
Cross-Validation for Machine
Learning Models

October 2024

Corinne Stafford, Ctr
Rohit Pai, Ctr

DISTRIBUTION STATEMENT A. Approved for public release; distribution unlimited.
Case number: MSC/PA-2024-0270; 88ABW-2024-0929; CLEARED 05 Feb. 2025

2

About this Publication:
This work was conducted by the Scientific Test & Analysis Techniques Center of Excellence under contract
FA8075-18-D-0002, Task FA8075-21-F-0074.

For more information:
Visit, www.AFIT.edu/STAT
Email, AFIT.ENS.STATCOE@us.af.mil
Call, 937-255-3636 x4736

Technical Reviewers:
Joseph Lazarus
Anthony Sgambellone

Copyright Notice: No Rights Reserved
Scientific Test & Analysis Techniques Center of Excellence
2950 Hobson Way
Wright-Patterson Air Force Base, Ohio

The views expressed are those of the author(s) and do not necessarily reflect the official policy or position of
the Department of the Air Force, the Department of Defense, or the U.S. government.

Version: 1, FY25

To develop and apply independent, tailored
Scientific Test & Analysis Techniques
solutions to Test and Evaluation that deliver
insight to inform better decisions.

http://www.afit.edu/STAT
mailto:AFIT.ENS.STATCOE@us.af.mil

i

Abstract

Cross-validation is a widely used technique for training and validating machine learning models.
This paper covers key concepts for machine learning model training and validation and provides
an overview of common cross-validation methods: leave-one-out, leave-p-Out, k-fold, stratified
k-fold, and repeated k-fold. To measure model performance or validity, many metrics are
discussed, covering metrics for both classification and regression problems. These metrics
enable model comparison between different types of models and models with different
hyperparameters. A toy problem is presented to demonstrate the cross-validation procedure
with a real data set.

Keywords: machine learning, modeling & simulation, cross-validation, validation

1

Table of Contents

Abstract ... i

Introduction .. 2

Background .. 2

Overfitting and Underfitting ... 2

Train-Validation-Test Split .. 3
Training Set .. 4
Validation Set .. 4
Test Set .. 4
Disadvantages of Train-Validation-Test Split ... 5

Cross-Validation Methods ... 5

Leave-One-Out Cross-Validation .. 5

Leave-p-Out Cross-Validation .. 6

K-fold Cross-Validation ... 6

Stratified k-Fold Cross-Validation ... 7

Repeated k-Fold Cross-Validation .. 8

Other Cross-Validation Methods ... 8

Metrics ... 8

Classification Metrics .. 8
Accuracy ... 9
Sensitivity and Specificity .. 9
Area Under Curve (AUC) ...10
F-score ..11

Numeric Prediction Metrics ..12
R-Squared ...12
Root Mean Square Error (RMSE) ..12

Toy Problem ..13

Objective and Data Set Description ...13

Model Training and Validation Approach ...13

Hyperparameter Selection ...14

Evaluation Against Test Set ...15

Conclusion ..17

References ..18

Appendix ...19

2

Introduction

Machine Learning (ML) is a powerful tool that is increasingly used in both Department of
Defense (DOD) systems and test and evaluation (T&E) of DOD systems. ML models may be
built into DOD systems (e.g., enemy aircraft classification) or they may be part of a modeling
and simulation (M&S) suite used to model system behavior as a system is developed and
tested. In both applications, the ML models must be trustworthy to be assured that the system
performs as required. For models to be trustworthy, they must be validated.

Validation is “the process of determining the degree to which a model or simulation and its
associated data are an accurate representation of the real world from the perspective of the
intended uses of the model” (US Department of Defense, 2018). Many statistical methods exist
for validation, such as those described by the Institute for Defense Analysis “Handbook on
Statistical Design and Analysis Techniques for Modeling & Simulation Validation” (Wojton et al.,
2019). However, these methods do not explicitly account for ML models, which are trained to fit
data. With access to the training data, cross-validation is a popular method that can be applied.

Cross-validation is a type of validation technique for supervised ML models that estimates how
well a model will perform after it is trained. Supervised models are trained using labeled
datasets to be able to make future predictions based on patterns found during training. Cross-
validation methods are often more efficient in using available data to validate a model compared
to other methods since they utilize the training data when assessing model performance. This
paper first gives background on validation methods for ML models, then describes several
cross-validation techniques and the metrics which are used to assess validity. Lastly, a toy
problem of cross-validation is demonstrated with a real data set.

Background

ML models can be used for both classification and regression tasks. The model is called a
classifier when it predicts a categorical response (e.g., threat/not threat), and a ‘regressor’ when
it predicts a continuous response (e.g., signal strength). Cross-validation can be used to assess
how well the model correctly predicts results. Since cross-validation is performed during model
training, it can also be used to compare different possible types of models to determine which
one performs best for a given data set.

