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Introduction

In Part 1 of this best practice series, we learned that the data type used to represent a response can
affect the size of the experiment and the quality of its analysis. Categorical data types, such as binary
(pass/fail) measures, contain a relatively poor amount of information in comparison to continuous data
types. This reduction in information increases the number of samples needed to detect significant
changes of a response in the presence of noise. The use of categorical data types for responses should
be avoided; however, there will be circumstances in which a pass/fail measure is the only practical way
to characterize a system’s performance.

Three methods to estimate the sample size needed for a designed experiment using a binary response
will be presented in this paper, the arcsine transformation approach, the signal-to-noise method, and
the inverse binomial sampling scheme method. The circumstances in which each method can be applied
will be described in the paper. The methods will be demonstrated using a Target Location Error (TLE)
example, originally presented in part 1 of this series. All methods presented are available with the Binary
Response Calculator on the STAT COE website.

Keywords: binary responses, categorical factors, sample size, test and evaluation, design of experiments,
confidence, power

Background

Target Location Error (TLE) Example Revisited

Let’s revisit the missile targeting system example from part 1 of this best practice series. In this example,
we are comparing the ability of a missile targeting system to accurately assess the coordinates of a
target within a tolerance radius of 10 feet. An example of the error distribution (using notional data) is
shown in Figure 1.
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Figure 1: Distribution of error distance example (notional data)

Let’s assume the only way to measure the systems is to categorize each attempt as either a “Pass” or
“Fail” based on whether it falls within a 10 feet radius of the target (see Figure 2). This is a type of
nominal response, specifically a binary response.

Figure 2: Measuring using binary (Pass/Fail) response

The purpose for this test is to evaluate the performance of the system in various simulated
engagements and also to determine what factors affect the probability of success. The objective and
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threshold probabilities of success (P;) for the system are 90% and 85% respectively, under all expected
conditions.

The test engineers have decided to vary four different factors, Altitude, Range, Aircraft Speed, and AOA.
A 2* factorial design has been chosen to set up the simulated engagements, see the coded matrix below
(-1 and 1 are the low and high-level values of a factor respectively). This design will allow the
practitioner the ability to test what main effects and interactions terms significantly affect the response,
the observed proportion of success (p).

Table 1: 24 factorial design for TLE example

Xq: X5 .X3: :
RUNS AItitlude Rar?ge ARl ASA
Speed
1 -1 -1 -1 -1
2 1 -1 -1 -1
3 -1 1 -1 -1
4 -1 -1 1 -1
5 -1 -1 -1 1
6 1 -1 -1
7 -1 1 -1
8 -1 -1 1
9 -1 1 -1
10 -1 -1
11 -1 -1 1
12 1 -1
13 1 -1 1
14 -1 1
15 -1 1
16 1 1

Consider the following graph where the response, probability of success (F) , is graphed versus the low
and high settings of X; (Altitude).
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S

Response, P

Figure 3: Power represents the ability to detect a difference A between factor levels

Power is the probability that we can detect a significant difference (A) between Piowand Puign. The values
for Piow, Pavg, Phigh and A can be derived from the objective and threshold requirement (90% and 85%).
So for this TLE example, the objective (Ps) of 90% represents the Pay and the threshold value of 85%
represents Piow, therefore Puigh would be 95%. Delta therefore would be (Phigh - Piow), 10%.

The question that must now be answered is how many replicates of each design point must be run in
order to achieve appropriate levels of power and confidence. Let’s assume for this example that we will
go with the DoD standard of 80% confidence and 80% power for a test (@ = 8 = 0.2). In this paper, we
will introduce a calculator/app that will aid practitioners in answering this question. But, before doing
so, let’s first discuss the distribution the data comes from, the binomial distribution.

