
Fundamentals of Gradient Descent
August 2024

Joseph Lazarus, Ctr

DISTRIBUTION STATEMENT A. Approved for public release; distribution unlimited.
Case number: 88ABW-2024-0785; CLEARED 19 Sept. 2024

About this Publication:
This work was conducted by the Scientific Test & Analysis Techniques Center of Excellence under contract
FA8075-18-D-0002, Task FA8075-21-F-0074.

For more information:
Visit, www.AFIT.edu/STAT
Email, AFIT.ENS.STATCOE@us.af.mil
Call, 937-255-3636 x4736

Technical Reviewers:
Corinne Stafford
Anthony Sgambellone

Copyright Notice: No Rights Reserved
Scientific Test & Analysis Techniques Center of Excellence
2950 Hobson Way
Wright-Patterson Air Force Base, Ohio

The views expressed are those of the author(s) and do not necessarily reflect the official policy or position of
the Department of the Air Force, the Department of Defense, or the U.S. government.

Version: 1, FY24

To develop and apply independent, tailored
Scientific Test & Analysis Techniques
solutions to Test and Evaluation that deliver
insight to inform better decisions.

http://www.afit.edu/STAT
mailto:AFIT.ENS.STATCOE@us.af.mil

i

Abstract

This paper presents a clear explanation of the gradient descent algorithm, a fundamental
optimization technique widely used in machine learning. By breaking down the mathematical
principles and historical context, the paper aims to enhance understanding among practitioners,
managers, and executives of how gradient descent functions in optimizing machine learning
models. A practical demonstration using a simple linear regression problem illustrates the
iterative process of minimizing a loss function, providing a tangible example of how models
learn.

Keywords: Gradient Descent, Machine Learning, Optimization Techniques, Loss
Function, Decision-Making in AI

ii

Table of Contents

Abstract ... i

Introduction .. 1

Purpose .. 1
Overview of Content ... 1

Background .. 1
Basic Concepts of Artificial Intelligence and Machine Learning .. 1
Introduction to Optimization Techniques ... 2

Understanding Gradient Descent ... 2
Introduction to the Algorithm ... 2
Historical Context ... 2
Mathematical Principles .. 3

Break Down of the Process ... 3

Applications of Gradient Descent in Machine Learning .. 4

Conclusion ... 5

References ... 7

Appendix .. 8
Example Scenario .. 8

First Iteration of Gradient Descent .. 9
Second Iteration of Gradient Descent ..11

Explanation of the Process ..13
Gradient Descent Final Answer and Comparison to Closed-form Solution (SSR)13

1

Introduction

Artificial Intelligence (AI) and Machine Learning (ML), particularly Neural Networks (NNs), have
demonstrated remarkable capabilities across various domains, from image and speech
recognition to game playing and autonomous driving. However, the intricacies of how these
technologies operate often remain opaque, especially to non-technical stakeholders such as
managers and executives. The complexity of neural network architectures and their training
algorithms can obscure understanding, making it challenging to evaluate their performance and
potential applications. This paper aims to demystify one of the foundational algorithms in
machine learning, gradient descent, to enhance the comprehension of ML concepts among key
stakeholders.

Purpose

The primary purpose of this paper is to educate test and evaluation practitioners, managers,
and executives about the fundamental mechanisms and principles underlying gradient descent.
By breaking down this concept into more accessible terms and demonstrating its practical
applications, this paper seeks to empower decision-makers with the knowledge to better assess
and leverage AI technologies within their organizations.

Overview of Content

This paper will begin by providing background information on the basic concepts of AI and ML,
an introduction to optimization techniques. It will then delve into the gradient descent algorithm,
explaining its purpose, basic functioning, and historical context, referencing seminal works by
Lemaréchal (2010) and Boyd (2016). Following this, the paper will explore how gradient descent
is integrated to enhance learning and accuracy in machine learning models. The paper will
summarize the key points and provide a comprehensive list of references. In the appendix, the
paper offers a practical demonstration that illustrates key concepts of gradient descent.