This section provides background on key concepts critical to understanding cross-validation:
over fitting/underfitting and the train-validation-test split. Sgambellone (2022) provides additional
background on key principles for validating data-driven models.

Overfitting and Underfitting
When training a machine learning model, one must avoid overfitting or underfitting. Overfitting
occurs when the model fits too closely or exactly to the data used to train the model and fails to
make good predictions for any data other than the training data. On the other hand, underfitting
occurs when the model is too simple or is unable to capture the relationship between the input
and output variables accurately, generating a high error rate on both training data and unseen
data. To avoid underfitting and overfitting, one must strike a balance to fit a model that is
complex enough to capture the relationship between variables but not so complex that it begins
to fit noise in the training data.

This balance can also be understood as the bias-variance tradeoff, pictured in Figure 1. Bias is
a result of model inaccuracy. Figure 1 shows that the more complex a model is made, the more

3

the bias on the training data can be reduced. Variance refers to the variance of model
coefficients. When the model becomes so complex that it fits the noise in the training data
(overfitting), the calculated model parameters themselves become subject to the noise and are
said to have high variance. To strike a balance between overfitting and underfitting means to
acceptably reduce bias without increasing variance. Figure 1 shows the desired balance.

Figure 1

Bias Variance Tradeoff

Train-Validation-Test Split
Before delving into cross-validation, it is important to understand an underlying concept for
validating models that are trained with data: splitting data into a training set, a validation set, and
a test set. Given a dataset, it is possible to train a model on all data points; however, this fails to
provide any information about the model’s robustness, or ability to make predictions for data it
was not trained on. One way to remedy this is by splitting the given dataset into three parts: the
training set, the validation set and the test set. This is shown in Figure 2. The proportion of data
in each part depends on the problem at hand. It is a best practice to include a majority
proportion of the data in the training set, while the rest may be split evenly between the
validation and test sets. Common splits include 60-20-20 and 50-25-25. This method is also
known as the “holdout method”.

4

Figure 2
Train-Validation-Test Split

Training Set

The training set contains data that will be used to train the model. Different types of models
each have their own algorithms for determining the best model parameters to fit the training
data. For example, training a first-order linear regression model (𝑦 = 𝑚𝑥 + 𝑏), will output the
optimal slope (m) and y-intercept (b) to minimize the error of model predictions1. The training
data set should be the largest of the three data sets to capture as much of the behavior as
possible in the model.

Validation Set

Once the model is trained, it is evaluated on the validation set. Since the validation set is not
used to train the model, it provides a way to assess how the model performs on unseen data.
Unlike the test set, the validation set can be used to tweak the model to perform better on
unseen data. Specifically, the validation set is used to choose between models and/or choose
the appropriate hyperparameters for a model. Hyperparameters differ from parameters in that
they are not determined by what best fits the data. Instead, they are set by the modeler. For
example, the modeler may choose what degree polynomial to fit, for example, first order
(straight line), second order (quadratic), or third order (cubic). Another example of a
hyperparameter is the learning rate of gradient descent when training a neural network,
described further by Lazarus (2024). For different chosen hyperparameters, the resulting model
will differ, and the model performance on the validation set will differ. Metrics can be calculated
to evaluate this model performance, as described in the section on metrics. The modeler may
select which hyperparameters result in the best performance on the validation set. Different
model types (e.g., linear regression versus neural network) can also be compared to select the
best model.

The validation set helps minimize overfitting. By comparing how models perform on unseen
data, a model can be selected that fits both seen and unseen data well.

Test Set
Finally, the test set is used to determine generalizability of the chosen model. The test set
serves as the final assessment or validation of the model against unseen data. It is critical for
the test set data to be unseen and not influence the training in any way. If the test set influences
training, the model may be biased to predict the test set well, and the model performance
metrics will not be accurate.

1 For a linear regression model, error is measured as the sum of squared residuals.

5

Disadvantages of Train-Validation-Test Split

While this approach is useful for model selection, comparison, and evaluation, it has some
disadvantages. First, during the split, part of the data was arbitrarily selected as the training set
and the rest was set aside the rest for validation and testing. However, depending on the
specific training set selected, the created model will differ, potentially having a large impact on
the model’s performance. This is especially the case with smaller data sets: training the model
on the largest data set possible is required to capture as much behavior as possible, and while
large datasets may still contain enough data after splitting, small data sets may lose important
behaviors after splitting. The validation and test data are not seen by the model during the
training process, posing a possible waste of valuable, difficult-to-collect data. This motivates the
need for other forms of validation for ML models that use data more efficiently.