The Binomial Distribution

The binomial distribution is a discrete probability distribution of the number of successes in a series of n
independent Bernoulli trials (pass/fail experiments), each trial yields success with probability p. The
probability mass function is defined as:

P(Y =m) =(;J p" (- p)" ()

form = 1,2, ...n. The cumulative distribution function can be expressed as:
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m
P(Y<m)=) P(Y=j) (2)
i=0
If a large enough sample size, n, is used, the binomial distribution begins to look like the normal
distribution and its parameters can be approximated with the following formulas.
Mean:
L =Np (3)

Standard Deviation:

o =\np(L- p) (4)

A rule of thumb commonly used to ensure that the distribution can be approximated by the normal
distribution is the “rule of five”:

np>5
and (5)
n(l-p)>5

The farther p is from 0.5 the larger n needs to be in order for this approximation to work. So, for various
p’s, the number of reps (n)needed are as follows:

Table 2: Number of reps (n)needed versus p based on the “rule of five”

0.1 50
0.2 25
0.3 17
0.4 13
0.5 10
0.6 13
0.7 17
0.8 25
0.9 50

The following graphs provide a visual representation of how the binomial distribution behaves with
varying sample sizes, n, while keeping p at 0.1. You see that around n = 50 the shape of the histogram
begins to look like the normal distribution curve.
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Figure 4: Distribution plots for p = 0. 1 for varying sample sizes, n
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The following graphs provide a visual representation of how the binomial distribution behaves with
varying proportions p and a constant sample size n = 100. You can see that the closer you are to the
min and max values of 0 and 1 the distribution begins to looks less normal. Therefore, caution should be

taken when dealing with (P,) greater than 95% or less than 1%.
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Figure 5: Distribution plots for n = 100 for varying proportions, p
Method

Method 1: Arcsine Transformation Approach

Note that the formulation for standard deviation in equation (4) is a function of p, which is the very
response we are monitoring and wish to change by varying factor levels. Due to this, the assumption of
constant variance is violated. An approach to deal with this problem is to perform a variance stabilizing
transformation on the observed response p. The most commonly used transformation when dealing
with binomial data is the arcsine square root transformation (see equation 6). This new transformed

response would be the response used in the analysis.

p, = arcsin \/6 (6)

Bisgaard and Fuller (1995) use this transformation to derive the number of replicates needed when
using a 2¥~/ factorial design with binary responses. Their formulation for the signal of interest (the
change in the response we wish to detect) on the transformed scale is:

5=arcsin{,/ﬁ+%}—arcsinﬂ/ﬁ—%} (7)

where p is the expected proportion across the design space, and A is the signal in the original

scale/units.

The individual point sample size is then calculated by the following formula:
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(Zl—a/2 + Zl—/j)2
n=——— 8
No? (8)

where z,_,/, and z,_g are the critical z values based on the specified power and confidence, N is the

total number of design points, and § is defined in equation (7).

To demonstrate further, let’s use the TLE example introduced earlier with the Binary Response
Calculator available on at the STAT COE website. The following is a screen shot of the calculator:

User Inputs

P(success)
A=

Notes:
- See cell comments for more details.
- Inputs "k" and "f" are only needed for Methods 1 and 3.

Notes:
- This approach should only be used if a 2*(k-f) design is used.
Reps per run for power = - See cell comments for more details.
Reps needed for approximation “ - See Bisgarrd-Fuller, 1995 for details on calculations.
Recommended Units per run; n = 25

Totalunits <1600 ]

Method 1: Arcsine Transformation Approach (Bisgarrd-Fuller)

Notes:

Method 2: Signal to Noise Calculations ~ Approach can be used with any design

Signal to Noise (Arcsin method) - "Normal method" tends to be the most conservative estimated and is therefore recommended.

Signalto Noise (Logit method)|___0.540 | -See "Using Method 2" tab for step by step instructions on how to use this with JMP 10.
Signal to Noise (Normal method) 0.500 - You should still use the "Rule of 5" (see Cell C14) number if it is greater than the reps suggested by the statistical
software. recommends.

Notes:
N - This approach should only be used if a 2A(k-f) design is used.
Stopping rule - Run reps until the number of failures meets the stopping rule. Record number of reps it took to get there as the
Expected n (if no change) 10 response.
Expected n (if negative change) 5 - See cell comments for more details.
Expected Total Units (if no change)| 640 - See Bisgarrd-Gertsbakh (2000) for details on calculations.

Method 3: Inverse Binomial Sampling Scheme (Bisgaard-Gertsbakh)

Figure 6: Sample size calculator for binary responses screenshot

The calculator consists of 4 sections.

