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Introduction 
In Part 1 of this best practice series, we learned that the data type used to represent a response can 

affect the size of the experiment and the quality of its analysis. Categorical data types, such as binary 

(pass/fail) measures, contain a relatively poor amount of information in comparison to continuous data 

types. This reduction in information increases the number of samples needed to detect significant 

changes of a response in the presence of noise. The use of categorical data types for responses should 

be avoided; however, there will be circumstances in which a pass/fail measure is the only practical way 

to characterize a system’s performance.  

Three methods to estimate the sample size needed for a designed experiment using a binary response 

will be presented in this paper, the arcsine transformation approach, the signal-to-noise method, and 

the inverse binomial sampling scheme method. The circumstances in which each method can be applied 

will be described in the paper. The methods will be demonstrated using a Target Location Error (TLE) 

example, originally presented in part 1 of this series. All methods presented are available with the Binary 

Response Calculator on the STAT COE website.  

Keywords: binary responses, categorical factors, sample size, test and evaluation, design of experiments, 

confidence, power 

Background 

Target Location Error (TLE) Example Revisited 
Let’s revisit the missile targeting system example from part 1 of this best practice series. In this example, 

we are comparing the ability of a missile targeting system to accurately assess the coordinates of a 

target within a tolerance radius of 10 feet. An example of the error distribution (using notional data) is 

shown in Figure 1. 
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Figure 1: Distribution of error distance example (notional data) 

Let’s assume the only way to measure the systems is to categorize each attempt as either a “Pass” or 

“Fail” based on whether it falls within a 10 feet radius of the target (see Figure 2). This is a type of 

nominal response, specifically a binary response.   

 

Figure 2: Measuring using binary (Pass/Fail) response 

The purpose for this test is to evaluate the performance of the system in various simulated 

engagements and also to determine what factors affect the probability of success.  The objective and 
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threshold probabilities of success (𝑃𝑠) for the system are 90% and 85% respectively, under all expected 

conditions. 

The test engineers have decided to vary four different factors, Altitude, Range, Aircraft Speed, and AOA. 

A 24 factorial design has been chosen to set up the simulated engagements, see the coded matrix below 

(-1 and 1 are the low and high-level values of a factor respectively).  This design will allow the 

practitioner the ability to test what main effects and interactions terms significantly affect the response, 

the observed proportion of success (𝑝̂). 

Table 1: 𝟐𝟒 factorial design for TLE example 

Runs 
𝑋1: 

Altitude 
𝑋2: 

Range 

𝑋3: 
Aircraft  
Speed 

𝑋4: 
AOA 

1 -1 -1 -1 -1 

2 1 -1 -1 -1 

3 -1 1 -1 -1 

4 -1 -1 1 -1 

5 -1 -1 -1 1 

6 1 1 -1 -1 

7 1 -1 1 -1 

8 1 -1 -1 1 

9 -1 1 1 -1 

10 -1 1 -1 1 

11 -1 -1 1 1 

12 1 1 1 -1 

13 1 1 -1 1 

14 1 -1 1 1 

15 -1 1 1 1 

16 1 1 1 1 

 

Consider the following graph where the response, probability of success (𝑃𝑠) , is graphed versus the low 

and high settings of X1 (Altitude).   
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Figure 3: Power represents the ability to detect a difference between factor levels 

Power is the probability that we can detect a significant difference () between PLow and PHigh. The values 

for PLow, PAvg, PHigh and can be derived from the objective and threshold requirement (90% and 85%). 

So for this TLE example, the objective (𝑃𝑆) of 90% represents the PAvg and the threshold value of 85% 

represents PLow, therefore PHigh would be 95%.  Delta therefore would be (PHigh - PLow), 10%.  

The question that must now be answered is how many replicates of each design point must be run in 

order to achieve appropriate levels of power and confidence. Let’s assume for this example that we will 

go with the DoD standard of 80% confidence and 80% power for a test (𝛼 = 𝛽 = 0.2). In this paper, we 

will introduce a calculator/app that will aid practitioners in answering this question. But, before doing 

so, let’s first discuss the distribution the data comes from, the binomial distribution. 

