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Executive Summary 
How should you evaluate a test design if your response is not continuous and is, in fact, binary? For 
example, suppose your system is a one-use system that has a reliability requirement specified as a 
proportion which must be assessed across various conditions. Alternatively, suppose you have a 
communication system under development with a response of whether or not a “message successfully 
delivered,” which is measured with a pass/fail metric. How can we assess the effectiveness of a 
proposed test design for these types of responses? This best practice describes a technique to estimate 
the power of a test design for a binary response using Monte Carlo simulation and describes how to use 
an online application developed by the Scientific Test and Analysis Techniques Center of Excellence 
(STAT COE) to implement the method.  

Keywords: design evaluation, Monte Carlo simulation, power analysis 

Introduction 
The Scientific Test and Analysis Techniques Center of Excellence (STAT COE) has long emphasized the 
need to evaluate a test design prior to test execution to understand its risks and assess its effectiveness 
at accomplishing the test objective. Some methods to evaluate a test design include graphs to assess 
test space coverage, design aliasing, prediction variance, and estimated power (Harman, 2018). If the 
response in the experiment is continuous and follows an (approximate) normal distribution, evaluating 
the design is relatively straightforward with the right tools. For example, the statistical software package 
JMP readily provides all of the previous design evaluation metrics (and more) in their design evaluation 
report.  

In a perfect world, we would evaluate test designs for binary responses using the same methods used 
for continuous responses. In practice, however, methods to evaluate test designs for binary responses 
require more assumptions and are less readily available. Consequently, we first encourage you to re-
assess the response to determine if there is a way to measure the output as a continuous quantity. Part 
1 of this best practice series (Ortiz, 2018a) explains the advantages of using continuous responses; the 
most prevalent being that continuous responses typically save test resources. However, suppose you 
cannot convert a binary response to a continuous response. Familiar design evaluation techniques 
focused on the factor space (e.g., factor aliasing and design coverage) are still applicable for binary 
responses and can be used as-is. Power analysis, however, cannot be as easily applied.  

Part 2 of this best practice series (Ortiz, 2018b) describes techniques to estimate power by adjusting the 
signal-to-noise ratio. While these approaches are more straightforward to implement, they rely on 
applying a normal approximation to the binomial distribution and typically assume the test design is a 
factorial or fractional factorial design. This best practice describes an alternative technique to estimate 
the power of a test design for a binary response that does not have these limitations. The STAT COE 
created an online tool (LINK) for practitioners to implement this technique, which we describe in detail 
later.  
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Background: Power 
Statistical power is the probability of rejecting the null hypothesis when the null hypothesis is false (i.e., 
the probability of a true positive). In a design of experiments (DOE) context, power can be interpreted as 
the probability of detecting if a factor influences the response when it really does (given a specified 
signal-to-noise ratio [SNR]). Power is a function of the significance level (denoted as 𝛼𝛼, also called the 
type I error rate), the SNR, the test design itself, and the number of terms in the regression model. Using 
input values of type I error, SNR, and the desired model, software such as JMP can estimate the power 
of a design, under the assumption that the response is normally distributed. In this case, there is a 
closed-form (i.e., known) solution to estimate power based on the F-distribution (Montgomery, 2017). 
The assumption of the response distribution is critical to correctly interpret the risk associated with the 
design. For example, if the power for the main effects of a design is estimated as 0.8, then there is a 20% 
chance that the factor effect on the response will not be detected in the resulting analysis if that factor 
really does have an effect on the response. Understanding this risk is important as it helps justify the 
choice and size of a design matrix used in a test.   

Challenges with Binary Responses 
Binary responses present many challenges in test and evaluation (T&E). They provide less information 
compared to continuous responses and typically require more test resources to adequately characterize 
(Ortiz, 2018a) as a function of the factors. In addition, a design created for a continuous response is 
typically not a good design for a binary response (Johnson and Montgomery, 2009). Nevertheless, binary 
responses are sometimes unavoidable and the goal of developing an efficient, yet effective test design is 
still important.  

