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Introduction 
Part 1 of this best practice series discussed how the response variable data type can influence an 
experiment’s size and the associated analysis. Part 2 presented three methods typically used to 
approximate the required sample size when using a binary response variable in a designed experiment. 
Part 3 shows how generalized linear models (GLM), specifically logistic regression, can be used to 
analyze binary responses when there are one or more factors in the test.  

We begin by providing some background information on categorical variables with a focus on binary 
responses, the binomial distribution, odds ratio, and linear regression assumptions. Then, we show an 
example having a binary response variable to explain why linear regression is not an appropriate analysis 
tool and the need to use logistic regression. Next, we detail the three components of the GLM and 
provide an interpretation of logistic regression. Then, we assess the logistic regression model and 
consider issues such as factor assumptions, separation, and fitting the model. We conclude with other 
types of logistic regression. 

Keywords: generalized linear model, logistic regression, linear regression, binary responses, categorical 
factors 

Background 
We begin with categorical variables, specifically binary responses which only have two possible 
outcomes. We introduce the binomial distribution and then discuss how the odds ratio measures the 
association between a binary response and a factor based on the odds. We conclude this section by 
identifying the assumptions associated with linear regression and include an example showing why 
linear regression is not the analysis tool to use with binary responses. 

Categorical Variables 
Qualitative variables, also termed categorical, are non-numeric variable types. Categorical data falls into 
three data classifications: 

• Binary: can only take on 2 possible values (e.g., pass/fail or yes/no) 
• Ordinal: has an ordered scale; order of listing categories does matter (e.g., small/medium/large 

or disagree/neutral/agree) 
• Nominal: there is no ordered scale; order of listing categories is irrelevant (e.g., aircraft type or 

color) 

For this best practice, we concentrate on binary response variables. Examples of binary responses 
include whether a missile hits or misses a target, a sent message is received or not received, an item is 
either defective or not defective, or a mission is either a success or a failure. 
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Binomial Distribution 
The binomial distribution is a discrete probability distribution defined by the probability of a success (𝑝𝑝) 
and sample size (𝑛𝑛). The binomial distribution is based on the following assumptions: 

• Number of trials/runs (i.e. sample size, 𝑛𝑛) is a fixed value 
• Only two possible (binary) outcomes, labelled as “success” or “failure” 
• Probability of the outcome “success” is constant across the 𝑛𝑛 trials 
• Trials are independent; outcome of one trial does not affect the outcome of any other trial 

The mean and variance of a binomial distribution are both defined by 𝑛𝑛 and 𝑝𝑝: 

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑛𝑛𝑛𝑛 

𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 = 𝑛𝑛𝑛𝑛(1 − 𝑝𝑝) 

For more information on the binomial distribution, see Sigler (2018).  

Odds 
We often interpret continuous variables using summary statistics such as the mean and standard 
deviation. For binary responses, we often analyze the estimate proportion of success, the odds, and the 
odds ratio. We can determine odds using the estimated probabilities of success and failure. If we let 𝑝𝑝 = 
probability of success, then 1 - 𝑝𝑝 = probability of a failure and the odds of success is defined as the ratio 
of the probability of success and the probability of failure: 

𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) =  𝑝𝑝
1−𝑝𝑝

 and 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 (𝑓𝑓𝑓𝑓𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) =  1−𝑝𝑝
𝑝𝑝

 

We can interpret odds as the likelihood that some event will occur. We discuss this as a 
proportion of the likelihood that it will occur by the likelihood that it will not occur. We discuss 
odds ratios and their interpretation later in this best practice.  