Cross-Validation Methods

Cross-validation is a validation technique used to estimate performance of an ML model on
unseen data while it is being trained. In contrast to the train-validate-test split, cross-validation
trains and tunes a model using a combined training and validation set then evaluates with the
test set. This combined “cross-validation set” is split in many possible ways into a training and
validation set, selecting different portions of the data for training each time. For each way the
data is split, a model is trained on the training set and evaluated by calculating performance
metrics on the validation set. The metrics calculated for each different split can be averaged
together to give an overall view of how the model performs on unseen data. Since the training
data changes depending on how the data was split, cross-validation provides a more robust
evaluation than a single split that only considers one possible set of training data.

Different types of models can be compared by their averaged metrics to select a model. Then,
the model is retrained on the entire cross-validation set, and finally evaluated against the held-
out test set. Cross-validation more efficiently uses data compared to the train-validate-test split
because it eliminates the need for a separate validation set that is never used to train the model.

Below, several cross-validation methods are discussed, including leave-one-out, leave-p-out, k-
fold, stratified k-fold, and repeated k-fold cross-validation.

Leave-One-Out Cross-Validation
Leave-one-out cross-validation, pictured in Figure 3, uses one piece of data as the validation
set, rotating which data point serves for validation as many models are trained.

Consider a dataset with n observations. The method starts by holding out the 1st observation
and training the model over the remaining n - 1 observations. The error is subsequently
measured by evaluation of the model on the held-out observation. This process is repeated n
times, with a different observation being left out each time. This gives n error estimates. These
estimates are averaged to obtain an overall error estimate. Finally, the model may be trained on
the entire dataset.

6

Figure 3
Leave-one-out Cross-Validation

Leave-one-out cross-validation generally results in low bias because the model is trained on
almost all the data. However, leave-one-out validation can quickly become computationally
straining with larger data sets, since the number of times the model is trained is equal to the
size of the dataset. Thus, the leave-one-out method is better suited for smaller datasets.

Leave-p-Out Cross-Validation
A variation of leave-one-out validation is leave-p-out validation. As the name implies, each split
leaves p data points out of training, where p is typically chosen to be a small number. This
method exhaustively tests the model against all distinct samples of size p, so the same data
point will be excluded in multiple possible splits. Thus, this method is even more computationally
expensive than leave-one out since the number of possible splits grows combinatorically with
the size of the data set. It should therefore only be considered for small datasets.

K-fold Cross-Validation
K-fold validation, pictured in Figure 4, is a non-exhaustive cross-validation method, and is
therefore much more computationally efficient than leave-one-out or leave-p-out. Given some k

7

(commonly 5 or 10), the data is randomly split into k ‘folds’ of roughly the same size. One of the
folds is set aside as the validation set, while the model is trained on the remaining k – 1 folds.
An error estimate is obtained by evaluation of the model on the validation set. This process is
repeated k times, with a different fold left out each time. The k error estimates are subsequently
averaged to give the error.

Figure 4

Five-fold (k=5) Cross-Validation

Since the number of models trained increases only with k and not with the size of the dataset, k-
fold is a preferred method for large datasets. A potential downside of k-fold validation is that the
random assignment of data to folds can result in unbalanced distributions of classes across
folds, resulting in biased models or biased performance estimates. This can be resolved through
stratification.

Stratified k-Fold Cross-Validation
Stratified sampling is a sampling method that preserves the proportions of given classes or
features in the sample as in the entire data set. For example, for a detect/non-detect classifier,
stratification could be used to ensure that the ratio of detect/non-detect samples in the training,
validation, and test sets matches the ratio in the entire data set. When applied to k-fold

8

validation, each split into k folds is performed using stratified sampling as opposed to random
sampling. For example, each fold would contain roughly the same ratio of detect/non-detect
samples. Additionally, stratification can be applied to input features for either classifiers or
regressors, e.g. radar type for a detect/non-detect model. Stratified k-fold cross-validation is the
preferred method when class imbalances are present.

Repeated k-Fold Cross-Validation
Another form of k-fold cross-validation is repeated k-fold validation. As the name suggests, the
process involves iterating k-fold cross-validation several times, each time with a different
randomized sampling into k folds. Model metrics are averaged over all iterations. Repeated k-
fold validation offers greater robustness in many cases and is helpful for understanding
uncertainty due to randomly sampled folds. However, it suffers from a need for larger
computational power than traditional k-fold and may not be feasible for large datasets.

Other Cross-Validation Methods
Additional methods include Monte Carlo cross-validation, which varies the split ratio in every
iteration; time series cross-validation, which is used for data that follows a time trend (e.g.,
weather); and nested cross-validation, which uses nested (inner) sets for hyperparameter
selection, and outer sets to evaluate the model. For more information see:

• Turing: Different Types of Cross-Validations in Machine Learning and Their Explanations

• Sci-kit learn: Nested versus non-nested cross-validation

Metrics

For any of the cross-validation methods described above, metrics are calculated to evaluate
model validity and facilitate model selection and model tuning. Different metrics may be suitable
for different models based on the type of model, e.g., classification versus numeric prediction.
Also note that while these metrics are frequently used for cross-validation, they may also be
used when a cross-validation methodology is not used. This section covers metrics for both
classification and numeric prediction and discusses their applicability.