Background
Basic Concepts of Artificial Intelligence and Machine Learning

AI, as defined by Russell and Norvig (2020) in "Artificial Intelligence: A Modern Approach," is
the study of rational agents. These agents perceive their environment through sensors and take
actions to maximize their chances of achieving specific goals. AI systems, therefore, mimic
cognitive processes like learning, reasoning, problem-solving, perception, and language
understanding. This broad definition encompasses a variety of AI approaches. These include
areas such as natural language processing, robotics, and computer vision. Machine Learning
(ML) is a subset of AI that focuses on the development of algorithms and statistical models that
allow computers to learn from and make predictions or decisions based on data. Within ML,
neural networks (NNs) are a critical technique, inspired by the structure and function of the
human brain.

Neural networks are computational models composed of interconnected layers of nodes, or
neurons, that process input data to generate outputs. These networks are designed to
recognize patterns and relationships in data through a process of learning, which involves
adjusting the weights of the connections between neurons to minimize the difference between
the actual output and the desired output.

2

Introduction to Optimization Techniques

Optimization is a critical technique for machine learning, involving the selection of the best
parameters for a model to minimize or maximize a specific objective function. In the context of
neural networks, optimization techniques are used to adjust the weights and biases to reduce
the error between the predicted and actual outputs. Gradient descent is one of the most widely
used optimization algorithms in ML.

Understanding Gradient Descent
Introduction to the Algorithm

Gradient descent is an iterative optimization algorithm used to minimize a function by moving in
the direction of the steepest descent as defined by the negative of the gradient of the loss
function, which is defined in the mathematical principles section. The primary objective of
gradient descent is to find the set of parameters that minimizes the loss function, which
measures the difference between the model's predictions and the actual target values, see
Figure 1.

The gradient descent algorithm involves three main steps: initializing the parameters, computing
the gradient of the loss function with respect to the parameters, and updating the parameters in
the direction of the negative gradient. This process is repeated iteratively until the algorithm
converges to a minimum of the loss function.

Figure 1
Gradient Descent Visualization

Historical Context

The concept of gradient descent dates to the 19th century, with the work of Augustin-Louis
Cauchy in 1847. His paper, "A Method for the Solution of Certain Problems in Least Squares,"
introduced the gradient method for solving optimization problems (Lemaréchal, 2010). This
foundational work laid the groundwork for modern optimization techniques.

In more recent years, the application of gradient descent in machine learning and neural

3

networks has been popularized through seminal works such as "Learning representations by
back-propagating errors" by Rumelhart, Hinton, and Williams (1986), and "Gradient-Based
Learning Applied to Document Recognition" by LeCun, Bottou, Bengio, and Haffner (1998).
These works demonstrated the effectiveness of gradient-based optimization techniques in
training neural networks.

Mathematical Principles

The mathematical foundation of gradient descent is rooted in calculus, specifically the gradient
of a function. The gradient is a vector that points in the direction of the steepest increase of a
function. In context of a function with a single variable, the gradient corresponds to the
derivative, which represents the rate of change or slope of the function. For functions with
multiple variables, the gradient is a vector of partial derivatives with respect to each variable. By
moving in the opposite direction of the gradient, the algorithm aims to find the minimum of the
loss function. This means that for each step or iteration, the parameters are adjusted in a way
that reduces the value of the loss function, ideally leading to its minimum.

Mathematically, the update rule for gradient descent is given by:

𝜃𝜃new = 𝜃𝜃old − 𝜂𝜂 𝛻𝛻𝜃𝜃𝐿𝐿(𝜃𝜃)

where theta (𝜃𝜃) is a vector representing the parameters, eta (𝜂𝜂) is the learning rate, and ∇𝜃𝜃𝐿𝐿(𝜃𝜃)
is the gradient of the loss function with respect to the parameters. Note: The learning rate is
often denoted by alpha (α) or eta (𝜂𝜂). This paper will use eta (𝜂𝜂) as the learning rate which
controls the step size in the gradient descent algorithm.