The Binomial Distribution 
The binomial distribution is a discrete probability distribution of the number of successes in a series of 𝑛 

independent Bernoulli trials (pass/fail experiments), each trial yields success with probability 𝑝.  The 

probability mass function is defined as: 

( ) (1 )
m n m

n
P Y m p p

m

 
   

 
     (1) 

for 𝑚 = 1,2, … 𝑛. The cumulative distribution function can be expressed as: 
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 
0

( )
m

j

P Y m P Y j


        (2) 

If a large enough sample size, 𝑛, is used, the binomial distribution begins to look like the normal 

distribution and its parameters can be approximated with the following formulas. 

Mean: 

np        (3) 

Standard Deviation: 

(1 )np p        (4) 

A rule of thumb commonly used to ensure that the distribution can be approximated by the normal 

distribution is the “rule of five”: 

5 

and 

(1 ) 5

np

n p



 

      (5) 

The farther 𝑝 is from 0.5 the larger 𝑛 needs to be in order for this approximation to work. So, for various 

𝑝’s, the number of reps (𝑛)needed are as follows: 

Table 2: Number of reps (𝒏)needed versus 𝒑 based on the “rule of five” 

𝒑 𝒏 

0.1 50 

0.2 25 

0.3 17 

0.4 13 

0.5 10 

0.6 13 

0.7 17 

0.8 25 

0.9 50 

 

The following graphs provide a visual representation of how the binomial distribution behaves with 

varying sample sizes, 𝑛, while keeping 𝑝 at 0.1. You see that around 𝑛 = 50 the shape of the histogram 

begins to look like the normal distribution curve. 
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Figure 4: Distribution plots for 𝒑 = 𝟎. 𝟏 for varying sample sizes, 𝒏 
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The following graphs provide a visual representation of how the binomial distribution behaves with 

varying proportions 𝑝 and a constant sample size 𝑛 = 100. You can see that the closer you are to the 

min and max values of 0 and 1 the distribution begins to looks less normal. Therefore, caution should be 

taken when dealing with (𝑃𝑠) greater than 95% or less than 1%.  
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Figure 5: Distribution plots for 𝒏 = 𝟏𝟎𝟎 for varying proportions, 𝒑 

Method  

Method 1: Arcsine Transformation Approach 
Note that the formulation for standard deviation in equation (4) is a function of 𝑝, which is the very 

response we are monitoring and wish to change by varying factor levels. Due to this, the assumption of 

constant variance is violated. An approach to deal with this problem is to perform a variance stabilizing 

transformation on the observed response 𝑝̂. The most commonly used transformation when dealing 

with binomial data is the arcsine square root transformation (see equation 6). This new transformed 

response would be the response used in the analysis.  

*

1
ˆ ˆarcsinp p       (6) 

Bisgaard and Fuller (1995) use this transformation to derive the number of replicates needed when 

using a 2𝑘−𝑓 factorial design with binary responses. Their formulation for the signal of interest (the 

change in the response we wish to detect) on the transformed scale is: 

arcsin arcsin
2 2

p p
    

         
   

     (7) 

where 𝑝̅ is the expected proportion across the design space, and ∆ is the signal in the original 

scale/units. 

The individual point sample size is then calculated by the following formula: 
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2

1 /2 1

2

( )z z
n

N

 



 


        (8) 

where 𝑧1−𝛼/2 and 𝑧1−𝛽 are the critical z values based on the specified power and confidence, 𝑁 is the 

total number of design points, and 𝛿 is defined in equation (7). 

To demonstrate further, let’s use the TLE example introduced earlier with the Binary Response 

Calculator available on at the STAT COE website. The following is a screen shot of the calculator: 

  

 
Figure 6: Sample size calculator for binary responses screenshot 

 

The calculator consists of 4 sections. 

The User Input section, this is where the basic information about the test needs to be specified. 

