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Executive Summary 

This paper addresses research in evolutionary design and machine learning for modeling and simulation. 
In many instances, high fidelity computer simulations cannot be exhaustively evaluated due to the 
computational complexity or problem scope. Initial space-filling designs followed by adaptive sampling, 
also known as active learning, permit efficient meta-modeling, examination, and testing of simulation 
responses. This repeatable process was successfully implemented for the Threat Modeling and Analysis 
Program at the National Air and Space Intelligence Center. 

Keywords: evolutionary design, adaptive sampling, active learning, meta-modeling  

Introduction 

Many modeling and simulation (M&S) studies can suffer from the curse of dimensionality, making 
exhaustive evaluation in the form of full-factorial designs infeasible given available computation 
resources. A repeatable, iterative, and efficient process is desired for examination and testing of models 
within the intelligence community. The methodology was developed in successive phases: (I) 
development of the overall process, (II) implementation of evolutionary design approaches, and (III) 
rapid experimentation and adaptive learning.  

Background 

The Threat Modeling and Analysis Program (TMAP) is developed and used across the intelligence 
community, employing a mature reoccurring process that begins with threat assessments and 
intelligence collections. Through a combined process of engineering design, testing and analysis a digital 
representation (or model) of a threat system is produced.  The modeling portfolio represents many 
systems with expertise and developmental efforts spanning a variety of organizations and centers. 
TMAP serves a large customer base that includes our allies, all military services, major commands and 
research and acquisition centers. The models are represented at various levels of fidelity (parametric, 
analytic, and emulative) and are utilized across the traditional DoD M&S pyramid (engineering, 
engagement, mission and campaign). The high resolution and computationally intensive models can be 
efficiently explored using experimental design of the inputs, intelligent sampling methods and collecting 
relevant outputs to create accurate and efficient meta-models, or mathematical models of models, that 
act as effective surrogates for the system model (Figure 1).  
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Figure 1: Experimental Design to Meta-modeling 

Project Progress 

Phase I: Process Development 

The initial focus of this research was to provide efficient designs to explore high resolution simulations.  
These models contain numerous inputs (factors) and outputs (responses) with complex, non-linear 
behavior. Earlier use of these models employed fine grid designs and sensitivity analysis conducted with 
a variety of stochastic parameters. After a brief familiarization with a single model, initial project goals 
were outlined as follows: 

 Implement efficient experimental designs and investigative methods  
 Effectively manage numerous stochastic inputs by incorporating into design space 
 Leverage model failure indicators to identify input combinations that yield feasible solutions  
 Define and characterize the system model’s operating envelope  

Using a single default scenario as a starting design point, relevant input bounds were defined to create 
the initial space-filling design. As the experimental bounds were expanded, previously evaluated design 
points were integrated and perturbed to generate solutions across the larger operating range.  The 
efficient designs were able to integrate controllable system parameters previously addressed as 
stochastic inputs. A simple two-layer feed-forward neural network was developed to recognize patterns 
present in the simulation’s success and failure indicators to predict future success.  This metamodel was 
used to evaluate candidate inputs and select those used for future modeling runs.  After applying 
classification and expansion methods, the focus shifted to automating and accelerating the process 
through machine learning and distributed computing. 

Phase II: Evolutionary Design 

During this phase, the methods and techniques were built in the native MATLAB/Simulink environment 
for model development and testing, where the tasks were automated in a repeatable process (Figure 2): 

 Design (initial inputs and parameter space) 
 Simulate and Harvest (generate, collect and leverage data) 
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 Learn (dynamically create and retrain meta-models) 
 Explore (utilize results to intelligently guide investigation; either through expansion of input 

bounds or focusing on specific regions of the system) 

 

 

Figure 2: Evolutionary Design  

Efficient space-filling experimental designs such as the Latin hypercube (McKay et al.; Iman and Conover; 
Florian; Owen; Tang) created an initial sampling of the design space and incorporated a variety of 
scenario details. These initial designs were a foundation for covering the multi-dimensional space but 
did not consider system responses and variable relationships. The systems were simulated over wide 
range of autogenerated inputs and data was harvested from all evaluations. This data was then used to 
construct efficient meta-models (in particular, neural networks (Rosenblatt; McCulloch and Pitts; Hebb)) 
to more efficiently guide which design points would be selected for further evaluation/simulation by 
representing input-output relationships over the entire span of the evaluated design space.  

The combined steps for design, simulation and harvesting subsequently enabled the rapid evaluation of 
input combinations prior to selecting design points for simulation runs.  The initial generation of 
candidate inputs are guided by predefined probability distributions, likelihood of success predicted by 
fitted meta-models, and uniqueness as defined by multi-dimensional measurements such as 
Mahalanobis distance.  The selection of design points for the simulation are determined by neural 
networks that are updated every learning cycle. The generation of search agents are normally scheduled 
at the onset of the investigation and are subsequentially managed by multi-objective expiration 
conditions. Supervised learning and classification techniques are used to adjust factor limits, step sizes 
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and retrain metamodels by leveraging data and collective knowledge from previous learning cycles and 
shared across the multiple agents exploring the model design space.   