The User Input section, this is where the basic information about the test needs to be specified.
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User Input
Plsuccess) 0.9
A= 0.1
Alpha 0.2
Fower 0.8
k 4
f 0

Figure 7: User input section

The following information must be specified in this section:

e P(success): The expected probability of success across the design space

e A:The signal of interest (the change in the response we wish to detect)

e Alpha: Allowable Type | error, Confidence is 1-Alpha

e Power: The probability of detecting A, 1-Power is the Type Il error

e k: The number of factors in the design (4 in this case)

e f: The level we wish to fractionate the factorial (0 in this case since this is a full factorial)

Remember, for our example, the objective and threshold P for the system are 90% and 85%
respectively. Therefore, P(success) is set to 0.9 and A is equal to 0.1. We're going with the DoD
standard of 80% confidence and 80% power for a test (@ = § = 0.2). We are using a 2* full factorial

designsok =4and f = 0.

The Method 1 section displays the results from applying the approach defined by Bisgaard and Fuller

(1995).

Method 1: Arcsine Transformation Approach

Reps per run for power =

10

Reps needed for approximation

Recommended Units per run; n =
Total units =

50

800

Figure 8: Method 1- Arcsine Transformation Approach

The following describes the output:

e Reps per run for power: Based on equation (8)
e Reps needed for approximation: Based on the “rule of 5”

Page

11




STAT COE-Report-07-2014

e Recommended Units per run: Takes the maximum value between the reps needed for power
and the reps needed for the approximation
e Total units: The total number of runs times the recommended number of reps

For the TLE example, the calculator is recommending 50 reps for each of the 2* = 16 design points,
resulting in a total of 800 runs.

Method 2: Signal to Noise Calculations

Method 1, the Arcsine Transformation Approach, only works if a 2K~/ designs is used. If another type of
design is used, a better approach would be to use the signal-to-noise ratio (SNR) method. The signal to
noise ratio is simply the ratio between the measured change in the response we wish to detect (§, the
signal of interest) and the estimated standard deviation of the system (noise). See the formula below:

SNR =

o
— )
o

Three methods of calculating the SNR are presented in the calculator.

Method 2: Signal to Noise Calculations
Signal to Noise (Arcsin method) 0.344
Signal to Noise (Logit method) 0.363

Signal to Noise (Normal method) m

Figure 9: Method 2- Signal to Noise Calculations

Arcsine Formulation
This method uses the same formulations for delta and sigma that were derived in the Bisgaard and
Fuller (1995) paper. Delta (in the transformed scale) is the same as in equation (7) repeated here for

S, = arcsin /5+é —arcsin fﬁ_é
1 5 >

The standard deviation for the arcsine transformation is as follows:

convenience:
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_ .1

o, m—z

where n = 1 here since we wish to determine what the SNR is before replication.

(10)

Logit Formulation
This approach uses the Logit transformation, which is the traditional solution used when applying
logistic regression to fit a model where the dependent variable is a proportion. The transformation takes

the log of the odds:
v p
=1In 11
RN ()

where P is the probability of an event occurring, 1 — p is the probability of an event not occurring, and
i
1-p

is the odds of the event. Delta in the transformed scale is defined below:

0, = In[Lj— In(ij (12)
1-p, 1-p,
_ A _ A e .
where p, = p +E and p,=p _E . The standard deviation is defined as follows:
o, =Np(1~P) =P~ P) (13)

where n = 1 here, since we wish to determine what the SNR is before replication.

Normal Approximation Formulation
The final SNR formulation is based on the Normal Approximation of the binomial. This is the simplest of
the formulations presented in this paper. Delta is defined as:

3 =|p,— Pyl (14)

_ A _ A
where p, = p+ E and p,=p —E . The standard deviation is defined the same as the logit formulation

in equation 13:

o, =Np(L-P) =/P-P)

Page
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where n = 1 here, since we wish to determine what the SNR is before replication.

Figure 9 shows the results from the calculator using the TLE Example. Note that all three methods
provide similar results. Table 3 shows the SNR results of the three methods when varying p. The
Normal Approximation method consistently produces the most conservative estimate of the SNR.