We typically use logistic regression to model the probability of a binary response over a factor space, 
shown in Equation 1: 

𝑝𝑝(𝒙𝒙) =
exp(𝛽𝛽0 + 𝛽𝛽1𝑥𝑥1 + ⋯+ 𝛽𝛽𝑘𝑘𝑥𝑥𝑘𝑘)

1 + exp(𝛽𝛽0 + 𝛽𝛽1𝑥𝑥1 + ⋯+ 𝛽𝛽𝑘𝑘𝑥𝑥𝑘𝑘), (1) 

 

where 𝑝𝑝(𝒙𝒙) is the probability of success, 𝛽𝛽𝑖𝑖 represent the model parameters for 𝑖𝑖 = 1, … ,𝑘𝑘 factors, and 
𝑥𝑥𝑖𝑖 represent the factors. This model can be readily expanded to include two-factor interactions or 
quadratic terms. Unlike traditional linear regression, logistic regression is a nonlinear model, meaning 
that the model is nonlinear in the parameters – note the “exp” term in both the numerator and 
denominator of Equation 1.  

We could execute a classical DOE, such as a factorial design (Natoli and Oimoen, 2019), to estimate the 
logistic regression model parameters (𝛽𝛽𝑖𝑖 in Equation 1). This type of design will achieve maximum power 
(for a fixed sample size) for a continuous response because the test runs are at the corners of the design 
space. However, this design is not typically sufficient for binary responses, where we need a mixture of 
successes and failures to estimate the logistic regression model. Evaluating a design for a binary 
response using the metrics for a continuous response, therefore, is misleading and does not correctly 
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estimate the risk associated with the design. Unfortunately, because logistic regression is a nonlinear 
model, there is no closed-form solution (i.e., fixed formula) to estimate the power prior to test 
execution. One way to estimate power is using Monte Carlo (MC) simulation.  

Simulated Power 
We can estimate the power of a proposed test design by simulating results of the DOE thousands of 
times. A description of the simulation procedure is shown in Table 1.  

Table 1: Description of Empirical Power Simulation 

Step Description  
0 User provides test design, specifies the form of the logistic regression model, initial guesses 

for model parameters, and the significance level (𝛼𝛼). 
1 Randomly generate binary responses for all test runs in design using the specified model in 

step 0. 
2 Fit a logistic regression model using randomly generated responses. 
3 Determine which model terms are statistically significant by comparing each p-value to the 

stated significance level.  
4 Repeat Steps 1-3 N times (e.g., N = 1000) 
5 Calculate estimated power as the proportion of simulations where model term was deemed 

statistically significant over total N iterations.  
 

Step 5 of the simulation provides the primary desired output. In each iteration of the MC simulation, we 
make a determination on whether a model term is statistically significant. Power for each model term 
can be estimated as the proportion of simulations where the term was identified as statistically 
significant across all iterations of the simulation. This type of power estimate is called an “empirical” 
power estimate because it is determined using simulation. The primary goal is to assess the 
effectiveness of the design prior to test execution using subject matter expertise in the simulation.  

The factor coefficients (𝛽𝛽𝑖𝑖 in Equation 1) determine the probability that the simulated response is a 
success or a failure and are analogous to the effect size (signal) that a model term has on the response. 
Figure 1 shows the effect of the model parameter in a logistic regression model for a single factor (with 
𝛽𝛽0 = 1). Note that the logistic regression model forms an S-shaped curve to model the effect of a single 
factor on the probability 𝑝𝑝 when 𝛽𝛽1 is greater than zero (and a reverse S-shape when 𝛽𝛽1 is less than 
zero). When 𝛽𝛽1 is greater than 0, then 𝑝𝑝 increases as 𝑥𝑥 increases. As the magnitude of 𝛽𝛽1 increases, the 
line becomes steeper. When 𝛽𝛽1 is 0, then the factor 𝑥𝑥 has no effect on 𝑝𝑝, and so the line is flat. To 
estimate power, users must specify estimated values for each model term. Because these values can be 
challenging to estimate prior to designing the experiment, we have a tool to help users specify these 
values. Please refer to the Appendix for details on this method.  
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The rest of this best practice describes how to use the app that implements this technique. We discuss 
the user inputs and how to interpret all of the outputs. For further questions, email the STAT COE at 
COE@afit.edu.  