 User Inputs

P(success) 0.8

 = 0.2

Confidence 0.8

Power 0.8

k 7

f 1

Method 1: Arcsine Transformation Approach (Bisgarrd-Fuller)

Reps per run for power = 2

Reps needed for approximation 25

Recommended Units per run; n = 25

Total units = 1600

Method 2: Signal to Noise Calculations

Signal to Noise (Arcsin method) 0.516

Signal to Noise (Logit method) 0.540

Signal to Noise (Normal method) 0.500

Method 3: Inverse Binomial Sampling Scheme (Bisgaard-Gertsbakh)

Stopping rule 2

Expected n (if no change) 10

Expected n (if negative change) 5

Expected Total Units (if no change) 640

Sample Size Calculator for Designed Experiments That Use Binary Responses

Notes:

- This approach should only be used if a 2^(k-f) design is used.  
- See cell comments for more details.

- See Bisgarrd-Fuller, 1995 for details on calculations.

Notes:

- This approach should only be used if a 2^(k-f) design is used.  
- Run reps until the number of failures meets the stopping rule. Record number of reps it took to get there as the 

response.
- See cell comments for more details.
- See Bisgarrd-Gertsbakh (2000) for details on calculations.

Notes:

- See cell comments for more details.
- Inputs "k" and "f" are only needed for Methods 1 and 3.

Notes:

- Approach can be used with any design
- "Normal method" tends to be the most conservative estimated and is therefore recommended.

-See "Using Method 2" tab for step by step instructions on how to use this with JMP 10.
- You should still use the "Rule of 5" (see Cell C14) number if it is greater than the reps suggested by the statistical 
software. recommends.
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Figure 7: User input section 

 

The following information must be specified in this section: 

 P(success): The expected probability of success across the design space 

 Δ: The signal of interest (the change in the response we wish to detect) 

 Alpha: Allowable Type I error, Confidence is 1-Alpha 

 Power: The probability of detecting Δ, 1-Power is the Type II error 

 k: The number of factors in the design (4 in this case) 

 f: The level we wish to fractionate the factorial (0 in this case since this is a full factorial) 

 

Remember, for our example, the objective and threshold 𝑃𝑠 for the system are 90% and 85% 

respectively. Therefore, 𝑃(𝑠𝑢𝑐𝑐𝑒𝑠𝑠) is set to 0.9 and Δ is equal to 0.1.  We’re going with the DoD 

standard of 80% confidence and 80% power for a test (𝛼 = 𝛽 = 0.2). We are using a 24 full factorial 

design so 𝑘 = 4 and 𝑓 = 0.  

The Method 1 section displays the results from applying the approach defined by Bisgaard and Fuller 

(1995).   

 
Figure 8: Method 1- Arcsine Transformation Approach 

 

The following describes the output: 

 Reps per run for power: Based on equation (8) 

 Reps needed for approximation: Based on the “rule of 5” 
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 Recommended Units per run: Takes the maximum value between the reps needed for power 

and the reps needed for the approximation 

 Total units: The total number of runs times the recommended number of reps 

 

For the TLE example, the calculator is recommending 50 reps for each of the 24 = 16 design points, 

resulting in a total of 800 runs.  

Method 2: Signal to Noise Calculations 
Method 1, the Arcsine Transformation Approach, only works if a 2𝑘−𝑓 designs is used. If another type of 

design is used, a better approach would be to use the signal-to-noise ratio (SNR) method.  The signal to 

noise ratio is simply the ratio between the measured change in the response we wish to detect (𝛿, the 

signal of interest) and the estimated standard deviation of the system (noise). See the formula below: 

SNR



       (9) 

Three methods of calculating the SNR are presented in the calculator.   