Missile Example  
An engineer studied the effect of air speed, in knots, with respect to the ability of a surface-to-air missile 
to hit the designated target (data source: Montgomery et al., 2012). The result of each test is measured 
as either a hit (response variable 𝑦𝑦 = 1) or a miss (response variable 𝑦𝑦 = 0). Table 1 shows the collected 
data.  
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Table 1: Missile Data 

Test Target Speed (knots) 𝑦𝑦  Test Target Speed (knots) 𝑦𝑦 
1 400 0 14 330 1 
2 220 1 15 280 1 
3 490 0 16 210 1 
4 210 1 17 300 1 
5 500 0 18 470 1 
6 270 0 19 230 0 
7 200 1 20 430 0 
8 470 0 21 460 0 
9 480 0 22 220 1 

10 310 1 23 250 1 
11 240 1 24 200 1 
12 490 0 25 390 0 
13 420 0  

 

Figure 1 shows a scatterplot to visually represent the missile data. The response 𝑦𝑦 = 1 (hit) appears to 
be associated with slower target speeds. Intuitively, this hypothesis makes sense as a slower moving 
target should be easier to hit. Note that there are some overlapping results; the missile missed two slow 
moving targets and hit one fast target (target speed = 470 knots).  

  

Figure 1: Scatterplot of Missile Data 

We now want to create a statistical model to be able to predict the probability of hitting a target, given 
any target speed. We first incorrectly fit a linear regression model to the data to predict the probability 
of hitting the target at a given target speed.  

y

Hit

Miss

150 200 250 300 350 400 450 500 550

Target Speed (knots)

y

Hit

Miss



STAT COE-Report-10-2020 

 
 

 Page 6  
  

Analysis 
We first attempt to use linear regression to model the binary response (see Appendix A). Figure 2 shows 
the parameter estimates. 

 

Figure 2: Linear Regression Parameter Estimates 

The linear regression model is therefore: 

𝑦𝑦 = −0.003𝑥𝑥 + 1.60 

The variable 𝑦𝑦 represents the response (probability of a hit), and 𝑥𝑥 represents the target speed in knots. 
At first glance, this model might seem reasonable. The model coefficient for target speed is negative, 
indicating that as target speed increases, the probability of hitting the target decreases. For example, we 
could estimate the probability of hitting the target to be 0.48 for a target speed of 350 knots.  

However, there are critical issues when trying to use linear regression to model a binary response. First, 
since the response variable is binary, there are only two possible values for the error term (0 or 1). 
Therefore, the error terms cannot be normally distributed since the normal distribution is a continuous 
distribution that can take on an infinite number of values. We have already violated a core assumption 
of linear regression. In addition, the variance of a binomially distributed variable depends on the 
probability of success, which changes as a function of the target speed. We have now violated the 
constant variance assumption. Finally, using linear regression to model the probability of success does 
not guarantee the predicted values are between 0 and 1 (a requirement for a probability value). For 
example, for a target that is stationary (x = 0), we would predict that the probability of hitting the target 
is 1.6. Similarly, for a target moving at 525 knots, we would predict that the probability of hitting the 
target is -0.07. Neither of these values make any sense in the context of the problem. Instead of 
applying linear regression to model a binary response, we must use an alternative analysis method such 
as logistic regression.  

Generalized Linear Models (GLM) 
Logistic regression is a special case of a family of models called generalized linear models (GLMs). Linear 
regression is also a special case of a GLM. The GLM consists of three components (Agresti, 2017): 

• Random component, which specifies the distribution of the response 
• Systematic component, which specifies the factors 
• Link function, which connects the random and systematic components together 
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Components – Logistic Regression 
The random component for logistic regression is the binomial distribution, as we are dealing with binary 
responses. The systematic component specifies the form of the model in terms of the factors. This is a 
linear predictor used to model the response and takes on the form of the desired model. For example, a 
model with just main effects and k factors would have the following systematic component:  

𝛽𝛽0 + 𝛽𝛽1𝑥𝑥1 + 𝛽𝛽2𝑥𝑥2 + ∙∙∙  + 𝛽𝛽𝑘𝑘𝑥𝑥𝑘𝑘 

This component could also include interactions and quadratic terms. The link function is used to connect 
the random and systematic components together so that it specifies a function that relates the mean of 
the response (from the random component) to the linear predictor (the systematic component). For 
logistic regression, the link function used is the logit function, shown below: 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 (𝑝𝑝) = 𝑙𝑙𝑙𝑙 �
𝑝𝑝

1 − 𝑝𝑝
� 

The logit function provides nice properties for the resulting model parameters and interpretation as we 
discuss in the following section. In essence, we perform a log transformation from odds to log odds. 
Transforming attempts to remove the restriction of the probability range (zero to one). Essentially, we 
are mapping the probability range between zero and one to log odds ranging from negative infinity to 
positive infinity.  