The learning rate is a hyperparameter that controls how much to change the model in response
to the estimated error each time the model weights are updated, depicted as the incremental
step in Figure 1. It is crucial to choose an appropriate learning rate; if it is too large, the gradient
descent algorithm may diverge or converge too quickly to a suboptimal solution, while if it is too
small, the convergence process can be very slow. When setting the learning rate:

• Start with a small value: common initial values range from 0.001 to 0.1
• Consider using an adaptive method: techniques like rate schedules or adaptive learning

rate algorithms (e.g., Adam, RMSporp) can adjust the learning rate during training for
better performance

• Monitor convergence: plot the loss function to ensure it decreases smoothly; if the loss
fluctuates or diverges, the learning rate might be too high; if the plot decreases too
slowly, the learning rate might be too low

Break Down of the Process

Gradient descent is accomplished through the following steps.

1. Initialization: Start with an initial guess for the parameters.
2. Compute Gradient: Calculate the gradient of the loss function with respect to the

parameters.
3. Update Parameters: Adjust the parameters by subtracting the product of the learning

rate and the gradient.

4

4. Check Convergence Criteria: Determine when to stop the iteration process. The
algorithm can be stopped when one of the following conditions is met:

• The change in the loss function between iterations is smaller than a predefined
threshold epsilon (ϵ): This criterion checks the difference in the value of the loss
function (e.g., mean squared error) between consecutive iterations. If the change
is smaller than a predefined value ε, it indicates that further iterations are not
significantly reducing the error, suggesting convergence. Mathematically, this can
be expressed as:

|𝐿𝐿(θnew)− 𝐿𝐿(θold)| < ϵ

This ensures that the model has reached a point where the error is minimal and
is not improving appreciably with further iterations. This focuses on improvement
in the model’s performance, (i.e., how much the error or loss has decreased)

• The change in the parameter values between iterations is smaller than a
predefined threshold: This criterion focuses on the magnitude of the adjustments
made to the parameters themselves. If the changes in the parameters θ between
iterations are smaller than a predefined value, it indicates that the algorithm is
making very small updates and is likely near the minimum of the loss function.
This can be mathematically expressed as:

|θnew − θold| < ϵ

This ensures that the parameters have stabilized and are no longer changing
significantly, indicating convergence. This focuses on the adjustments made to
the model parameters (i.e. how much the parameters have changed)

• A maximum number of iterations is reached: This criterion sets a cap on the
number of iterations the algorithm will perform. It acts as a safeguard to prevent
the algorithm from running indefinitely in cases where convergence is slow or
difficult to achieve. Typical maximum numbers of iterations can vary depending
on the problem and dataset but often range from 1000 to 10,000 iterations. For
example, in simple linear regression problems, fewer iterations may be needed,
whereas complex neural network training might require many more iterations.

5. Repeat: Continue repeating steps 2-4 until the loss function converges to a minimum
value or the maximum number of iterations is reached.

Applications of Gradient Descent in Machine Learning

While gradient descent can be applied to various optimization problems, including linear
regression, it is not typically the preferred method when a closed-form solution is available.
Linear regression problems can be optimized with a single equation and do not require the
iterative computations of gradient descent. When a closed form solution exists, it is
computationally efficient and provides exact results without the need for iterative updates.

Gradient descent is particularly useful in machine learning problems with:

5

1. High Dimensionality: When the parameter space is very large, direct methods often
become computationally infeasible due to the high cost of matrix inversion. Gradient
descent can handle large-dimensional problems by iteratively updating the parameters.

2. Non-Linear Models: Models like neural networks are non-linear and have complex loss
surfaces. Gradient descent and its variants (e.g., stochastic gradient descent, mini-batch
gradient descent) are well suited for training these models due to their ability to navigate
high-dimensional, non-convex loss landscapes.

Neural networks are a prime example where gradient descent is essential. They consist of
multiple layers of interconnected neurons, and the objective is to minimize the loss function,
which measures the discrepancy between the network’s predictions and the actual target
values. The high dimensionality and non-linear nature of neural networks make gradient
descent an ideal optimization method.

Neural networks often have millions of parameters, making direct optimization methods
impractical. Additionally, the loss function in neural networks is differentiable, which means we
can calculate the gradient of the loss with respect to each parameter and iteratively update the
parameters to minimize the loss. This process is known as backpropagation. For an in-depth
explanation of backpropagation and an Excel simulation of a neural network, see
“Fundamentals of Backpropagation” (Lazarus, 2024).