 

Figure 1: Relationship of logistic regression model coefficients with probability of success 

Binary Power Shiny App 
The shiny app is available on the STAT COE website at [INSERT LINK]. As an illustrative example, suppose 
we are planning a test to estimate the probability of penetrating armor. There are three factors of 
interest: velocity, angle, and lot number. Velocity and angle are both continuous factors while the lot 
number is categorical with two levels (coded A and B). For the purposes of this example, we leave the 
factor levels in coded units (-1, 1), where -1 represents the low level and 1 represents the high level for 
the actual units of the factor. Note that the actual units can be used in the design when using the app. 
The response is Armor Penetration with a “1” representing that the projectile went through the target 
and a “0” representing that the projectile did not go through the target.  

Initial User Inputs 
This section describes the user-required inputs to the app. 

Load a Design File 
The first step is to load the test design under consideration by clicking the “Browse” button on the main 
page. The design file should consist of comma, semicolon, or tab delimited columns, with one column 
per factor. Empty columns (e.g., placeholders for the response variable) are ignored. By default, the app 
assumes that the first row of each design file contains factor names. If factor names are not included, 
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deselect the checkbox next to “Does the file have a header row?” and factor names will be generated 
automatically. Figure 2 shows the initial view of the app before a design file is uploaded.  

 

Figure 2: Step 1 to Use Binary Power App - Load the Design File 

For the armor penetration example, we created an initial design with 20 runs: a replicated 23 design with 
4 center points. This design is a logical design choice for continuous responses; however, will it be an 
effective design for a binary response?  

Review Factor Properties 
Once the design has been uploaded to the app, review the factor properties to ensure it has been read-
in correctly. For each factor identified in the data table, you can specify whether the factor is numeric, 
categorical, or should be ignored in the analysis. This last option is helpful if there were other columns 
(e.g., run order) in the design file that are not of interest in the design evaluation. The “Ignore” feature 
will exclude that column in most subsequent plots, tables, and analyses.  

The app provides a summary for each factor. For categorical factors, the frequency and percentage of 
runs at each level is given. For numeric factors, the summary statistics give the minimum and maximum, 
along with the number of distinct levels the factor takes on. Figure 3 shows the factor properties for the 
armor penetration design.  
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Figure 3: Step 2 to Use Binary Power App – Review Factor Properties 

Specify the Form of the Model 
Once the factors have been identified, specify the desired form of the model by selecting whether to 
include two-factor interactions and/or quadratic terms. By default, just main effects are included. Note 
that while the option to include quadratic effects is always listed, quadratic effects are only possible for 
numeric factors. When all factors are categorical, clicking on “Quadratics” will bring up an empty table. 
Figure 4 shows the model specified for the armor penetration example; in this evaluation, we include 
just the main effects for an initial screening experiment, and thus leave both boxes unchecked.   

 

Figure 4: Step 3 to Use Binary Power App - Specify Form of the Model 
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Specify Model Parameters 
Click the second tab in the app, called “Factor Coefficients.” The factor coefficients tab contains one to 
three tables depending on whether main effects, two-factor interactions, and/or quadratic terms are 
included in the specified model from Step 3 of the app. These tables are critical in the app as they 
capture the estimated coefficients in the logistic regression model (𝛽𝛽𝑖𝑖 in Equation 1). These are the 
values that are used to randomly generate the responses in each iteration of the Monte Carlo 
simulation. The simulation coefficients determine the probability that the simulated response is a 
success or a failure described in Table 1, Step 2.  

Main Effects Table 
The intercept term in the model represents a baseline condition of the factor levels, corresponding to 
the first level of all categorical factors and all numeric factors set to zero. For numeric main effects, the 
coefficient is related to the slope of the logistic regression equation (as seen in Figure 1). For categorical 
main effects, we must specify coefficients for all factor levels except the first (which is incorporated into 
the baseline condition). For example, if the factor has j = 3 levels, we must specify j - 1 = 2 model 
coefficients. For the jth level (j > 1), the coefficient is the expected difference (before transforming to a 
probability in the logit function) between the jth level and the first level when all other factors are fixed 
at the baseline condition.  