Table 3: Comparison of SNR calculation methods

p A SNR (arcsin) | SNR (logit) SNR (normal)
0.9 |0.100 0.3444 0.3630 0.3333
0.85 | 0.100 0.2838 0.2896 0.2801
0.8 | 0.100 0.2518 0.2544 0.2500
0.75 | 0.100 0.2320 0.2334 0.2309
0.7 |0.100 0.2189 0.2198 0.2182
0.65 | 0.100 0.2102 0.2107 0.2097
0.6 |0.100 0.2045 0.2050 0.2041
0.55 | 0.100 0.2014 0.2017 0.2010
0.5 |0.100 0.2003 0.2007 0.2000
0.45 | 0.100 0.2014 0.2017 0.2010
0.4 |0.100 0.2045 0.2050 0.2041
0.35 | 0.100 0.2102 0.2107 0.2097
0.3 |0.100 0.2189 0.2198 0.2182
0.25 | 0.100 0.2320 0.2334 0.2309
0.2 |0.100 0.2518 0.2544 0.2500
0.15 | 0.100 0.2838 0.2896 0.2801
0.1 ]0.100 0.3444 0.3630 0.3333

Using the signal-to-noise ratio (JMP 10 Demo)
Most design of experiments (DOE) software will allow you to input the SNR in order to calculate the
power of the test. In this section, we will demonstrate how to use the SNR with JMP 10.

Step 1: Create your design in JMP

e Create a 2% factorial design to match our TLE example. The columns X1, X2, X3, X4 columns
represent our factors Altitude, Range, Aircraft Speed, AOA respectively. The Y column is our
pass/fail response.

Page
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Step 2: Evaluate design

_ B DOE - Full Factorial Design - IMP [=)=]==]
File Edt Tables Rows Cols DOE  Analyze Graph Tools Yiew Window Help
|DOE| Analyze Graph Tools View Wi 4 = Full Factorial Design
{1 Custom Design 4 Responses
H (Add Response || Remove | [Number of Responses... |
ﬁ Definitive kreenlng Dﬁlg" 1 Lower Limit Upper Limit Importance
. . 1 L.
| (i Screening Design
4 Response Surface Design
( Full Factonial Design |Continuous | |Categorical »|| R Add N Factors | 4
ture Design | Marne Rele Values
A 9 A anitude Continuous -1 1
‘R.pnge Continuous -1 1
Choice Design A gircraft Speed Continuous 1 1
i . F YT Continuous -1 1
E{ SpaceFilling Design Specily Factors
= 5 - Add a Continuous or Categorical factor by clicking its button. Double click
Wr Accelerated Life Test Des:gn on 2 facter name or level to edit it
& Nonlinear Design ( Continue
£ Taguchi Arrays
- L[ v
# Evaluate Design 714
Augment Design
@ 9 9 3 224242 Fsetorial - IMP
- File Edt Tables FRows Cols DOE Analyze Groph Tools Wiew Window Help
22 Sample Size and Power e .
P FREH D (@ b eRseRBH ER
= a2 Factasial B4 -
Design 22 Factodel] = Pattern Altitude Range Aircraft Speed ADA  Hit (Y= 1) Miss (¥=0)
= Screening 1 —-+- -1 -1 1 1 »
= Model F1 1 1 1 1 .
= DOE Dialog 3 sams 1 1 1 1 .
4 ennm 1 1 1 1 .
5 wees 1 1 1 1 b
G | — :
kP = o B - B .
A Atitude L 1] 1 1] 4 :
A Range % 9 =eas 1 1 1 1 "
A Aircraft Speed 10| ==== -1 -1 -1 1 +
A nonk 1 - -1 -1 1 1 .
A Hit (v=1), Miss (v=0) % [T P 1 1 1 1 .
13 +-+- 1 1 1 1 .
14 s=== i -1 -1 1 b
15 —sem Kl 1 1 1 .
;1::.: = 16 +am- 1 1 1 1 .
Selected i}

e Once the design is created, select DOE > Evaluate Design.
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Space Filling Design