Classification Metrics
When evaluating how well a model classifies data points, it’s useful to understand the different
possible outcomes of classification.

Binary classification models can be considered to have a positive result (e.g., hit, detected,
threat) and a negative result (e.g., miss, not detected, not threat). Multiclass classification
models can also be considered in binary terms (class of interest or not class of interest).

Figure 5 shows all possible classification outcomes. The left (green) side represents positive
observations while the right (red) side represents negative observations. Inside the circle
represents positive classifications (either correct or incorrect) while outside the circle represents
negative classifications. Possible outcomes are:

• true positive: occurs when a model correctly classifies an observation as positive (e.g.,
threat classified as threat),

• false positive: occurs when a model incorrectly classifies an observation as positive
(e.g., non-threat classified as threat),

• false negative: occurs when a model incorrectly classifies an observation as negative
(e.g., threat classified as non-threat),

• true negative: occurs when a model correctly classifies an observation as negative (e.g.,

https://www.turing.com/kb/different-types-of-cross-validations-in-machine-learning-and-their-explanations
https://scikit-learn.org/stable/auto_examples/model_selection/plot_nested_cross_validation_iris.html

9

non-threat classified as non-threat).

Figure 5
Possible Classification Outcomes

Each of the incorrect outcomes (false positive and false negative) may have different acceptable
risk levels. For example, it may be more important to reduce the number of threats classified as
non-threats instead of non-threats classified as threats if the threats will be further evaluated
later. In further evaluation, non-threats may be discovered, while an observation that was never
classified as a threat will be missed entirely.

Accuracy
Accuracy is a metric used to assess classification models. It is defined as the ratio of correct
classifications to the total number of classifications for a dataset (Equation 1). This dataset
could be the training dataset, the validation dataset, or the test dataset. To quantify validity, the
accuracy should be calculated for a dataset which was not used to train the model. Obtaining
poor accuracy on a validation or test set and high accuracy on a training set indicates that the
model is overfitting the training data. Instead, properly fit models should show similar accuracy
for the training and non-training data.

Accuracy =
of correct classifications

of total classifications
 (1)

Accuracy is a simple and straightforward metric for evaluating model goodness, however,
additional metrics provide more detail.

Sensitivity and Specificity
Sensitivity and specificity are metrics used to evaluate binary classification models (e.g., to
predict hit/miss, detected/not detected, threat/not threat).

Sensitivity is true positive rate, or the proportion of positives which are predicted correctly
(Equation 2).

10

Sensitivity =

of true positives

of true positives + # of false negatives
 (2)

Specificity is the true negative rate, or the proportion of negatives which are predicted correctly
(Equation 3).

Specificity =
of true negatives

of true negatives + # of false positives
 (3)

Consider, for example, a notional model that classifies whether an unknown object is a threat.
The results of applying this model to a labelled validation set is shown in Table 1, which is called
a confusion matrix.

 Prediction

Threat

Not a

Threat Totals:

A
ct

u
a
l

Threat 1 4 5

Not a Threat 0 95 95

 Totals: 1 99 100

Table 1

Confusion Matrix of Notional Threat Classifier

The overall accuracy of this model is 96 correct / 100 total predictions = 0.96. This accuracy
score may seem to indicate a high performing model; however, examining the sensitivity,
1 true positives / (1 true positives + 4 false negatives) = 0.2, and the specificity,

95 true negatives / (95 true negatives + 0 false positives) = 1, reveals that while the model
identifies non-threats with high probability, it fails in most cases to identify when a threat is
present. Thus, both sensitivity and specificity should be examined, and both should be high to
ensure a low rate of false positives and false negatives.

The decision threshold or cut-off point at which an ML model makes a classification decision
influences the sensitivity and specificity of a model. For the threat classification example,
lowering the threshold for what is classified as a threat may increase the number of threat
classifications, increasing the sensitivity, however, this may result in more false positives, non-
threats classified as threats, lowering the specificity. Setting an appropriate threshold should
consider the relative risk of false negatives and false positives and the desired sensitivity and
specificity.

Area Under Curve (AUC)
The AUC metric is another metric for assessing performance of a binary classifier. It is a
function of the sensitivity and specificity of the model at different decision threshold settings.

Specifically, the AUC metric is the area under the model’s receiving operating characteristic
(ROC) curve. An example of a typical ROC curve is pictured in Figure 6. This curve is generated
by plotting sensitivity versus one minus the specificity, where each point is obtained from a
different threshold. The AUC can vary between zero and one, and it provides an aggregate
measure of model performance across all possible decision thresholds. An AUC of one

11

indicates a model perfectly separates positives and negatives, and perfect sensitivity and
specificity can be obtained. Any values lower than 0.5 indicate the model is no better at
classifying than a coin flip.