Logistic Regression 
The following subsections present characteristics and interpretation of the logistic regression model, 
revisit the missile example using logistic regression, and discuss the odds ratio with respect to logistic 
regression. 

Model 
Logistic regression is a nonlinear model, but contains the linear predictor term (represented by  the 
systematic component). The logistic function is an S-shaped curve whose shape depends on the 
direction and magnitude of the model parameters. The model predicts 𝑝𝑝, the probability of success at a 
given value of factor 𝑥𝑥. Because this model is nonlinear, the rate of change in 𝑝𝑝 per unit increase in 𝑥𝑥 
depends on the value of 𝑥𝑥. This is in contrast to a linear regression model, where the magnitude of the 
model parameters is straightforward. Table 2 shows the equations for the log odds, odds of success, and 
the probability of success for a model with one factor. 
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Table 2: Logistic Regression Equations 

Name Equation 

Log odds 
 
 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑝𝑝(𝑥𝑥)) = 𝑙𝑙𝑙𝑙 �
𝑝𝑝(𝑥𝑥)

1 − 𝑝𝑝(𝑥𝑥)
� = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥 

Odds of success 
 
 

𝑝𝑝(𝑥𝑥)
1 − 𝑝𝑝(𝑥𝑥) = 𝑒𝑒(𝛽𝛽0+𝛽𝛽1𝑥𝑥) 

Probability of success 
 
 

𝑝𝑝(𝑥𝑥) =
𝑒𝑒(𝛽𝛽0+𝛽𝛽1𝑥𝑥)

1 + 𝑒𝑒(𝛽𝛽0+𝛽𝛽1𝑥𝑥) 

To further illustrate, Figure 3 shows the logistic regression model with one factor and various values of 
the parameter 𝛽𝛽1. 

 

Figure 3: Logistic Regression with One Factor 

The logistic regression model shown forms an S-shaped curve to model the effect of a single factor on 
the probability 𝑝𝑝. The value of 𝛽𝛽1 determines the slope and direction of the curve. When 𝛽𝛽1 is greater 
than zero, then 𝑝𝑝 increases as 𝑥𝑥 increases. As the magnitude of 𝛽𝛽1 increases, the curve becomes 
steeper. When 𝛽𝛽1 is equal to zero, then the factor 𝑥𝑥 has no effect on 𝑝𝑝 and the curve becomes a flat line. 
Note that at the extreme levels of the factor (x is near -1 or near 1), the effect of the factor on the 
response is not as large. In the end, we use the logistic regression model to predict the probability of 
success under specified factor levels.  

Missile Example Revisited  
The scatterplot displayed in Figure 1 showed that slower targets were more likely to be successfully hit. 
We now model the probability of hitting the target using logistic regression, shown in Figure 4. The 
curve suggests that targets at a low speed have a higher predicted probability of being hit. 



STAT COE-Report-10-2020 

 
 

 Page 9  
  

 

Figure 4: Curve Representation of Logistic Regression Model of Probability of Hitting the Target 

Using logistic regression, the model estimates the probability of hitting the target over a range of target 
speeds. Using JMP, the estimated parameter values are 𝛽̂𝛽0 = 6.07 and 𝛽̂𝛽1 = −0.0177. We can now use 
these parameter estimates to estimate the probability of hitting a target, given a target speed. Using the 
probability of success equation from Table 2, we have  

𝑝𝑝(𝑥𝑥) =
𝑒𝑒(6.07−0.0177𝑥𝑥)

1 + 𝑒𝑒(6.07−0.0177𝑥𝑥) 

To calculate the probability of hitting a target at a speed of 350 knots, we have 

𝑝𝑝(𝑥𝑥 = 350) =
𝑒𝑒(6.07−0.0177(350))

1 + 𝑒𝑒(6.07−0.0177(350)) = 0.469 

To simplify matters, we turn to the prediction profiler in JMP to quickly compute the probability. 