Interaction Effects Table 
For two numeric factors, the single coefficient is the expected change in slope of one factor as the other 
factor increases by one unit. For two categorical factors, we must specify coefficients for each 
combination of non-baseline factor levels. For example, if factor 1 has j = 3 levels and factor 2 has k = 4 
levels, we must specify (j - 1)*(k - 1) = 6 coefficients. For factor 1 at level j (j > 1) and factor 2 at level k (k 
> 1), the coefficient gives the expected difference in the response between that condition and the 
baseline condition (both factors are set to level j = 1 and k = 1). For one categorical factor and one 
numeric factor, we must specify a coefficient for each level of the categorical factor except for the 
baseline condition. In other words, if the factor has j levels, we must specify j - 1 coefficients. The value 
of the interaction term for the jth level (j > 1) of the categorical factor is the change in the slope of the 
numeric factor when the categorical factor is set to level j.  

Quadratics Effect Table 
Quadratic effects only apply to numeric factors. Including quadratic terms in the model allows us to 
estimate curvature in the response.  

Additional Options 
The “Estimate” column in each table controls whether or not the term is included in the estimated 
statistical model (Table 1, Step 3). The coefficients will still be used to simulate the responses; the terms 
will just not be included in the model evaluation. For categorical factors with more than two levels, 
despite multiple checkboxes corresponding to each level (or combination of levels), the factor can only 
be “in” or “out” of the model. To update any element of the factor coefficients table, enter in the 
appropriate values and then click the “Update Table” button.  
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Note: the coefficient values can be challenging to estimate without prior knowledge of the system. We 
recommend using the binary coefficients app, also developed by the STAT COE, available at the 
following link [INSERT LINK]. This app allows the user to enter in estimates of the probability of success 
at specified test points. The app then estimates the coefficients of the logistic regression model based 
on those probability estimates. See the Appendix for more information.  

Armor Penetration Example 
For the armor penetration test design, we consulted with a subject matter expert to obtain estimates of 
the probabilities of armor penetration at the corner points of the factor space. The subject matter 
expert suspected there could be up to a 5% difference between the two ammo lots. See the Appendix 
for more details on this approach to estimating the model coefficients. Using the binary coefficients app 
and inputs from the subject matter expertise, we obtained the following estimates for the model 
coefficients, shown in Figure 5.  

 

Figure 5: Specifying Model Coefficients for Armor Penetration Example 

 

Outputs 
This section describes the output of the app and how to interpret the results.  

Predicted Probability of Success 
Once we enter the coefficients into the model, a summary table shows the estimated probability of 
success for the different factor combinations in the test design. When all the coefficients are set to zero, 
the probability of success for all factor conditions is 0.5. This table can be useful to assess the validity of 
the coefficients entered in the previous step.  

Assess Design 
Click the Assess Design tab. This tab provides two additional design evaluation tools to assess the quality 
of the test design: 1) a correlation plot to assess the design orthogonality and 2) a scatterplot matrix to 
assess the test space coverage.  
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When evaluating a design, we want to make sure that no two effects are highly correlated with each 
other. If two model terms are highly correlated with each other, we are not able to distinguish which 
model term causes a change in the response. The correlation plot is a symmetric table with each row 
and column representing a term in the specified logistic regression model. Black squares represent 
complete correlation (correlation = 1) between model terms and white squares represent no correlation 
(correlation = 0) between model terms. On the main diagonal is the correlation between a model effect 
with itself. Any term is perfectly correlated with itself, so we always see black squares down the main 
diagonal. In a perfect scenario (called an orthogonal design), we will see no correlation between any 
other effects in the off diagonal; i.e., white squares entirely in the off-diagonal.  Figure 5 shows the 
correlation plot for the armor penetration example. This was a 23 design with 4 center points; as 
expected, the design is an orthogonal design for the main effects.  