 

 
Figure 9: Method 2- Signal to Noise Calculations 

 

Arcsine Formulation 

This method uses the same formulations for delta and sigma that were derived in the Bisgaard and 

Fuller (1995) paper. Delta (in the transformed scale) is the same as in equation (7) repeated here for 

convenience: 

1
arcsin arcsin

2 2
p p

    
         

   

      

The standard deviation for the arcsine transformation is as follows:  

Method 2: Signal to Noise Calculations

Signal to Noise (Arcsin method) 0.344

Signal to Noise (Logit method) 0.363

Signal to Noise (Normal method) 0.333
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1

1 1

24n
         (10) 

where 𝑛 = 1 here since we wish to determine what the SNR is before replication. 

Logit Formulation 

This approach uses the Logit transformation, which is the traditional solution used when applying 

logistic regression to fit a model where the dependent variable is a proportion. The transformation takes 

the log of the odds: 

*

2

ˆ
ˆ ln

ˆ1

p
p

p

 
  

 
     (11) 

where 𝑝̂ is the probability of an event occurring, 1 − 𝑝̂ is the probability of an event not occurring, and 
𝑝

1−𝑝
 is the odds of the event. Delta in the transformed scale is defined below: 

 

1 2

2

1 2

ln ln
1 1

p p

p p


   
    

    
     (12) 

 

 where 1
2

p p


   and 2
2

p p


  . The standard deviation is defined as follows:  

2
(1 ) (1 )np p p p          (13) 

where 𝑛 = 1 here, since we wish to determine what the SNR is before replication. 

Normal Approximation Formulation 

The final SNR formulation is based on the Normal Approximation of the binomial. This is the simplest of 

the formulations presented in this paper. Delta is defined as: 

3 1 2
p p         (14)  

where 1
2

p p


   and 2
2

p p


  . The standard deviation is defined the same as the logit formulation 

in equation 13:  

3
(1 ) (1 )np p p p           
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where 𝑛 = 1 here, since we wish to determine what the SNR is before replication. 

Figure 9 shows the results from the calculator using the TLE Example. Note that all three methods 

provide similar results.  Table 3 shows the SNR results of the three methods when varying 𝑝.  The 

Normal Approximation method consistently produces the most conservative estimate of the SNR.  

Table 3: Comparison of SNR calculation methods 

p  SNR (arcsin) SNR (logit) SNR (normal) 

0.9 0.100 0.3444 0.3630 0.3333 
0.85 0.100 0.2838 0.2896 0.2801 
0.8 0.100 0.2518 0.2544 0.2500 
0.75 0.100 0.2320 0.2334 0.2309 
0.7 0.100 0.2189 0.2198 0.2182 
0.65 0.100 0.2102 0.2107 0.2097 
0.6 0.100 0.2045 0.2050 0.2041 
0.55 0.100 0.2014 0.2017 0.2010 
0.5 0.100 0.2003 0.2007 0.2000 
0.45 0.100 0.2014 0.2017 0.2010 
0.4 0.100 0.2045 0.2050 0.2041 
0.35 0.100 0.2102 0.2107 0.2097 
0.3 0.100 0.2189 0.2198 0.2182 
0.25 0.100 0.2320 0.2334 0.2309 
0.2 0.100 0.2518 0.2544 0.2500 
0.15 0.100 0.2838 0.2896 0.2801 
0.1 0.100 0.3444 0.3630 0.3333 

 

Using the signal-to-noise ratio (JMP 10 Demo) 

Most design of experiments (DOE) software will allow you to input the SNR in order to calculate the 

power of the test. In this section, we will demonstrate how to use the SNR with JMP 10.  

Step 1: Create your design in JMP 

 Create a 24 factorial design to match our TLE example. The columns X1, X2, X3, X4 columns 

represent our factors Altitude, Range, Aircraft Speed, AOA respectively. The Y column is our 

pass/fail response. 
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Step 2: Evaluate design 

 Once the design is created, select DOE > Evaluate Design. 
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 Specify the response and factor columns and then click OK. The Evaluate Design dialog box will 

appear.  