 

Figure 5: JMP Prediction Profiler for the missile data set 
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A predicted probability of hitting the target at x = 525 knots provides an estimate of 0.038. Compare this 
to the estimate using linear regression (-0.07). We now have a valid estimated probability using logistic 
regression.  

Interpreting Logistic Regression Models Using the Odds Ratio 
Interpreting the model coefficients of a logistic regression model is less straightforward compared to 
linear regression. The model parameter 𝛽𝛽1 can be interpreted as the difference in the log-odds as factor 
𝑥𝑥 changes by one unit. This is not particularly insightful, so we often interpret the model in terms of the 
odds ratio (OR). Recall we defined odds earlier as the ratio of probability of success to probability of 
failure. The odds ratio takes odds one step further and is the ratio of two odds. In logistic regression, we 
compute the odds ratio for a factor at different values.  

The odds ratio represents the constant effect a factor has on the likelihood that a specified outcome will 
happen. Using the logistic regression model, the odds is equal to: 

𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 =
𝑝𝑝(𝑥𝑥)

1 − 𝑝𝑝(𝑥𝑥) =  𝑒𝑒(𝛽𝛽�0+𝛽𝛽�1𝑥𝑥) 

Therefore, the odds ratio for a one-unit increase in 𝑥𝑥 is: 

𝑂𝑂𝑂𝑂 =
𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑥𝑥𝑖𝑖+1
𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑥𝑥𝑖𝑖

= 𝑒𝑒𝛽𝛽�1 

If 𝛽𝛽1 is equal to zero (the factor has no effect on the response), then the odds ratio is equal to 1; i.e., the 
odds of a success do not change for different values of the factor. For the missile example, using the 
estimated value of 𝛽̂𝛽1 = −0.0177, the OR = 𝑒𝑒−0.0177 =  0.982. For every one-unit increase in the target 
speed, the odds of success decrease by 1.76% ((1-.982)*100%). You can interpret the odds in terms of 
missing the target by flipping the ratio. The odds ratio of missing the target to hitting the target is 
1/0.982 = 1.018. For a one-unit increase in target speed, the odds of missing the target increase by 1.8%. 
Using JMP, we show the output in Figure 6.  

 

Figure 6: JMP Unit Odds Ratio 

Note that the default setting in JMP provides an odds ratio for a one unit increase in 𝑥𝑥 which may or 
may not provide useful information because of the scaling of the factor. The odds ratio for a 𝑑𝑑-unit 
increase in 𝑥𝑥 is: 
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𝑂𝑂𝑂𝑂 =
𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑥𝑥𝑖𝑖+𝑑𝑑
𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑥𝑥𝑖𝑖

= 𝑒𝑒𝛽𝛽�1𝑑𝑑 

Suppose a 10-knot increase is operationally relevant in the missile example. The odds ratio for a 10-unit 
increase in the target speed is 𝑒𝑒−0.0177(10) = 0.838. For a 10-unit increase in the target speed, the odds 
of hitting the target decrease by 16.2%.  

Assessing Logistic Regression Model 
Next, we discuss several metrics to evaluate the logistic regression model for fit and accuracy. 

Confusion Matrix 
The confusion matric is a commonly used tool to evaluate how well the logistic regression model fits the 
data. We can also assess the accuracy of the model to predict the response outcome. The model 
provides a probability of success 𝑝𝑝(𝑥𝑥). Therefore, we typically use a threshold of 𝑝𝑝(𝑥𝑥), denoted 𝑝𝑝0 to 
get a predicted value 𝑦𝑦�(𝑥𝑥). The most common threshold value is 𝑝𝑝0 = 0.5; that is, if 𝑝̂𝑝(𝑥𝑥) for the given 
factor levels is greater than or equal to 0.5, the predicted response is 1 (a success), otherwise, the 
predicted response is 0 (a failure). Other thresholds could be used depending on the dataset.  

The confusion matrix is a two-way contingency table summarizing the actual responses versus the 
predicted responses from the model. Ideally, there would be few prediction errors. Table 3 shows a 
notional confusion matrix.  