Figure 6

Example of ROC curve

In some cases, where the risk of one type of error (e.g., false positive) is very high, the AUC
may not be ideal for assessing the model since it covers the entire range of possible sensitivities
and specificities.

F-score
The F-score is a measure of predictive performance and is another common metric used to
evaluate binary classifiers. It is a function of the precision and recall of a binary classifier, which
are measures of relevance. An item is considered “relevant” if it is an actual positive observation
(e.g., hit, detected, threat), and is considered “retrieved” if it is classified as positive.

Precision, also called the positive predictive value, is defined as the fraction of relevant (true
positive) instances among retrieved (classified positive) instances, as in Equation 4.

Precision =
relevant instances retrieved

all retrieved instances
=

of true positives

of true positives + # of false positives
 (4)

Recall is equivalent to the sensitivity and is the fraction of relevant (actual positive) instances
that were retrieved (true positives), as in Equation 5.

Recall =
relevant instances retrieved

all relevant instances
= Sensitivity =

of true positives

of true positives + # of false negatives
 (5)

Both precision and recall measure a model’s ability to correctly classify positives, and both
should be high for a model, where 1 is the maximum score.

The F-score is a combination of precision and recall. Variations of the F-score exist which can
weight either precision or recall more strongly, but the most common variation, the F1 score,
weights precision and recall equally. Equation 6 defines the F1 score as the harmonic mean of
precision and recall, where the harmonic mean can be thought of as giving an average rate.

12

F1 = (
precision−1 + recall−1

2
)

−1

 (6)

The highest possible value of the F1 or other F-scores is one, indicating perfect recall and
precision, while the lowest is zero, indicating precision and recall are both zero.

Numeric Prediction Metrics

R-Squared
While the metrics thus far have focused on classification models, many additional metrics exist
which are tailored to assess numeric prediction. A common metric used to evaluate numeric
prediction is R-squared (R2), which is the proportion of the variation in a dependent variable
(output or response) which can be explained by independent variables (inputs or factors).

R-squared is defined in terms of two sums of squares formulas, the residual sum of squares,
SSres, and the total sum of squares, SStot, given in Equations 7 and 8, where 𝑦𝑖 is the observed
value for 𝑖th data point, 𝑓𝑖 is the predicted value for the 𝑖th data point, and 𝑦̅ is the mean of
observed data.

 SSres = ∑(𝑦𝑖 − 𝑓𝑖)2

𝑖

 (7)

 SStot = ∑(𝑦𝑖 − 𝑦̅)2

𝑖

 (8)

Then, R-squared is given in Equation 9.

𝑅2 = 1 −
SSres

𝑆𝑆𝑡𝑜𝑡
 (9)

The maximum value of R-squared is 1, indicating that 100% of the variance in the output is
explained by the model. A model which always predicts the mean will have an R-squared of
zero.

Many generalizations or variations of R-squared have been created, such as for assessing
classifiers, and are commonly reported for model assessment. Since there are several different
definitions of R-squared, it is important to know which definition is used when understanding a
reported R-squared.

Root Mean Square Error (RMSE)
RMSE is another common metric used to evaluate numeric predictions. RMSE is the square
root of the average of squared errors. In this case, an error is the difference between the actual
numeric value of a sample and the numeric prediction made by the model.

Equation 10 gives the RMSE, where 𝑦𝑖 is the observed value for 𝑖th data point, 𝑓𝑖 is the predicted
value for the 𝑖th data point, and 𝑛 is the number of data points.

13

RMSE = √
1

𝑛
∑(𝑦𝑖 − 𝑓𝑖)2

𝑛

𝑖=1

 (10)

While RMSE and R-squared are common metrics for rating models which make numeric
predictions, many other metrics such as Adjusted R-squared, Akaike Information Criterion (AIC),
Bayesian Information Criterion (BIC), and predicted sum of squares (PRESS), are commonly
reported. These metrics are described by Burke (2020).

Toy Problem

This section walks through how cross-validation might be applied to a sample data set. The R
code used is provided in the Appendix and uses the caret package, which streamlines the
process of creating predictive models in R (Kuhn, 2019).

Objective and Data Set Description
This toy problem aims to show how cross-validation is beneficial for training and validating a
machine learning model. Specifically, 10-fold cross-validation is compared to the holdout or
train-validate-test split method.

The objective of the toy machine learning model is to classify whether an observed object is a
metal cylinder (mine) or a similarly shaped rock based on sonar readings. To support this
objective, the Sonar data set is used (Gorman and Sejnowski, 1988). The data set consists of
208 rows, each with 60 input variables representing the sonar-measured energy within different
frequency bands and an output variable indicating the true class, whether the object is a mine
(“M”) or a rock (“R”).

The first few rows of data are shown in Table 2. Note that several of the 60 input columns are
omitted for space. For this toy example, the data set has no missing values or entry errors;
however, data typically must undergo cleaning prior to modeling.

