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Executive Summary

Computer simulations provide an interesting change to classic design choices because the responses are
typically deterministic or have very little noise. More importantly, test designs should exhibit this
characteristic, as the test design always reflects the type of model used to fit the response. In computer
experiments, higher order terms are frequently necessary to adequately characterize a response.
Therefore, space filling designs are often excellent design choices because the design points are spread
out evenly throughout the design region. These designs provide flexibility to form appropriate models to
characterize the system.

Keywords: Space filling designs, computer simulations, experiments, deterministic response

Introduction

As computer processing power rapidly increases, computer simulations are being utilized in a number of
scenarios, especially when physical testing is too challenging. For example, computer experiments may
be preferred when testing the physical system is expensive, the physical system is difficult to operate,
there are safety concerns, or the computer model allows for faster exploration of
alternatives/development of prototypes (Montgomery, 2017). In general, simulations are capable of
running a larger sample size than we could on the physical system; however, in some computer
experiments each run may still take a long time to run due to the complex nature of the simulation. A
well-designed, efficient test is still, therefore, required for these types of computer experiments.

The response of a computer experiment is often deterministic, meaning the computer experiment will
always produce the same output when the initial input conditions remain constant. The model we fit on
the data from a computer experiment, therefore, must reflect that there is little to no noise in the
response. This model also informs the type of design used for the test itself. In classical designs, the
three foundations of design of experiments (DOE) (randomization, replication, and blocking) are
emphasized when selecting a design for a given test. However, these principles are irrelevant for
deterministic models, because the response will always be the same for the same factor combination
regardless of when tested. In other words, replicates waste resources and the effect of potential noise
factors (e.g., day) are no longer a concern. Another characteristic of computer experiments with a
deterministic output is that these models often require higher order terms, particularly with the
interaction terms between factors. Higher order terms are included because the computer simulations
are typically an attempt to replicate a complex process. The goal of these tests is generally
characterization over comparison in order to understand the properties of the true physical system.
Therefore, choosing only corner points (like in a factorial design) will not be sufficient to characterize the
response due to its more complex nature. Rather than just using corner points, the designs for computer
experiments should fill the design space. This allows us to fit many types of models that can explain the
complexity of these systems (Montgomery, 2017).
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Space Filling Designs

Space filling designs are recommended for tests with deterministic models because the design points
are spread out evenly throughout the design region. In order to use these design choices, an important
assumption is necessary: the computer simulation must reflect the true physical system. This paper does
not explore the ability for space filling designs to help validate a simulation with physical test data, but
does explain using these designs on a validated simulation to characterize a physical system.

Due to the spread out points, space filling designs are able to capture the different behaviors of
responses in different areas of the design region. Because of the complex nature of these simulations,
the behavior of the response can change dramatically across the design space. Space filling designs
typically seek to not have replicates in k dimensions (where k is the number of factors). If the dimension
of the design space is reduced upon finding factors with no statistical effect on the response, an ideal
space filling design will not have replicate points in the lower dimension design space. For instance, if a
factor is determined to be not significant and the design is projected onto the lower dimension of
remaining factors, replicates will not be present. This allows us to gain more information on the system
since replicated test points do not provide additional information and the response is deterministic.

The design diagnostics for space filling designs are not as extensive (or meaningful) as compared to
classical designs. Metrics such as power, prediction variance, and the alias properties of the design are
no longer meaningful for models with a deterministic response. Space filling design metrics include the
minimum distance between points and discrepancy. These diagnostics are meaningful when comparing
multiple designs. The larger the minimum distance between points, the better, for a fixed sample size.
Discrepancy is a metric for how evenly spaced the design points are throughout the design region. The
smaller the discrepancy, the better, for a fixed sample size, as this indicates a more uniformly spaced
design. Four different space filling designs are discussed in the next sections.

Sphere Packing Design

Sphere packing designs choose design points such that the minimum distance between pairs of design
points is maximized. All factors must be continuous to create a sphere packing design. The algorithm for
creating a sphere packing design uses min-max optimization. This design type does not consider
discrepancy, so sphere packing designs typically have large values for the minimum distance between
points and discrepancy. Figure 1 shows an example of a sphere packing design for three factors.
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Figure 1: Sphere packing design

Simply observing the design in all dimensions may be difficult to interpret. To help clarify, often two
variables will be plotted against each other, or a scatterplot matrix will be created. Both can be seen in
Figure 2.

1 - LR -
., :
1.0 . . . -
x2 o ¥ ot
L] L Y
1 - - sas
0.5
. . b 1 e gee s & " e -
. . . . L
. . - - LI
X1 0.0 B0 e 2,0
H - .
. . -
1 @ «*ses § o* s
05 . . 1 W = s @ g = e 8 g . 08
' e - -, . H
. - -
. . X4 0o .,"'.g - ;' o2 e
- . L4 - - L
10 * * I S o 3 eee s B . .
10 05 0.0 05 10 1 0 11 0 11 0 1
X2 X1 X2 X3
a) b)