Table 3: Notional Confusion Matrix 

Actual Predicted Total 
y Success Failure  
Success True Positive (TP) False Negative (FN) TP + FN 
Failure False Positive (FP) True Negative (TN) FP + TN 
Total TP + FP FN + TN TP + TN + FP + FN 

 

We let TP, TN, FP, and FN each represent their respective number of responses (counts). The ideal 
confusion matrix would have zero false negatives and zero false positives so that the model perfectly 
predicts the response given the data. This will not occur in real life, but the goal is to have a model that 
minimizes these two errors. The total number of responses 𝑛𝑛 would be the sum of TP, TN, FP, and FN. 
The confusion matrix produces the following metrics: 
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Table 4: Confusion Matrix Metrics 

Metric Formula 

Accuracy 𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇
𝑛𝑛

 

True Positive Rate (TPR) aka 
sensitivity 

𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹

 

False Positive Rate (FPR) 𝐹𝐹𝐹𝐹
𝐹𝐹𝐹𝐹 + 𝑇𝑇𝑇𝑇

 

True Negative Rate (TNR) aka 
specificity  

𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹

 

False Negative Rate (FNR) 𝐹𝐹𝐹𝐹
𝐹𝐹𝐹𝐹 + 𝑇𝑇𝑇𝑇

 

Precision 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹

 

 

Sensitivity and Specificity 
Two metrics commonly used to assess the predictive capability of the logistic regression model are 
sensitivity and specificity. Sensitivity is the true positive rate and specificity is the true negative rate 
(both shown in Table 3). Sensitivity shows the predicted percentage of true positives while specificity 
tells the predicted percentage of true negatives. Ideally, these values are as close to one as possible. A 
value of one indicates there are no errors in the predictions. Depending on the experiment and their 
respective objectives, maximizing one metric may actually lower the other. We used JMP to create the 
confusion matrix (Figure 7) for the missile data. 

 

Figure 7: Confusion Matrix – Missile Data 

We can now calculate the sensitivity and specificity using the data in Figure 8 and the formulas in Table 
3. 
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𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
=

12
12 + 1

≈ 0.9231 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
=

10
10 + 2

≈ 0.8333 

We now conclude the logistic regression model correctly predicted a hit 92.31% when the actual 
outcome was a hit and correctly predicted a miss 83.33% of the time when the true outcome was a miss. 
It is important to consider sensitivity and specificity versus just overall accuracy as a model may do very 
well for predicting successes, but not well for failures.  

Receiver Operating Characteristic (ROC) Curve 
The receiver operating characteristic (ROC) curve provides additional information and characterizes 
specificity and sensitivity over the possible threshold values 𝑝𝑝0 used to predict the response (choice of 
𝑝𝑝0 is arbitrary). The plot of the curve has sensitivity (y-axis) against 1 – specificity (x-axis). Ideally, the 
curve is a step function with (1 – specificity, sensitivity) = (0,1) and (1-specificity, sensitivity) = (1,1). 
When 𝑝𝑝0 is close to zero, almost all predictions are 𝑦𝑦 = 1 because we predict a success (y = 1) if 𝑝𝑝(𝑥𝑥) is 
greater than 𝑝𝑝0 If 𝑝𝑝0 is close to one, then nearly all predictions would be 𝑦𝑦 = 0. ROC curves are 
beneficial when comparing multiple models. The area under the curve (AUC) is a metric that evaluates 
how close the model’s curve is to this ideal curve. Ideally, the AUC should be close to one as this 
indicates a good model. If the AUC is approximately 0.5, the model is equivalent to a random guess. The 
ROC curve and associated AUC value (setting 𝑦𝑦 = 1 to be the positive level) for the missile example is 
shown in Figure 8. 
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Figure 8: ROC Curve – Missile Data 

The model’s AUC value is 0.88782, which is close to one, indicating a good model fit. 

Coefficient of Determination – 𝑹𝑹𝟐𝟐 
The coefficient of determination, also called 𝑅𝑅2, is a common model diagnostic for linear regression. 
There is a version of this for logistic regression called McFadden’s pseudo 𝑅𝑅2, which measures the 
proportion of the total uncertainty attributed to the model fit. A value close to one means that there is 
little uncertainty in the predicted probabilities. This is an uncommon outcome for logistic regression 
models, so this value is often low.  