V1 V2 V3 … V58 V59 V60 Class

0.0200 0.0371 0.0428 0.0084 0.0090 0.0032 R

0.0453 0.0523 0.0843 0.0049 0.0052 0.0044 R

0.0262 0.0582 0.1099 0.0164 0.0095 0.0078 R

Table 2

First 3 Rows Out of 208 for Sonar Data Set

As previously discussed, cross-validation is preferred over the holdout method when a data set
is small. To demonstrate this, the Sonar data set will be reduced to 25% of the original size
(from 208 rows to 53) by random stratified sampling, which preserves the rock/mine ratio in the
larger data set. The leftover 155 rows will serve as the test set for model evaluation. Note that
typically the test set would not be this large, but in this case, the larger test set shows how the
model will perform after being deployed.

Model Training and Validation Approach
As stated above, two training/validation methods will be compared: train-validation-test split

14

(holdout) and 10-fold cross-validation. For the holdout method, the 53 rows of data are further
split into training and validation sets. The data is split 80/20, with 43 training set points and 10
validation set points. The split is stratified to ensure both sets are representative of the larger
population.

When training a machine learning model, many types of models are usually trained, each with
tuned hyperparameters. For this toy problem, only one model type was assessed, a stochastic
gradient boosted tree model implemented using the “gbm” package in R. Two hyperparameters
were tuned, the number of trees and the interaction depth. The caret package chooses values
for each hyperparameter and evaluates all the combinations. In this case, three possible values
were tested for each hyperparameter, resulting in a total of nine combinations. The
hyperparameter combination with the best performance was chosen for the final model.

In the holdout approach, models with different hyperparameter combinations were trained on
the training set, and performance was evaluated on the validation set. In the cross-validation
approach 10-fold validation was used, therefore models were trained excluding a different fold
with each iteration, and performance metrics were averaged over all held-out folds.

To select hyperparameters, performance was evaluated with the Area under the ROC curve
(AUC) metric. Recall the AUC metric quantifies how well the model separates positives and
negatives, or in this case rocks and mines. The ROC metric is preferred particularly when
classes are imbalanced, whereas accuracy is less useful since it does not distinguish between
false negatives and false positives. In the Sonar dataset, however, no large class imbalance
was present (46.6% rock, 53.4% mine).

Hyperparameter Selection
The results of hyperparameter selection are shown in Tables 3 and 4. In each table, the first two
columns show the hyperparameters of the model that were varied. Additionally, the AUC for the
validation set is reported (for cross-validation the average AUC across all folds is reported). The
selected hyperparameter combination is highlighted in yellow, where the highest AUC with the
simplest model was chosen (a lower interaction depth and fewer trees create a simpler model).

Interaction

depth

Number of

trees

Average

AUC

Sensitivity Specificity

1 50 0.69 0.60 0.58

1 100 0.72 0.63 0.55

1 150 0.75 0.65 0.58

2 50 0.71 0.62 0.58

2 100 0.72 0.70 0.45

2 150 0.67 0.67 0.45

3 50 0.61 0.53 0.58

3 100 0.69 0.60 0.58

3 150 0.67 0.67 0.63

Table 3

Hyperparameter Selection for Cross-Validation

15

Interaction

depth

Number of

trees

AUC Sensitivity Specificity

1 50 0.64 0.6 0.8

1 100 0.52 0.4 0.6

1 150 0.44 0.4 0.6

2 50 0.64 0.6 0.8

2 100 0.52 0.4 0.6

2 150 0.44 0.4 0.6

3 50 0.64 0.6 0.8

3 100 0.52 0.4 0.6

3 150 0.44 0.4 0.6

Table 4

Hyperparameter Selection for Holdout Validation

The hyperparameters selected differ between the methods, since cross-validation varies which
portion of the data is held out, while the holdout method only considers one possible held-out
set.

To account for uncertainty from the randomly chosen folds in k-fold cross-validation, one could
perform repeated k-fold cross-validation to obtain a distribution of average AUC. These
distributions could be compared between models or hyperparameter combinations to determine
if one model is better, even with uncertainty.

Evaluation Against Test Set
Finally, the chosen model for each method was evaluated against the test set (155 rows). For
the cross-validation method, the confusion matrix is given in Table 5, and additional evaluation
metrics are provided in Table 6. For the holdout method, the confusion matrix is given in Table
7, and additional evaluation metrics are given in Table 8.