Conclusion

Understanding the mechanics of gradient descent is essential for comprehending how machine
learning models learn and improve their performance. This paper has aimed to clarify the
gradient descent algorithm by breaking down its fundamental principles, historical context, and
mathematical underpinnings. By examining the gradient computation, parameter updates, and
convergence criteria, this paper aimed to provide a clear and accessible explanation of how
gradient descent operates.

Gradient descent's significance in the field of machine learning cannot be overstated. It is the
cornerstone of training various models, enabling them to adjust their parameters to minimize
errors and enhance accuracy. The algorithm's introduction and subsequent development by
pioneers like Rumelhart, Hinton, and LeCun have paved the way for the remarkable
advancements in AI and deep learning that we witness today.

For managers and executives, gaining a solid understanding of gradient descent equips them
with the knowledge to make informed decisions about adopting and implementing AI
technologies within their organizations. This comprehension allows them to better evaluate the
capabilities and limitations of machine learning models, ensuring that they can leverage these
powerful tools effectively to drive innovation and achieve mission objectives.

As AI and machine learning continue to evolve, the principles of gradient descent will remain
foundational to the development of more sophisticated and capable models. By demystifying
this algorithm, the paper aims to equip leaders with the necessary understanding to effectively
apply AI and machine learning algorithms within their operations contexts.

To further illustrate the concepts discussed, the appendix contains a practical example that
demonstrates gradient descent through a simple linear regression model. This example will

6

provide a hands-on understanding of how gradient descent works in practice, highlighting the
step-by-step process of training a model, adjusting parameters, and minimizing error to achieve
accurate predictions.

7

References

Boyd, S. (2016). Convex Optimization. Cambridge University Press. (Original Work published

2004). https://doi.org/10.1017/CBO9780511804441

LeCun, Y. Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based Learning Applied to

Document Recognition. Proceedings of the IEEE, 86(11), 2278-2324

Lemaréchal, C. (2010) Cauchy and the Gradient Method. Doc. Math. Extra Vol. ISMP, 251-254.

Rumbelhart, D. E., Hinton, G.E., & Williams, R.J. (1986). Learning Representation by

Backpropagating Errors. Nature, 323(6088), 533-536.

Russell, S., Norvig, P. (2020). Artificial Intelligence: A Modern Approach (4th ed). Pearson.

8

Appendix
Illustrative Example

Example Scenario

Consider a simple dataset where the x-axis represents weight, and the y-axis represents height.
By fitting a line to this data, weight can be predicted for any given height. The equation of a line
is given by y = mx + b, where y is the dependent variable (height), x is the independent variable
(weight), m is the slope of the line, b is the intercept. The process of gradient descent aims to fit
such a line to the data by finding the optimal values for the intercept (b) and the slope (m) which
minimize the sum of squared residuals. Table A1 and Figure A1 show the data that will be fit.

Table 1
Height and Weight Data

Weights (units) (𝑥𝑥𝑖𝑖) Height (units) (𝑦𝑦𝑖𝑖)
0.5 1.4
2.3 1.9
2.9 3.2

Figure A1
Plot of Height and Weight Data

9

If we were using the sum of squared residuals (SSR) method to solve for the optimal intercept
and slope, we would find where the derivative (slope) of the error function equals zero. In
contrast, gradient descent finds the minimum value of the loss by taking iterative steps from an
initial guess until optimal values are reached. This iterative approach makes gradient descent
particularly useful in scenarios where it is not possible to directly solve for where the derivative
equals zero, enabling its application in a wide range of situations.

First Iteration of Gradient Descent

Initial Setup
We start with initial guesses for the intercept (b) and slope (m). In this case, we'll begin with 𝑏𝑏 =
0 and 𝑚𝑚 = 1. We also define a learning rate (𝜂𝜂), which controls the size of our steps. Let's set
𝜂𝜂 = 0.01.

Step 1: Calculate Model Predictions

Calculate predicted values using our initial guesses, we calculate the predicted height (𝑦𝑦�) using
1 for the slope (m) and 0 for the intercept (b) for each weight:

𝑦𝑦�1 = 1 ⋅ 0.5 + 0 = 0.5
𝑦𝑦�2 = 1 ⋅ 2.3 + 0 = 2.3
𝑦𝑦�3 = 1 ⋅ 2.9 + 0 = 2.9

The prediction versus the data points is pictured in Figure A2.