=
O
14

Accelerated Life Test Design

Monlinear Design

& Evaluate Design - IMP
| DOE | Analyze Graph Tools View Wiq  Produce design diagnostics for any JMP table.
@ Custom Design Select Columns Cast Selected Columns into Roles Action
i [l Definitive Screening Design "Iigolumns Y, Response | Hit (Y=1), Miss (Y=0) [ oK
attern optional numenc
7 Screening Design Aattitude
. ARrange
-H} Response Surface Design A
ircraft Speed [ ] Alti
B8 Full Factorial Design Aroa S :R::;: - Remove
/v Mixture Design . A Aircraft Speed
A A0A | Help |
@ Choice Design -
B
W
&
&

Taguchi Arrays
(E4 Evaluate Design
7 Augment Design

[z Sample Size and Power

e Specify the response and factor columns and then click OK. The Evaluate Design dialog box will
appear.
e In the Evaluate Design dialog box:
o Specify the terms in your model. For this example, we are interested in main effects and
two factor interactions.
Set significance level at a = 0.2.
Input SNR from the calculator.
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ﬂ BPExample - Evaluate Design of Hit (Y=1), Miss (Y=0) - IMP [2] =0 = | &

4 (= Evaluate Design
[* Factors
4 Model
[Main Eﬁects] [Intulctiﬂns v] REM H Cross ] [iners '”Rﬂ'nnve Ttrm]
Intercept -
Altitude
Range

Aircraft Speed SpECIfy thE’ tEf‘mS |n

A0A

Atitude*Range your model.

Altitude*aircraft Speed
Range®Aircraft Speed N

[* Alias Terms

m

[* Design

4 Design Evaluation
» =/Prediction Variance Profile
» Fraction of Design Space Plot
= Prediction Variance Surface
4 Power Analysis

Set significance level

Significance Level 0.2
Signal to Moise Ratio 0,333 o=0.2 and input SNR
Error Degrees of Freedom 5
Effect Power from the calculator.
Altitude 0.28
Range 0.28
Aircraft Speed 0.28
ADA 0.28
Altitude*Range 0.28 .
Altitude®Aircraht Speed  0.28 Power calculations
Range*Aircraft Speed 0.28
Altitude*A0A 0.28
Range*A04 0.28
Aircraft Speed*ADA 0.28
» Variance Inflation Factors
> Alias Matrix

i» Color Map On Correlations
i» Design Diagnostics

=
4

e Note: Power is 28% for all terms if we only run each setting once.
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Step 3: Augment design

* Augment the design to add replicates and bring power up to appropriate level. For this example,
we want 80%.
* Select DOE > Augment Design.

DOE | Analyze Graph Tools View Win 15 Augment Design - JMP [2] E@
2  Custom Design Add more runs to an existing data table. Replicate, add centerpoints, fold over, or
@. 5creening DESIgI'I add model terms.
-H} R Surface Dess " Select Columns Cast Selected Columns into Roles Action
esponse Surface Design =
- ”PF torial e 2 '!":Iarrtem Y, Response| | Hit (Y=1), Miss (Y=0) oK
ull Factonal Design titude opt | numeric
A, Mixure Design I::ange
ircraft Speed
Choice Design |‘AOA X, Factor | 4 Altitude Remove
i Space Filling Design it (=1 Miss (V=0) 4Range
wr Accelerated Life Test Design :::(rgart Speed —
& Nenlinear Design
15 Taguchi Arrays & B
#4 Evaluate Design
( Augment Design
Sample Size and Power

e Specify the response and factor columns and then click OK. The Augment Design dialog box will
appear.
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Click the “Replicate” button.

B9 BPExample - Augment Design of Hit (Y=1), Miss (Y=0) - JMP [2)

4~ Augment Design
4Factors

Name Role

Changes Values

X % BPExample - AugmentD...| = || &

4~ Augment Design
b Factors

A aituge Continuous  Easy

ARange Continuous

b Factor Design

-

Easy A
Easy -1
-1

A pircraft Speed Continuous

Aroa Continuous

Easy

4 Design Evaluation

Group new runs into separate block

M on Choices
Cﬁ’"mvﬂ. Fold Over || Add Axia || Augment |

4 Power Analysis

-

B% Please Enter a Number

[ =

Number times to perform each run.

oK

|| cancel |

Enter the number of replicates.