 In the Evaluate Design dialog box: 

o Specify the terms in your model. For this example, we are interested in main effects and 

two factor interactions. 

o Set significance level at 𝛼 = 0.2. 

o Input SNR from the calculator. 
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 Note: Power is 28% for all terms if we only run each setting once. 
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Step 3: Augment design 

 

• Augment the design to add replicates and bring power up to appropriate level. For this example, 

we want 80%. 

• Select DOE > Augment Design. 

 
 Specify the response and factor columns and then click OK. The Augment Design dialog box will 

appear.  
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 Make sure all factors to be replicated are listed. 

 Click the “replicate” button. 

 Enter the number of times to replicate each design point. 

 Check the Power Analysis section of the resulting design. Confirm that calculations are above or 

close to predetermined power objectives. In this case, 80%. 

 If not, click the back button and increase the number of replicates until you achieve your power 

objective.  

Method 3: Inverse Binomial Sampling Scheme 
The final method provided by the calculator is the Inverse Binomial Sampling Scheme proposed in 

Bisgaard and Gertsbakh (2000). This method can be used with a 2𝑘−𝑓 design where the purpose is to 

reduce the rate of defectives. Instead of determining a fixed sample size for each design run, this 

approach suggests sampling until a fixed number of defects 𝑟, are observed. The derivation for the 

stopping rule will not be covered in this paper, for more details please refer to Bisgaard and Gertsbakh 

(2000). The number of defects observed, r, is based on the number of factorial trials in a 2𝑘−𝑓 design, 
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the change in probability to detect Δ, and the fixed levels of 𝛼 and 𝛽. The total number of reps until 𝑟 

defects occurs is used as the response. This approach could significantly reduce the number of total runs 

needed if the system does not meet the 𝑃𝑠 requirement.  

 
Figure 10: Inverse Binomial Sampling Scheme output 

 

The following describes the calculator’s output: 

 Stopping rule: The number of defects to observe for each design run  

 Expected 𝑛 (if no change): Based on the estimated 𝑃𝑠, this is the expected number of reps 

needed to observe the stopping rule 

 Expected 𝑛 (if negative change): If a negative change of Δ has occurred, this is the expected 

number of reps needed to observe the stopping rule 

 

Note that an unequal number of reps for each design run is likely; therefore, a general linear model 

(GLM) or weighted least squares (WLS) approach is recommended for the analysis.  

Conclusion 
Three methods to estimate the samples size needed for a designed experiment using binary responses 

were presented in this paper.  The arcsine transformation approach can be used if a 2𝑘−𝑓 design is 

employed. The signal-to-noise method can be used for any design but requires iterative exploration of 

the number of replicates needed using statistical software. A JMP 10 tutorial on how to do this was 

provided.  The Inverse Binomial Sampling Scheme method can also be used if a 2𝑘−𝑓 design is employed. 

This method could be a potential resource saving approach for system with a high expected probability 

of success (𝑃𝑠), and if the goal is to simply demonstrate that the system meets that objective 𝑃𝑠. All 

methods presented are available for use on the Binary Response Calculator available on at the STAT COE 

website.  

There are opportunities for future work on this subject. A Monte Carlo approach should be considered 

in order to produce more accurate power calculations that are robust to the experimental design used. 

Also, future research should explore the use of OC curves and sequential probability ratio testing in 

order to truncate and quickly stop testing if it is abundantly clear that the system is passing or failing the 

requirements.  
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Addendum (Updated July 19, 2018): 
The STAT COE has created a new calculator to help estimate signal-to-noise for a binary response. The 

new tool allows a practitioner to evaluate the effects of increasing the number of replicates for each test 

design point to the signal-to-noise ratio (SNR). The following is a brief tutorial on how to use the new 

tool.  

 

Figure 11: SNR estimator for a binary response 

Recall our TLE Example, where the objective and threshold probability of success (𝑃𝑠) for the system is 

90% and 85% respectively, under all expected conditions. The following graph shows the response, 

probability of success (𝑃𝑠) , versus the low and high settings of a factor X1. 