Figure A2
Predicted versus Actual for First Iteration

10

Step 2: Compute Residuals

Next, we calculate the residuals, which are the differences between the actual heights and the
predicted heights:

Residual1 = 1.4− 0.5 = 0.9
Residual2 = 1.9− 2.3 = −0.4
Residual3 = 3.2− 2.9 = 0.3

The residuals are pictured in Figure A3.

Figure A3
Residuals for First Iteration

Step 3: Calculate the Sum of Squared Residuals (SSR)

The SSR is the sum of the squares of the residuals:

SSR = �(𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2 = (0.9)2 + (−0.4)2 + (0.3)2 = 0.81 + 0.16 + 0.09 = 1.06

Step 4: Compute the Gradient

We compute the partial derivatives of the SSR with respect to the intercept and slope (together
comprising the gradient), which indicate how much the SSR changes with respect to changes in
b and m:

11

∂SSR
∂𝑏𝑏

= −2�(𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖) = −2(0.9− 0.4 + 0.3) = −1.6
∂SSR
∂𝑚𝑚

= −2�(𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖) ⋅ 𝑥𝑥𝑖𝑖 = −2(0.9 ⋅ 0.5 − 0.4 ⋅ 2.3 + 0.3 ⋅ 2.9) = −0.8

Step 5: Update the Parameters

We update our guesses for b and m using the gradient and the learning rate:

𝑏𝑏new = 𝑏𝑏old − 𝜂𝜂 ⋅
∂SSR
∂𝑏𝑏

= 0 − 0.01 ⋅ (−1.6) = 0.016

𝑚𝑚new = 𝑚𝑚old − 𝜂𝜂 ⋅
∂SSR
∂𝑚𝑚

= 1 − 0.01 ⋅ (−0.8) = 1.008

We repeat these steps, updating b and m each time. With each iteration, the SSR decreases,
and our line better fits the data.

Second Iteration of Gradient Descent
Let's continue with the next iteration of gradient descent to see how we are getting closer to
minimizing the error.

Recap of Initial Values and First Update

From the first iteration:
• Initial intercept (b) = 0
• Initial slope (m) = 1
• Learning rate (𝜂𝜂)

After the first iteration:

• Updated intercept (b) = 0.016
• Updated slope (m) = 1.008

Step 1: Calculate Predicted Values

Using the updated parameters, calculate the predicted height 𝑦𝑦� for each weight:

For the first weight (0.5 units):

𝑦𝑦�1 = 1.008 ⋅ 0.5 + 0.016 = 0.524

For the second weight (2.3 units):

𝑦𝑦�2 = 1.008 ⋅ 2.3 + 0.016 = 2.347

For the third weight (2.9 units):

𝑦𝑦�3 = 1.008 ⋅ 2.9 + 0.016 = 2.937

Step 2: Compute Residuals

Calculate the residuals, which are the differences between the actual heights and the predicted
heights:

For the first weight (0.5 units):

12

Residual1 = 1.4− 0.524 = 0.876

For the second weight (2.3 units):

Residual2 = 1.9− 2.347 = −0.447

For the third weight (2.9 units):

Residual3 = 3.2− 2.937 = 0.263

Figure A4
Residuals for Second Iteration

Step 3: Calculate the Sum of Squared Residuals (SSR)

SSR = (0.876)2 + (−0.447)2 + (0.263)2 = 0.767 + 0.200 + 0.069 = 1.036

Notice how the SSR (1.036) is slightly lower than the SSR from the first iteration (1.06),
indicating that we are moving in the right direction.