Residuals on Model Fit 
Model checking is always important, whether using linear or logistic regression. Residuals are the 
differences between the observed values and the fitted values from the model. As previously stated, 
with logistic regression the variance is not constant. Therefore, we must make an adjustment since 
observations have different variances. We list two types of residuals common in logistic regression: 

• Deviance residual: based on the deviance or likelihood ratio chi-squared statistic 
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• Pearson residual: computed difference between observed and fitted values and divided by an 
estimate of the standard deviation of the observed value 

These residuals can be obtained in software and the typical residual analysis can be conducted for 
logistic regression models. See Burke (2017) for more information on residual analysis.   

Considerations 

Factor Assumptions 
Multicollinearity is still a concern with logistic regression. Factors that are correlated with each other 
may negatively impact the model fit and the ability to identify which factors actually are statistically 
significant on the response. Ideally, the independent variables (factors) should be independent. One of 
the easiest approaches to assess multicollinearity is to review the pairwise scatterplots of the factors. If 
there are patterns between factors, then we conclude the factors are not independent (Figure 9a). We 
also include an orthogonal design (Figure 9b) showing uncorrelated estimates of regression coefficients; 
the estimates do not depend on other factors. 

 

Figure 9: Multicollinearity 

Multicollinearity impacts the correlated independent variables (factors), specifically the coefficients and 
p-values but does not influence the model’s predictive capability. 

Separation 
Separation is a unique issue for binary responses that practitioners should be aware of. Complete 
separation occurs when a factor or a model term perfectly predicts the response. For example, Figure 10 
shows a case where for all factor values of X1 ≤ 4, the response is always y = 0; when X1 > 4, the 
response is always y = 1. Because there is complete separation, the maximum likelihood estimates 
(MLEs) of the logistic regression model do not exist because an infinite number of solutions could fit this 
data.  
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Figure 10: An Example of Complete Separation 

Quasi-complete separation is when the break point for separation has both a “success” and “failure.” In 
Figure 10, if an additional value of Y = 0 when X1 = 5 is added, then quasi-complete separation exists. 
Like with complete separation, MLEs do not exist for quasi-complete separation. 

Detecting separation can be difficult, especially with two-factor interactions. When using JMP, look for 
“Unstable” next to the “Parameter Estimates” column and large values under the “Std Error” column 
(see Figure 11). 

 

Figure 11: Detecting Separation 

Separation is likely to occur with small sample sizes, when categorical factors have more than three 
levels, or if there are a large number of model terms relative to the sample size. If separation exists, try 
to collect more data (larger sample size) and increase the number of levels for continuous factors. Two-
level designs are often not the best choice for binary responses. Another approach is Firth’s (1993) 
penalized method of maximum likelihood which provides bias-reduction for small sample sizes. Finally, 
you may need to use an alternative modeling technique like decision trees. 

Fitting the Model 
To ensure a good model fit, we recommend dividing your data into a training set and a test set. To 
obtain the test set, you can select about 10 to 20 percent of the full data set. You then fit an initial 
model to the remaining 80-90% of the data. Then use that model to predict the responses of the runs in 
the test set. This allows you to assess the predictive capability of the model using data that was not used 



STAT COE-Report-10-2020 

 
 

 Page 
17 

 
  

to fit the model. This is a common model validation technique when the sample size is sufficiently large 
and can also be used when fitting any other type of statistical model. 

Extensions of Logistic Regression 
We focused on logistic with one factor; however, we can extend these concepts to multiple logistic 
regression. Multiple logistic regression accounts for main effects of multiple factors, two-factor 
interactions, and quadratic effects. The multiple logistic regression model is: 

𝐸𝐸(𝑦𝑦𝑖𝑖) = 𝑝𝑝𝑖𝑖 =
𝑒𝑒(𝜂𝜂𝑖𝑖)

1 + 𝑒𝑒(𝜂𝜂𝑖𝑖)
=

1
1 + 𝑒𝑒(−𝜂𝜂𝑖𝑖)

 

𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝜂𝜂𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥1𝑖𝑖 + 𝛽𝛽2𝑥𝑥2𝑖𝑖 + ⋯+ 𝛽𝛽𝑘𝑘𝑥𝑥𝑘𝑘𝑘𝑘 

The systematic component could also include interaction or quadratic terms.  