Phase III: Experimentation, Rapid Learning and Adaptation 

After automating the design and exploration process, the next phase focused on rapid experimentation 
following many of the objectives stated in the DoD AI Strategy (DoD, 2018). Experimental practices were 
established for continuous learning through iteration, adaption and frequent updates. The successful 
prototypes were scaled across multiple system models in an agile development process.  Collaboration 
was encouraged through the creation and distribution of reusable tools and frameworks. The pioneering 
paradigms and methods were applied across the organization’s modeling portfolio and shared across 
their analytical enterprise. 

A subsequent transition to an open development environment created a rapid prototyping and testing 
process that resulted in an assortment of enhancements for design, adaptive sampling, meta-modeling, 
and data visualization. The creation of an experimental framework provided a modular code structure to 
efficiently examine and select the best combination of methods. With these tools and methods analysts 
can be supported through a streamlined and nearly autonomous design and test process. The 
experimental framework provides a structure for capturing and tracking many aspects of the modeling 
and investigation process. Some of the components used in the current framework are listed below.      

 Design space  
o Factors/inputs 
o Initial input bounds 
o Final input bounds (i.e., hard system constraints)  

 Evaluative system/model 
 Output data  

o Success/failure flags 
o System measures of performance/interest 
o Computation time 

 Meta-model(s) 
 Evolutionary agents 

Extensions to this framework include the implementation of initial designs beyond the Latin hypercube 
to permit more uniform sampling (Fang et al.), account for input constraints by using clustering-based 
designs such as with the Fast Flexible Filling designs in JMP (Lekivetz and Jones, “Fast Flexible Space-
Filling Designs for Nonrectangular Regions”; Lekivetz and Jones, “Fast Flexible Space-Filling Designs with 
Nominal Factors for Nonrectangular Regions”), and allow for mixed factor spaces (i.e., designs with 
categorical, continuous, and discrete factors having different numbers of levels for each) by using Nearly 
Orthogonal-and-balanced (NOAB) designs (Vieira Jr. et al.; Little et al.). Sequential sampling includes the 
exploratory Monte Carlo Voronoi approach (van der Herten et al.) to iteratively improve space-filling in 
the updated design.  
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Adaptive sampling approaches leverage model responses to further examine design space regions 
associated with high non-linearity or complexity, while meta-models are used to exploit regions having 
large error, variance, or model disagreement. Since no single meta-model type is expected to provide 
the best fit to every system of interest, meta-modeling approaches can be extended beyond neural 
networks to include both parametric and non-parametric methods such as linear regression (Kutner et 
al.), classification and regression trees (Breiman et al.), Gaussian processes or Kriging (Matheron), 
multivariate adaptive regression splines (Friedman), random forests (Breiman), and support vector 
machines (Drucker et al.). JMP software currently allows for construction of neural networks, 
classification and regression trees, Kriging, and polynomial regression. MATLAB software has a neural 
network toolbox as well as functions for classification and regression trees, polynomial regression, radial 
basis functions, and support vector machines in addition to open-source options for Kriging and 
multivariate adaptive regression splines. R software and Python both have open-source library packages 
(caret and scikit-learn, respectively) and scripts available for each of these modeling techniques. 
Interactive data visualizations can be rapidly implemented using open tools such as Shiny in R and Bokeh 
in Python. 

Results  

Meta-models that can sufficiently act as surrogates to model responses are a useful product for 
engineers, subject matter experts, and their customer base to understand both their models and 
associated real-world threat systems. Interactive experimental controls and multi-dimensional data 
visualizations aid in model understanding. Through the three phases of this project, the initial 
experimental process has moved from representing and understanding a single model in months using a 
traditional offline approach, to multiple models in weeks using evolutionary design and machine 
learning, with the approaching goal of evaluating a model in hours and spanning an entire portfolio in a 
distributed computing environment. Associated validation and verification efforts for these models are 
vastly improved by the efficiencies in understanding of such large, stochastic input spaces. These 
proficiencies allow for rapid understanding of threat models but also allow resources to be assigned to 
multiple models simultaneously using the evolutionary design approach. Figure 3 provides an overview 
of current timelines and productivity gains achieved for the threat modeling and analysis program using 
this process. 

 

Figure 3: Timelines and Efficiencies Gained thru Evolutionary Design Processes 
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Conclusion 

The evolutionary design process was successfully applied for threat modeling and analysis to evaluate 
model input spaces and continuously explore, learn, and refine model response surfaces. Sufficiently 
accurate meta-models of model responses allow for faster exploration and evaluation across the input 
space than if using the threat models alone, resulting in significant productivity gains for engineers and 
subject matter experts. The process has now been extended to an open development environment to 
facilitate efficient incorporation of new experimental design, adaptive sampling, and meta-modeling 
approaches as well as ensure reusability and scalability across multiple mission areas.   
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