Step 4: Compute the Gradient

The partial derivatives of the SSR with respect to the intercept and slope are:

∂SSR
∂𝑏𝑏

= −2�(𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖) = −2(0.876− 0.447 + 0.263) = −1.384

∂SSR
∂𝑚𝑚

= −2�(𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖) ⋅ 𝑥𝑥𝑖𝑖 = −2(0.876 ⋅ 0.5− 0.447 ⋅ 2.3 + 0.263 ⋅ 2.9) = −0.344

13

Step 5: Update the Parameters

Update the parameters using the gradient and the learning rate:

𝑏𝑏new = 𝑏𝑏old − 𝜂𝜂 ⋅
∂SSR
∂𝑏𝑏

= 0.016− 0.01 ⋅ (−1.384) = 0.016 + 0.01384 = 0.030

𝑚𝑚new = 𝑚𝑚old − 𝜂𝜂 ⋅
∂SSR
∂𝑚𝑚

= 1.008− 0.01 ⋅ (−0.344) = 1.008 + 0.00344 = 1.011

Explanation of the Process
With each iteration, the parameters (intercept b and slope m) are adjusted slightly to reduce the
loss function, in this case SSR. In the second iteration, the SSR decreased from 1.06 to 1.036,
showing our updated line fits the data better than the previous iteration.

The iterative nature of gradient descent ensures that with each step, we move closer to the
optimal values for b and m that minimize the SSR. The adjustments become smaller as we get
closer to the minimum, indicating convergence toward the optimal solution.

As we get closer to the minimum, the slope of the loss function flattens out, meaning the
gradient magnitude decreases. A smaller gradient indicates that the error function is not
changing as rapidly with respect to the parameters. Consequently, the adjustments to the
parameters get smaller.

Mathematically, the parameters updates are calculated as follows:

𝑏𝑏new = 𝑏𝑏old − 𝜂𝜂 ⋅
∂SSR
∂𝑏𝑏

𝑚𝑚new = 𝑚𝑚old − 𝜂𝜂 ⋅
∂SSR
∂𝑚𝑚

Here, ∂SSR
∂𝑏𝑏

 and ∂SSR
∂𝑚𝑚

 become smaller as we approach the minimum, leading to smaller changes
in b and m.

This process continues until the changes in SSR are negligible, meaning we have found the
best possible line that fits our data.

Gradient Descent Final Answer and Comparison to Closed-form Solution (SSR)
To determine how many iterations are needed to achieve the optimal solution using gradient
descent, the python programming language was used to iterate the process on the data set.
The results from gradient descent can then be compared to the closed-form solution.

Gradient Descent Process:

• Initial parameters: Intercept (b) = 0.0, slope (m) =1.0
• Learning rate (𝜂𝜂) = 0.01
• Maximum Iterations = 10,000
• Convergence tolerance = 1 x 10-6
Convergence tolerance is a threshold that determines when the gradient descent algorithm
should stop iterating. For this example, a convergence tolerance of 1 x 10-6 means the

14

algorithm stops when the change in parameter values iterations is less than 0.000001. This
ensures the algorithm halts when further updates have a negligible effect on reducing the
error, indicating near-optimal solutions.

After running the gradient descent algorithm, the parameters converged to the following values.

Gradient Descent Final Parameters:

• Intercept (b): Approximately 0.9486
• Slope (m): Approximately 0.6410
• Number of iterations: 580

Sum of Squared Residuals solution

• Intercept (b): Approximately 0.9487
• Slope (m): Approximately 0.6410

The parameters obtained from gradient descent are very close to the closed-form solution
(SSR). This demonstrates that gradient descent can effectively find the optimal solution through
iterative updates, even though it required a significant number of iterations to converge. The
closed-form solution is easy to obtain for linear regression problems, however, the power of
gradient descent is realized on problems where it is not possible to solve for when the gradient
equals zero.

Figure A5 shows the minimization of loss over the course of the iterations.

Figure A5
Loss Mimimization Over Iterations

Figure A5 is an educational tool designed to help the reader understand the essence of gradient
descent. Although both the slope and intercept influence the loss function, their combined effect

15

along a single axis is abstracted to make the concept more accessible. The plot captures the
key idea that gradient descent is an optimization process, moving toward a minimum error,
which is visually represented by the lowest point on the parabola.

Figure A6 illustrates the final solution to the example sum of squared residual problem solved
using gradient descent. The blue points represent the original data, and the red shows the best
fit line obtained using gradient descent. Green points denote predicted values, and dashed
green lines indicated the residuals between the actual and predicted values.

Figure A6
Final Solution