If the categorical response variable has more than two levels, we use nominal logistic regression or 
ordinal logistic regression. Nominal logistic regression allows for a nominal categorical response variable 
with three or more levels (e.g. Countermeasure A, Countermeasure B, Countermeasure C, and 
Countermeasure D). If there is a natural ordering of the response levels, we choose ordinal logistic 
regression to account for an ordinal response variable (e.g. Low Threat, Moderate Threat, and High 
Threat). 

Conclusion 
We discussed logistic regression as Part 3 of the Categorical Data in Designed Experiment series. We 
reviewed categorical variables focusing on binary responses, the binomial distribution, odds ratio and 
assumptions associated with linear regression. We used the missile example, which included a binary 
response, to show why linear regression is not the appropriate analysis tool to use and to provide the 
rationale to use logistic regression. We covered the three components of the generalized linear model 
and discussed methods to assess the logistic regression model, additional considerations, and other 
types of logistic regression. When dealing with a categorical response variable in your next designed 
experiment, you now know the appropriate statistical tool to employ. 
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Appendix A – JMP Tutorial – Missile Data 
 

Curve Representation of Model of Probability of Hitting the Target 
To create the logistic plot, we must first create the data table using the missile data. Notice, the 
response variable is now a nominal data type, denoted by the red bar chart next to the response name 
in the left panel. 

 

The next step is select “Analyze” then “Fit Model”. In this new window, select “y” under “Columns”, 
then “Y” under “Pick Role Variables”. Then, select “Target Speed”, then “Add” under “Construct Model 
Effects”. From the “Personality” drop down menu, select “Nominal Logistic”, set the “Target Level” to 
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“1”, and then select “Run”. Selecting the target level defines what constitutes a “success”; for this 
example, a value of 1 ensures the predicted probability is in terms of hitting the target.  

 

You can now select the “Logistic Plot” to show the output below. 
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JMP Prediction Profiler 
Using the same output from above, select the red triangle to the left of “Nominal Logistic Fit for y”, and 
select “Profiler”. The Prediction Profiler will be displayed. Simply double click on the red value above the 
“Target Speed” to enter the value of 350. 

 

JMP Unit Odds Ratio 
Using the same output from above, select the red triangle to the left of “Nominal Logistic Fit for y”, and 
select “Odds Ratio”.  

 

Confusion Matrix 
Using the same output from above, select the red triangle to the left of “Nominal Logistic Fit for y”, and 
select “Confusion Matrix”.  

 

ROC Curve 
Using the same output from above, select the red triangle to the left of “Nominal Logistic Fit for y”, and 
select “ROC Curve”. Then select “1” as the positive level and then “OK”. 



STAT COE-Report-10-2020 

 
 

 Page 
22 

 
  

 

 

 

 

 


	Introduction
	Background
	Categorical Variables
	Binomial Distribution
	Odds
	Missile Example
	Analysis


	Generalized Linear Models (GLM)
	Components – Logistic Regression

	Logistic Regression
	Model
	Missile Example Revisited
	Interpreting Logistic Regression Models Using the Odds Ratio

	Assessing Logistic Regression Model
	Confusion Matrix
	Sensitivity and Specificity
	Receiver Operating Characteristic (ROC) Curve
	Coefficient of Determination – ,𝑹-𝟐.
	Residuals on Model Fit

	Considerations
	Factor Assumptions
	Separation
	Fitting the Model

	Extensions of Logistic Regression
	Conclusion
	References
	Appendix A – JMP Tutorial – Missile Data
	Curve Representation of Model of Probability of Hitting the Target
	JMP Prediction Profiler
	JMP Unit Odds Ratio
	Confusion Matrix
	ROC Curve