 

Figure 6: Correlation plot for the Armor Penetration Example 

The scatterplot matrix is a set of pairwise scatterplots for each factor in the test design. This plot 
visualizes the test space coverage to ensure the test space is sufficiently captured in the design. This plot 
also includes color coding to represent the probability of success in the design space. Red represents 
high probabilities of success while blue represents low probabilities of success. Note that jittering is 
included on the plots for categorical factors to distinguish multiple test points at that location. Figure 7 
shows the scatterplot matrix for the armor penetration test design example. Note that the predicted 
probability of penetration is much higher for high velocities, with the highest probability of success at 
the low angle.  
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Figure 7: Scatterplot Matrix for Armor Penetration Design 

Simulation 
Click the Simulation tab; this is where the primary outputs of the app are displayed. Specify the total 
number of runs in the MC simulation, which has a default value of 1,000 (and a maximum possible value 
of 10,000). This value determines the number of times to repeat the simulated response values as 
described in Table 1, Step 4. Click the “Run Simulation” button. The simulation will take several seconds 
to execute. Note that the results in the simulation will vary if you execute the simulation multiple times 
due to the random nature of the MC simulation.  

The app displays several results from the simulation to assess the effectiveness of the design, which we 
discuss in the following sub-sections.   

Table of Results 
The primary table of results summarizes the output of the MC simulation including: the mean model 
coefficients, standard error of the model coefficients, 95% confidence interval of the coefficient mean 
estimate, estimated power for various significance levels (𝛼𝛼), and a heuristic to assess the likelihood of 
“separation.” We discuss each of these elements in turn.  As described in Table 1, Step 2, in each 
iteration of the MC simulation, the model coefficients are estimated for the randomly generated data in 
the design. The table provides the mean model coefficient estimate across all N iterations of the MC 
simulation for each model term. Ideally, the mean model coefficient is close to the user-specified value 
provided in the “Factor Coefficients” tab.  

In addition to the mean coefficient value, the table also displays the standard error for each model 
coefficient. This value is important to evaluate to ensure the design has a sufficient number of runs to 
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estimate the logistic regression model. As discussed in Part 3 (Natoli et al., 2020) of this best practice 
series, logistic regression models are susceptible to separation, a condition when a factor or a model 
term perfectly predicts the response. When separation occurs, the model terms in the logistic regression 
model do not exist because an infinite number of solutions could fit the data. Large values of standard 
error of the model coefficients are an indicator that separation exists in the data, which can be hard to 
detect through visual inspection as the number of factors increases. Definition of “large” depends on the 
units of measure of the factors; however, some authors have suggested some heuristics to detect 
separation. SAS (2019) for example, suggests that standard errors above 5000 may be useful to detect 
separation. The proportion of MC iterations with standard error over 5000 is shown in the last column of 
the table. If separation is likely to occur, the chosen design will not be effective because the logistic 
regression model (or some of the model terms) will not be estimable. Separation is more likely to occur 
with small test sizes, when there are a large number of model terms relative to the sample size, and 
there aren’t a sufficient number of levels of all factors (Agresti, 2013). In cases where separation is likely 
to occur, we recommend considering alternate design choices to minimize this issue occurs in the test.  

Figure 8 shows results for an MC simulation with N = 1000 iterations for the armor penetration example. 
The table shows the actual parameter values (those specified in the Factor coefficients tab, Figure 5) and 
the mean estimated values from the MC simulation. All of the mean estimates are in the correct 
direction as specified, although the magnitudes vary. Note there is also a metric that states “92 out of 
1000 runs produced probabilities of 0 or 1.” This indicates that in 92 of the 1000 MC iterations, the 
response values in the design were either all 0s (no penetration) or all 1s (penetration). Therefore, 9.2% 
of the time, a logistic regression model is not estimable as the responses were all the same values across 
all 20 runs.  

 

Figure 8: Binary Power App Table of Results (Part 1) 

The results table then shows the “empirical power” estimates from the MC simulation for different 
values of type I error (𝛼𝛼). As described in Table 1, Step 3, we determine whether a model term is 
significant in the logistic regression model by comparing the p-value to a specified significance level. If 
the p-value is less than 𝛼𝛼, then we deem the term statistically significant; if the p-value is greater than 𝛼𝛼, 
the model term is not statistically significant. The estimated power is the proportion of MC iterations 
where the model term was deemed statistically significant. There are power estimates for four values of 
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𝛼𝛼: 0.01, 0.05, 0.1, and 0.2. These values correspond to confidence levels of 0.99, 0.95, 0.9, and 0.8, 
respectively. Ideally, these power estimates will be relatively large (≥ 0.80) for model terms with 
important effects as specified in the Factor Coefficients tab. If the estimated power values are low, then 
we recommend considering alternative design options (e.g., increase the number of runs or levels of the 
factors), particularly for factors that likely have important effects on the response.  