P Alias Matrix

P Design Diagnostics
Make Table

|Make Table|

| Back |

b~ Prediction Variance Profile
P Fraction of Design Space Plot
b = Prediction Variance Surface

P Variance Inflation Factors

[ Color Map On Correlations

Significance Level 02
Signal to Noise Ratio 0.33
Error Degrees of Freedom| 149
Effect Power
Altitude 0.788
Range 0.788
Aircraft Speed 0.788
AOA 0.788 Power calculations.
Altitude*Range 0.788
Altitude*Aircraft Speed  0.788
Range*Aircraft Speed  0.788
Altitude*AOA 0.788
Range*AOA 0.788
Aircraft Speed*AQA 0.788

e Make sure all factors to be replicated are listed.

o Click the “replicate” button.

e Enter the number of times to replicate each design point.

e Check the Power Analysis section of the resulting design. Confirm that calculations are above or
close to predetermined power objectives. In this case, 80%.

e If not, click the back button and increase the number of replicates until you achieve your power

objective.

Method 3: Inverse Binomial Sampling Scheme
The final method provided by the calculator is the Inverse Binomial Sampling Scheme proposed in
Bisgaard and Gertsbakh (2000). This method can be used with a 2=/ design where the purpose is to
reduce the rate of defectives. Instead of determining a fixed sample size for each design run, this
approach suggests sampling until a fixed number of defects r, are observed. The derivation for the
stopping rule will not be covered in this paper, for more details please refer to Bisgaard and Gertsbakh
(2000). The number of defects observed, r, is based on the number of factorial trials in a 2k-f design,
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the change in probability to detect A, and the fixed levels of a and 5. The total number of reps until r
defects occurs is used as the response. This approach could significantly reduce the number of total runs
needed if the system does not meet the P requirement.

Method 3: Inverse Binomial Sampling Scheme
Stopping rule
Expected n (if no change) 30

Expected n (if negative change) 15

Figure 10: Inverse Binomial Sampling Scheme output

The following describes the calculator’s output:

e Stopping rule: The number of defects to observe for each design run

e Expected n (if no change): Based on the estimated P, this is the expected number of reps
needed to observe the stopping rule

e Expected n (if negative change): If a negative change of A has occurred, this is the expected
number of reps needed to observe the stopping rule

Note that an unequal number of reps for each design run is likely; therefore, a general linear model
(GLM) or weighted least squares (WLS) approach is recommended for the analysis.

Conclusion

Three methods to estimate the samples size needed for a designed experiment using binary responses
were presented in this paper. The arcsine transformation approach can be used if a 2~/ design is
employed. The signal-to-noise method can be used for any design but requires iterative exploration of
the number of replicates needed using statistical software. A JMP 10 tutorial on how to do this was
provided. The Inverse Binomial Sampling Scheme method can also be used if a 2=/ design is employed.
This method could be a potential resource saving approach for system with a high expected probability
of success (F;), and if the goal is to simply demonstrate that the system meets that objective F;. All
methods presented are available for use on the Binary Response Calculator available on at the STAT COE
website.

There are opportunities for future work on this subject. A Monte Carlo approach should be considered
in order to produce more accurate power calculations that are robust to the experimental design used.
Also, future research should explore the use of OC curves and sequential probability ratio testing in
order to truncate and quickly stop testing if it is abundantly clear that the system is passing or failing the
requirements.
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Addendum (Updated July 19, 2018):

The STAT COE has created a new calculator to help estimate signal-to-noise for a binary response. The
new tool allows a practitioner to evaluate the effects of increasing the number of replicates for each test
design point to the signal-to-noise ratio (SNR). The following is a brief tutorial on how to use the new

tool.