 Prediction

 Mine Rock

A
ct

u
a
l

Mine 71 16

Rock 12 56

Table 5

Confusion Matrix for Test Set using Cross-Validation Method

16

Metric* Value

Accuracy 0.8194

AUC 0.8770

Sensitivity 0.8554

Specificity 0.7778

Precision 0.8161

Recall 0.8554

F1 0.8353

*Note: This table summarizes from a larger set of outputs generated by R

Table 6

Summary of Performance Metrics on Test Set using Cross-Validation Method

 Prediction

 Mine Rock

A
ct

u
a
l

Mine 66 17

Rock 17 55

Table 7

Confusion Matrix for Test Set using Holdout Method

Metric* Value

Accuracy 0.7806

AUC 0.8484

Sensitivity 0.7952

Specificity 0.7639

Precision 0.7952

Recall 0.7952

F1 0.7952

*Note: This table summarizes from a larger set of outputs generated by R

Table 8

Summary of Performance Metrics on Test Set using Holdout Method

Comparing the performance on the test set, the model trained using cross-validation
outperformed the holdout model across all metrics considered. This reflects the advantages of
cross-validation. Cross-validation typically leads to more reliable hyperparameter selection, as it
evaluates performance across multiple possible validation sets and uses more data for training,
which often results in improved generalization and performance.

Comparing the metrics obtained for the test set versus those obtained during hyperparameter
selection, the area under the ROC curve, sensitivity, and specificity are more aligned when the
cross-validation method was used than when the holdout method was used. This suggests that
cross-validation provides more accurate performance estimates than the holdout method.

17

Conclusion

Cross-validation provides a method for efficiently using data to assess model performance on
non-training data and validate a model. It involves training a model multiple times on different
sets of training data to assess performance on data excluded from training. While there are
several different methods for performing cross-validation, k-fold cross-validation typically
provides an effective approach. Metrics play a crucial role in assessing model performance and
allow for model comparison. These metrics are typically tailored to the type of model, whether
for classification or numeric prediction. After cross-validation, the final model is trained and
evaluated against an excluded test set to validate its performance. Ultimately, employing cross-
validation enables better model training through efficient uses of data and better estimates of
model performance.

18

References

Burke, S. (2020). The Model Building Process Part 3: Model Goodness Metrics. Best Practice.
Scientific Test & Analysis Techniques Center of Excellence.
https://afit.edu/docs/Model%20Building%20Process%20Part%203%20Model%20Metrics
%20Final1.pdf.

Gorman, R. P. and Sejnowski, T. J. (1988). Analysis of hidden units in a layered network trained

to classify sonar targets. Neural Networks. 1(1), 75-89. https://doi.org/10.1016/0893-
6080(88)90023-8.

Kuhn, M. (2019). The caret Package. https://topepo.github.io/caret/index.html.

Lazarus, J. (2024). Fundamentals of Gradient Descent. Best Practice. Scientific Test & Analysis

Techniques Center of Excellence.

Sgambellone, A. (2022). Data-Driven Model Development. Best Practice. Scientific Test &

Analysis Techniques Center of Excellence.
https://www.afit.edu/docs/Data%2DDriven%20Modeling%20Best%20Practice.pdf.

US Department of Defense. (2018). Department of Defense Instruction 5000.61.

Wojton, H., Avery, K. M., Freeman, L. J., Parry, S. H., Whittier, G. S, Johnson, T. H., & Flack, A.

C. (2019). Handbook on Statistical Design & Analysis Techniques for Modeling &
Simulation Validation. Institute for Defense Analyses. https://www.ida.org/research-and-
publications/publications/all/h/ha/handbook-on-statistical-design-and-analysis.

https://afit.edu/docs/Model%20Building%20Process%20Part%203%20Model%20Metrics%20Final1.pdf
https://afit.edu/docs/Model%20Building%20Process%20Part%203%20Model%20Metrics%20Final1.pdf
https://doi.org/10.1016/0893-6080(88)90023-8
https://doi.org/10.1016/0893-6080(88)90023-8
https://topepo.github.io/caret/index.html
https://www.afit.edu/docs/Data-Driven%20Modeling%20Best%20Practice.pdf
https://www.ida.org/research-and-publications/publications/all/h/ha/handbook-on-statistical-design-and-analysis
https://www.ida.org/research-and-publications/publications/all/h/ha/handbook-on-statistical-design-and-analysis

19

Appendix
R Code for Toy Problem

#[1] Install and load required libraries------------------------------

#common set of packages used for data manipulation & visualization

install.packages("tidyverse")

library(tidyverse)

#machine learning methods package

install.packages("caret")

library(caret)

#Stochastic Gradient boosting package

install.packages("gbm")

library(gbm)

#example dataset package

install.packages("mlbench")

library(mlbench)

#plot ROC curve package

install.packages("pROC")

library(pROC)

#[2] Load sample data and exclude test set----------------------------

#load sonar data set

data(Sonar)

#set random seed for reproducibility

set.seed(127)

#randomly sample (stratified) down to 25% for the sake of

demonstration (53 data points)

random_sample <- createDataPartition(Sonar$Class, p=0.25, list=FALSE)

#gives indices to include

crossval_set <- Sonar[random_sample,]

test_set <- Sonar[-random_sample,]