Figure 9 shows the remainder of the table of results for the armor penetration example. Note that this 
table has been cropped to show the factor labels with the estimated power values. In this example, the 
power for all model terms is well below 0.80, even for the largest value of 𝛼𝛼. For example, the power to 
detect the effect of velocity (which had the largest effect of the three factors) is estimated to be just 
0.572 for a significance level of 0.2. Note that the power for the ammo lot is quite small, which may be 
satisfactory if the predicted effect of the ammo lot is not considered practically important. Remember 
that having high power means that we can detect a factor effect with a given SNR. If the expected SNR is 
small, then low power will be expected for limited test sizes. The user must decide how large an effect 
needs to have a large probability of detecting. The last column shown in Figure 9 is the separation 
heuristic previously described. In this example, separation is likely to have occurred at least 10% of the 
time for the velocity effect.  

 

Figure 9: Binary Power App Table of Results (Part 2) 

Power Plot 
This figure provides a visualization of the estimated power shown in the table of results. The graph 
displays a power curve against potential values of the significance level; there is a curve for each model 
term. Ideally, we will see high values of the estimated power for all the model terms; a reference line for 
0.8, a common standard for power, is included in the plot. This figure can provide insight into the 
tradeoffs between type I error and type II error (1 – power) for the design under consideration. Figure 
10 shows the estimated power curves for the armor penetration example. We see that the power for 
velocity is much higher compared to the other model terms. The power for angle is particularly low, 
which is cause for concern because the subject matter expert suspects this is an important factor effect 
to estimate.  
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Figure 10: Estimated Power Across Values of Significance Level for Armor Penetration Example 

P-Value Plot 
This figure provides a visual display of the distributions of the p-values for each model term across all 
runs in the MC simulation. The figure shows a violin plot of the p-value for the hypothesis test 
associated for each model term in the logistic regression model. This figure provides insight into how 
frequently the model term is deemed statistically significant or not without specifying a specific 
significance level. Figure 11 shows the p-value distribution plot for the armor penetration example. Note 
that the p-values for velocity tend to be much lower compared to those for the other factors. This 
reflects the same information gleaned from the power plot.  

 

Figure 11: p-value Distribution Plot for Armor Penetration Example 

Standard Error Distribution Plot 
This figure provides additional insight into the values of the standard error for the model coefficients to 
help assess the likelihood of separation when fitting the logistic regression model with data collected 
during the actual test execution. High values of standard error are indications that separation has 
occurred. The plot provides an option to graph the standard error on a log-scale to provide more 
informative graphs. Figure 12 shows the standard error plot for the armor penetration example. Note 



STAT COE-Report-10-2021 
 

 

 Page 15  
  

that the standard error for the ammo lot tends to be low, while there were several iterations in the MC 
simulation for both angle and velocity where the standard error of the model estimates are quite large. 
This is an indication that separation is more likely for angle and velocity.  

 

Figure 12: Standard Error Distribution Plot for Armor Penetration Example 

Download Report 
If you click the “Download Report” button, all of the described output are provided in a pdf document 
available for the user to use in any reporting documents.  

Conclusion 
This best practice introduced a new technique using MC simulation to estimate the power of a DOE 
when the response is binary. This method can provide valuable insights into the effectiveness of a test 
design for a binary response without relying on approximations to the normal distribution or design 
type. There is a disadvantage to this approach in that it requires eliciting critical information from the 
user: the estimated coefficient values for the logistic regression equation. This requirement puts a user 
in a “catch-22” situation: the user is executing a test to estimate the model coefficients, but to choose 
which design to run, they have to know a priori what those model coefficients are. This disadvantage 
can be mitigated by using the binary coefficient tool to help elicit information from a subject matter 
expert. Many practitioners will be able to provide ballpark estimates of a probability of success at 
particular test points compared to providing the value of the 𝛽𝛽𝑖𝑖 values. In addition, we recommend 
doing sensitivity studies to estimate the power of the design. For example, obtain initial estimates for 
the model parameters and assess the properties of the design. Then repeat the design evaluation with 
different estimates of the model coefficients to assess how robust the design is to changes in the model 
parameters. This type of design evaluation is analogous to evaluating a design for a continuous response 
using differing SNRs and type I error rates.  