Signal-to-Noise Estimator for a Binary Response

Output Table 1:
Ps(Avg)| 0.9 4.00
P.(Low)| 0.85 Reps Normal Arcsin  Logit  Avg.
Reps| 1 User Specified | 0.33 | 034 | 036 | 0.35 350 —
1 033 | 034 | 036 | 035 =
5 075 | o077 | o8t | 078 3.00
P, (High)| 0.5 10 105 | 109 | 145 | 110 o~
Py (Low)| 0.85 20 149 | 154 | 162 | 155 250 —
A= o1 40 2141 | 218 | 230 | 219 =
60 258 | 267 | 281 | 269 £200 <
80 208 | 308 | 325 | 310 2
100 3.33 3.44 3.63 3.47 150
i Output Table 2: 100 —3
o
% Replicates Normal  Arcsin  Logit  Average 0.50
g 1 033 | 034 | 036 | 035 o
2 2 047 | 049 | 051 | o049 -
o 3 058 0.60 063 0.60 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
4 067 | 069 | 073 | 069 Reps
5 075 | 077 | 081 0.78 ——Normal —— Arcsin Logit Average
B 6 082 | 084 | 089 | 085
| | 7 088 | 091 | 096 | 092
T % o 8 094 | 097 | 103 | o098
Low © 9 1.00 | 1.03 | 1.09 | 1.04
10 105 | 1.09 | 145 | 110
1 141 | 144 | 120 | 145

Figure 11: SNR estimator for a binary response

Recall our TLE Example, where the objective and threshold probability of success (P;) for the system is
90% and 85% respectively, under all expected conditions. The following graph shows the response,
probability of success (P;) , versus the low and high settings of a factor X;.
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S

Response, P

Figure 12: Power represents the ability to detect a difference A between factor levels

The values for Piow, Pave, Phigh, and A can be derived from the objective and threshold requirement. Pay is
our objective value 90%, Piow is 85%, Puigh would be 95%, and A therefore is 10%.

In the input section, we would enter the following information:

Ps(Avg) 0.9
P.(Low)| 0.85
Reps 1

Figure 13: SNR calculator inputs

The calculation section would display the following:

Calculations Values
Ps (High)| 0.95
Ps (Low)| 0.85
A= 0.1

Figure 14: SNR calculations for Piow, Phigh, and A
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The Output Table 1 shows what the estimated signal-to-noise would be using the three formulations
described in this paper (Normal, Arcsine, and Logit). The first row shows the estimates based on the
number of reps entered in the inputs sections. The following rows show how the SNR changes for
differing numbers of reps (1, 5, 10, etc.).

Output Table 1:

Reps Normal Arcsin Logit Avg.
User Specified 0.33 0.34 0.36 0.35
1 0.33 0.34 0.36 0.35

5 0.75 0.77 0.81 0.78

10 1.05 1.09 1.15 1.10

20 1.49 1.54 1.62 1.55

40 2.1 2.18 2.30 219

60 2.58 2.67 2.81 2.69

80 2.98 3.08 3.25 3.10

100 3.33 3.44 3.63 3.47

Figure 15: Output Table 1, summary of the effects of reps to SNR

Output Table 2, shows a finer or more detailed analysis of the effect replicates have on the SNR
estimates.

Output Table 2:

Replicates Normal  Arcsin Logit  Average
1 0.33 0.34 0.36 0.35
2 0.47 0.49 0.51 0.49
3 0.58 0.60 0.63 0.60
4 0.67 0.69 0.73 0.69
5 0.75 0.77 0.81 0.78
6 0.82 0.84 0.89 0.85
7 0.88 0.91 0.96 0.92

Figure 16: Output Table 2, detailed report of the effects of reps to SNR

A graphical representation of the results is also provided.
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Figure 17: Graphical representation of SNR estimation results

In practice, a SNR of about 2 is usually a good target to aim for when it comes to SNR. This means that
results that are 2 sigma away from what should be expected will be flag as significant in your analysis. In
this case you see that 40 reps produce an average SNR of 2.19. In Output Table 2, we get a more precise

value of 34 reps.

The next step is to create a test design and use the estimated SNR to calculate power and confidence. In

our example, a 2* design with 40 reps will produce the following power numbers:
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Power Analysis
Significance Level | 0.05
Anticipated RMSE 1
Anticipated

Term Coefficient Power
Intercept 1.095( 0,933
X1 1.095| 0,933
X2 1005 0.933
A3 1.095] 0933
#4 1.095| 0,933
K1*X2 1.005| 0.933
K17K3 1.095] 0933
X2*K3 1.095| 0,933
X1%¥4 1.095| 0,933
K2TEA 1.095] 0933
X3%¥4 1.095| 0,933

Figure 18: Power calculations based on SNR estimate

All terms are well above 80% with 95% confidence and satisfy the DoD standard of 80% confidence and
80% power.
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