equal to that value.  For example, in 
Figure 1, the reference prior can be interpreted as having seen two tests prior to seeing the 
current test—one that was a success and one that was a failure. Selecting the sum of a and b 
sets how much the prior knowledge will be weighted relative to the data. Details of selecting 
priors are given in Christensen, Johnson, Branscum, & Hanson (2011) Section 5.1. The number 
of successes and the number of trials, entered as shown in Figure 4, are used in Equations 5 
and 6 to compute the updated values of the Beta distribution parameters. These appear in the 
“Posterior” column of Figure 3. 

 

 
 

Figure 3 
Input of prior distribution parameters and output of posterior distribution parameters 

 
Input Related to Data Collected 
A description of the data collected is shown in Figure 4. The “Requirement, p_req” box is the 
entry of the threshold for the probability of success that must be exceeded to meet the 
requirement. In this case the probability of success must be at least 95%. “# Trials, N” shows 
that there were 100 trials, and “# Successes, X” shows that 97 were successes.  

mailto:afit.ens.hscobp@us.af.mil
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Figure 4 
Input requirement to be satisfied and data collected 

 
Plot of Distributions 

The spreadsheet plots the Probability Density Functions (PDF) of the prior and posterior 
distributions, as shown in Figure 5. The requirement is shown by a red line. The posterior 
probability that the requirement is met is the area under the posterior PDF curve for probability 
of success values greater than the required value.  
 

Calculations giving Posterior Probability of the Requirement being Met 
The estimated posterior probability that the requirement is met is given in Figure 6. In this case, 
the posterior probability that the requirement is met is about 75%. The posterior probability is 
the updated subjective probability of meeting the requirement when the prior probability 
distribution has been updated due to the observed data using Bayes’ rule. This means that 
there is a 25% posterior probability that the probability of success is less than the requirement. 
As argued above, frequentist confidence and Bayesian subjective probability both quantify risk 
and so it would seem reasonable to use the same numerical value for both. For instance, if the 
specification states that the requirement must be met with 80% confidence one would suggest 
using that threshold for the posterior probability requirement. Therefore, for the situation in 
Figure 6, we would reject the system as the subjective probability is less than 80%.  
 

Bayes Factor 
The computed value of the Bayes Factor is shown in Figure 7. The spreadsheet inserts a text 
description based on values in Table 1. In this case we conclude that the data would strongly 
lead us to update our belief to accept that the system meets the requirement. 
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Figure 5 
PDF of prior and posterior distributions 

 

 
 

Figure 6 
Computed estimated probability of success and posterior probability that probability of success 

is greater than the requirement 
 
 

 
 

Figure 7 
Bayes Factor with interpretation 

 
 
Application of Spreadsheet to Examples 
 
Table 2 shows what happens when the prior or requirement is changed. The results are 
discussed to show how one would reason based on the results. One prior is the reference prior 
used above, and the other is a weak prior that shows some confidence that the system will 
work, but not perfectly. In all cases it is assumed that there needs to be at least a posterior 
probability of 0.8 that the requirement is met for the system to pass. The data describing the 
experiment are those shown in Figure 4. If the required probability of success is at least 0.95, 
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we would reject the system if we used a reference prior. The system would pass with the weak 
prior. If the required probability of success is at least 0.9, the system passes for either prior. This 
required posterior probability should be established before testing to ensure objective 
consideration. The Bayes Factor scores are lower when using the weak prior. The Bayes Factor 
indicates how much the data changes our mind about the relative probabilities of the priors. In 
the case of the weakly informative prior we have some belief that the system will work, so the 
data changes our belief less than if we used the reference prior. The Bayes Factor is less for the 
higher required probability of success. If it takes more data to demonstrate a high probability of 
success, the data observed would change our mind less than in the case where we require less 
data to be convinced, due to the lower required probability of success.  
 

Table 2 
Examples of Bayes Factor for different situations  

Required Probability of 
Success 

0.9 0.95 0.9 0.95 

a in prior 1 1 9 9 
b in prior 1 1 1 1 
Probability that 
Requirement Met 

0.993 0.749 0.996 0.8 

Bayes Factor 1232.84 56.74 163.81 6.81 
 
Conclusion 
 
This Best Practice has demonstrated the use of Bayesian methods to assess if a system has 
met requirements. The situation considered is the requirement that the probability of success is 
greater than some level, which is a commonly encountered sort of requirement. The posterior 
probability directly gives a measure of the combined evidence that we should believe that the 
requirement has been met. The Bayes Factor provides a measure of the degree to which the 
evidence has caused us to update our belief that the requirement has been met. The Best 
Practice has also demonstrated the inputs and outputs to an Excel spreadsheet for performing 
these calculations, available by request from the HS COBP at afit.ens.hscobp@us.af.mil.  
 
  

mailto:afit.ens.hscobp@us.af.mil
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