We believe that while this method requires more information from the user, it can provide more 
informed assessments of the risk of a test design for a binary response. In the armor penetration 
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example presented throughout this best practice, we saw very low values of power for a 20-run test. 
Because this design is not an effective design, we considered alternative design options that increased 
the number of levels of the factors as well as the number of runs in the test to find a more appropriate 
test design. The app demonstrated throughout this best practice can be found at the following link: 
[INSERT LINK] 

If you have any questions, please contact the STAT COE at COE@afit.edu.  
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Appendix: Binary Coefficients App 
This appendix describes an additional tool developed by the STAT COE to help users estimate the model 
coefficients of the logistic regression model (𝛽𝛽𝑖𝑖 in Equation 1). This app is intended to be used in 
conjunction with the power app described in the main body of this document to find the coefficients of 
the logistic regression model. We demonstrate the features of this app with the armor penetration 
example previously described.  

A critical input from the user is the estimated model coefficients to estimate the power of the test 
design. To determine these coefficients, we consulted with a subject matter expert who could give us 
ballpark estimates of the probabilities of penetration across the conditions of the velocity and angle. 
Figure 13 shows the factorial points for velocity and angle with the estimated probability of penetration 
at each corner point (left figure). The subject matter expert suspected that there could be up to a 5% 
difference between ammunition lots, and so we added 5% probability penetration at each factor 
condition to represent the effect of ammo lot B.  

 
Figure 13: Armor Penetration Expert Probability Elicitation 

We can now use this information from the subject matter experts in the Binary Coefficients App to 
estimate the model coefficients.  

User Inputs 
Use the side-panel to enter the details of the test design: the number of factors and the type of model. 
The app currently allows a maximum of five factors, assumed to be continuous. Specify if you wish to 
include two-factor interactions in the model by clicking the checkbox under “Select incorporated 
effects.” Once all inputs are entered, click the “Update Table” button. Figure 14 shows the user inputs 
for the armor penetration example. Note that we do not include interactions in this example and we 
leave the factor units coded between -1 and 1.  
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Figure 14: Binary Coefficients App User Inputs 

After clicking the “Update Table” button, the table in the main panel of the app shows all possible test 
conditions where all factors are either at the lowest or highest value. The final column in this table 
shows the probability of success for each factor level combination. We enter in the information elicited 
from the subject matter expert in this column. Ensure that the definition of a success is clearly 
understood for the subject matter expert. The default values for the probability of success are set to 0.5, 
as seen in Figure 15a. Users should update the probability of success for every condition to the best of 
their knowledge.  

 

Figure 15: Binary Coefficients App a) Default entries; b) entries for the armor penetration example 

a) b)
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Figure 15b shows the probabilities elicited from the subject matter expert for the armor penetration 
example. Note that the app restricts probabilities to be between 0.01 and 0.99 to obtain stable 
estimates of the model coefficients. Click the “Update Coefficients” button. 

Binary Coefficients App Output 
The “Coefficients Table” shows the values of the model coefficients to use in the logistic regression 
model. The app uses a solver to determine these values, and assumes the model for the binary 
responses uses the logit function (as seen in Equation 1). The values of the coefficients in this table can 
be used in the binary power app, as was seen in Figure 5. The app also shows the log-odds of the 
probability of success listed in an equation form. This is simply the linear component in the logistic 
regression equation. Figure 16 shows the coefficients table for the armor penetration example; these 
values were used in the example shown in the main body of this best practice to estimate the power of 
the test design.  

 

Figure 16: Coefficients Table for Armor Penetration Example 

Current limitations of this app are listed below. Current work is underway to address some of these 
limitations.  

• Assumes factor levels are coded (-1 to 1). If your test design is in actual units, evaluate the test 
design using coded units to seamlessly use both apps.  

• Assumes model for 1 to 5 factors 
• Assumes all factors are continuous 
• Allows main effect and two-factor interaction models only  
• Restricts probability entries to be between 0.01 and 0.99 to obtain more stable coefficient 

estimates.  
• Assumes the logit function in the model for the binary response 
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