Signal-to-Noise Estimator for a Binary Response

Inputs Values Output Table 1:
Ps(Avg) 0.9

Ps(Low) 0.85 Reps Normal Arcsin Logit Avg.

Reps 1 User Specified 0.33 0.34 0.36 0.35
1 0.33 0.34 0.36 0.35

Calculations Values 5 0.75 0.77 0.81 0.78
Ps (High) 0.95 10 1.05 1.09 1.15 1.10
Ps (Low) 0.85 20 1.49 1.54 1.62 1.55

 = 0.1 40 2.11 2.18 2.30 2.19
60 2.58 2.67 2.81 2.69
80 2.98 3.08 3.25 3.10
100 3.33 3.44 3.63 3.47

Output Table 2:

Replicates Normal Arcsin Logit Average

1 0.33 0.34 0.36 0.35
2 0.47 0.49 0.51 0.49
3 0.58 0.60 0.63 0.60
4 0.67 0.69 0.73 0.69
5 0.75 0.77 0.81 0.78
6 0.82 0.84 0.89 0.85
7 0.88 0.91 0.96 0.92
8 0.94 0.97 1.03 0.98
9 1.00 1.03 1.09 1.04

10 1.05 1.09 1.15 1.10
11 1.11 1.14 1.20 1.15
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Figure 12: Power represents the ability to detect a difference between factor levels  

The values for PLow, PAvg, PHigh, and can be derived from the objective and threshold requirement. PAvg is 

our objective value 90%, PLow is 85%, PHigh would be 95%, and therefore is 10%.  

In the input section, we would enter the following information: 

 

Figure 13: SNR calculator inputs 

The calculation section would display the following: 

 

Figure 14: SNR calculations for PLow, PHigh, and  

Inputs Values

Ps(Avg) 0.9

Ps(Low) 0.85

Reps 1

Calculations Values

Ps (High) 0.95

Ps (Low) 0.85

 = 0.1
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The Output Table 1 shows what the estimated signal-to-noise would be using the three formulations 

described in this paper (Normal, Arcsine, and Logit). The first row shows the estimates based on the 

number of reps entered in the inputs sections. The following rows show how the SNR changes for 

differing numbers of reps (1, 5, 10, etc.).   

 

Figure 15: Output Table 1, summary of the effects of reps to SNR 

Output Table 2, shows a finer or more detailed analysis of the effect replicates have on the SNR 

estimates. 

 

Figure 16: Output Table 2, detailed report of the effects of reps to SNR 

A graphical representation of the results is also provided. 

 

Output Table 1:

Reps Normal Arcsin Logit Avg.

User Specified 0.33 0.34 0.36 0.35
1 0.33 0.34 0.36 0.35
5 0.75 0.77 0.81 0.78

10 1.05 1.09 1.15 1.10
20 1.49 1.54 1.62 1.55
40 2.11 2.18 2.30 2.19
60 2.58 2.67 2.81 2.69
80 2.98 3.08 3.25 3.10
100 3.33 3.44 3.63 3.47

Output Table 2:

Replicates Normal Arcsin Logit Average

1 0.33 0.34 0.36 0.35
2 0.47 0.49 0.51 0.49
3 0.58 0.60 0.63 0.60
4 0.67 0.69 0.73 0.69
5 0.75 0.77 0.81 0.78
6 0.82 0.84 0.89 0.85
7 0.88 0.91 0.96 0.92
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Figure 17: Graphical representation of SNR estimation results 

In practice, a SNR of about 2 is usually a good target to aim for when it comes to SNR. This means that 

results that are 2 sigma away from what should be expected will be flag as significant in your analysis. In 

this case you see that 40 reps produce an average SNR of 2.19. In Output Table 2, we get a more precise 

value of 34 reps.  

The next step is to create a test design and use the estimated SNR to calculate power and confidence. In 

our example, a 24 design with 40 reps will produce the following power numbers: 
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Figure 18: Power calculations based on SNR estimate 

All terms are well above 80% with 95% confidence and satisfy the DoD standard of 80% confidence and 

80% power.  