#select validation set for comparison to train-validate split

#this creates an 80/20 percent split

set.seed(281)

val_random_sample <- createDataPartition(crossval_set$Class, p=0.80,

list=FALSE)

train_set <- crossval_set[val_random_sample,]

val_set <- crossval_set[-val_random_sample,]

#[3] Set up cross-validation--

20

#define validation method as 10-fold cross-validation

train_control <- trainControl(method="cv",number=10,

 ## Estimate class probabilities

 classProbs = TRUE,

 ## Evaluate performance using

 ## the following function

 summaryFunction = twoClassSummary,

 savePredictions=TRUE)

#[4] Train model & tune hyperparameters with cross-validation---------

#fit gbm model (Stochastic gradient boosting)

set.seed(825) #set seed before training every model so that the

randomly generated folds are the same

gbm_model <- train(Class ~., data = crossval_set,

 method = "gbm",

 trControl = train_control,

 verbose=FALSE,

 metric = "ROC")

gbm_model #print results to console

#[6] Train final model & evaluate performance on test set-------------

#the model object contains the trained final model

#generate predictions for test set

test_set$predicted <- predict(gbm_model, newdata=(test_set))

#evaluate performance with confusion matrix and associated metrics

confusionMatrix(data=test_set$predicted, reference = test_set$Class)

#to obtain precision/recall/f1 use mode = "prec_recall"

confusionMatrix(data=test_set$predicted, reference = test_set$Class,

mode = "prec_recall")

#generate probabilities for each class and get ROC

M_R <- predict(gbm_model, newdata=(test_set),type="prob")

test_set_summary <- data.frame(obs = test_set$Class, pred =

test_set$predicted, M = M_R[1], R = M_R[2])

twoClassSummary(test_set_summary, lev = levels(test_set_summary$obs))

#plot ROC

plot.roc(test_set$Class,M_R$M)

#[7] Perform train-test-validate split (holdout) model training-------

train_control_h <- trainControl(method="none", classProbs = TRUE,

summaryFunction = twoClassSummary)

gbm_val_ROC <- function(i_depth,

n_tree,train_set,val_set,train_control_h){

21

 set.seed(825)

 gbm_model_h <- train(Class ~ ., data = train_set,

 method = "gbm",

 trControl = train_control_h,

 tuneGrid = data.frame(n.trees = n_tree,

interaction.depth = i_depth, shrinkage = 0.1, n.minobsinnode=10),

 metric = "ROC")

 val_set$predicted <- predict(gbm_model_h, newdata=(val_set))

 M_R <- predict(gbm_model_h, newdata=(val_set),type="prob")

 val_set_summary <- data.frame(obs = val_set$Class, pred =

val_set$predicted, M = M_R[1], R = M_R[2])

 tCS <- twoClassSummary(val_set_summary, lev =

levels(val_set_summary$obs))

 return(tCS)

}

i_depths <- gbm_model$results$interaction.depth

n_trees <- gbm_model$results$n.trees

ROCs <- map2_dfr(i_depths, n_trees

,~gbm_val_ROC(.x,.y,train_set,val_set,train_control_h))

cbind(i_depths,n_trees,ROCs) #report ROC for each possible

hyperparameter value

#the max ROC with the simplest model is obtained for interaction_depth

= 1, number of trees = 50

#train model with chosen hyperparameters on training set

set.seed(825)

gbm_model_h <- train(Class ~ ., data = train_set,

 method = "gbm",

 trControl = train_control_h,

 tuneGrid = data.frame(n.trees = 50,

interaction.depth = 1, shrinkage = 0.1, n.minobsinnode=10),

 metric = "ROC")

val_set$predicted <- predict(gbm_model_h, newdata=(val_set))

M_R <- predict(gbm_model_h, newdata=(val_set),type="prob")

val_set_summary <- data.frame(obs = val_set$Class, pred =

val_set$predicted, M = M_R[1], R = M_R[2])

tCS <- twoClassSummary(val_set_summary, lev =

levels(val_set_summary$obs))

#assess performance on test set

#generate predictions for test set

test_set$predicted <- predict(gbm_model_h, newdata=(test_set))

#evaluate performance with confusion matrix and associated metrics

confusionMatrix(data=test_set$predicted, reference = test_set$Class)

#to obtain precision/recall/f1 use mode = "prec_recall"

confusionMatrix(data=test_set$predicted, reference = test_set$Class,

mode = "prec_recall")

22

#generate probabilities for each class and get ROC

M_R <- predict(gbm_model_h, newdata=(test_set),type="prob")

test_set_summary <- data.frame(obs = test_set$Class, pred =

test_set$predicted, M = M_R[1], R = M_R[2])

twoClassSummary(test_set_summary, lev = levels(test_set_summary$obs))

#plot ROC

plot.roc(test_set$Class,M_R$M)