Figure 2: Sphere packing design for (a) two factors and (b) three factors

These graphs help determine what areas of the design space have been covered. In observing the
scatterplot matrix, it is clear to see that sphere packing designs favor the edges of the design space
before putting points into the middle of the design space. This approach helps to maximize the
minimum distance between points. Sphere packing designs clearly favor areas of the design space and
are not uniformly spread throughout which is why there are large discrepancy values.
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Uniform Design

Uniform designs choose points that are uniformly scattered throughout the design region. Once again,
all factors must be continuous to create this type of design. Uniform designs seek to minimize the
discrepancy, but do not consider the minimum distance between points metric. Therefore, uniform
designs typically have small values for the minimum distance between points and small values for
discrepancy. Figure 3 shows an example of a uniform design for two factors, three factors, and the
scatterplot matrix for the three factor design.
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Figure 3: Uniform space filling design for (a) two factors (b) three factors (c) three factors illustrated
using a scatterplot matrix

The scatterplot matrix of the uniform design in Figure 3¢ shows a much more even spread when
compared to the sphere packing design. However, the points can be very close together which may
indicate a lack of information in certain areas in the design region. For example, in Figure 3a and 3b, the
corner points are not captured in the uniform design, which may be important areas of interest. Both
the sphere packing design and uniform design are very effective at optimizing one of the two main
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metrics for space filling designs. Another type of space filling design attempts to balance the two
metrics.

Latin Hypercube Design

Latin hypercube designs provide a balance between the objectives of sphere packing and uniform
designs. The algorithm to select design points is constrained optimization: the objective is to maximize
the minimum distance between design points (like the sphere packing design), but requires points to be
evenly spaced (like the uniform design). This design type also requires that all factors be continuous.
Figure 4 shows a Latin hypercube design for three factors.
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Figure 4: Latin hypercube design

Latin hypercube designs are most commonly used in practice due to its balanced nature. The Latin
hypercube design is the most effective design to capture the different behaviors of responses in
different regions of the design region. Figure 5 shows a Latin hypercube design for two and three
factors, respectively. Note that this method captures the boundaries and interior of the space.
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Figure 5: Latin hypercube design for (a) two factors and (b) three factors
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The Latin hypercube design best captures the design space by selecting both points on the outsides of
the design region and in the center. The Latin hypercube is the most frequently used space filling design
when all factors are continuous. However, when there are categorical factors, a different type of design
is required.

Fast Flexible Filling

The three methods so far are applicable only when all factors are continuous. In contrast, the fast
flexible filling design is utilized when there is one or more categorical factor. In fact, this is the only
space filling design option currently available in JMP (the statistical software that is used in this paper)
which allows categorical factors. This design uses a clustering approach to select design points. This
method also best demonstrates why a space filling design seeks to not have replicates in k dimensions
(where k is the number of factors). Among the different levels of a categorical variable, a fast flexible
filling design will not place the continuous factors at the same level. The reasoning behind this choice is
that if the categorical factor is not significant, the design will project to an un-replicated design in the
lower dimension design space. Figure 6 demonstrates this concept where X1 is a continuous factor and
X2 is a two-level categorical factor. When the design is projected down from the categorical factor, it
results in no replicated points of X1, seen on the right side of Figure 6. The distance between each
consecutive design point is also the same in the lower dimensional space providing the most insight in
the fewest number of points.
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Figure 6: A fast flexible design with a 2-level categorical factor (X2) vs. a continuous factor (X1)

This method also extends to categorical factors with more than two levels. Figure 7 shows a fast flexible
filling design for X1, a continuous factor, and X2, a 4-level categorical factor. Projecting this design to the
X1 space, there are no replicated observations.
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Figure 7: A fast flexible design with a 4-level categorical factor (X2) vs. a continuous factor (X1)

Sample Size

Creating a space filling design must balance the cost (time, money, resources, etc.) of executing the
computer experiment and the number of runs necessary to estimate the model of interest. In general,
the recommended run size is approximately 10 runs per number of factors (Montgomery, 2017).
However, the more complex the model, the more runs that are necessary to suitably estimate it.
Comparing several designs for different run sizes and using scatterplot matrices provides additional
information for design choices. The designs can also be compared using the minimum distance between
points and discrepancy.

Gaussian Process Modeling

Gaussian process models are one of the most frequently used methods to model the response of a
deterministic computer experiment. These models seek to find an exact fit to the observations since
there is no (or little) noise. In linear regression, there is a parameter for every model term. Because
deterministic models tend to be complex, in that they require high order terms such as quadratic, cubic,
or high order interactions terms, the number of parameters to estimate can be large. In Gaussian
process models, the number of parameters is equal to the number of factors, so there are fewer
parameters to estimate.

The true relationship between the response and the factors is complex. Therefore, there is no assurance
that a Gaussian process model will interpolate well in a design region where no data was collected
(Montgomery, 2017). For example, in Figure 8, if the space filling design did not contain points in the
corner of the design region, the model would not capture the change in shape in this region.
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Figure 8: The Goldstein Price function®

The Gaussian process model is complex and requires a computer to fit the model. The form of the model
is:

y=pu+z(x)
where z(x) is a Gaussian process with covariance matrix a?R(6).

More information on the mathematical details of the Gaussian process model can be found in
Montgomery (2017).

Interpreting Gaussian process models requires observing a number of effects. Software will provide
information on theta, total sensitivity, main effect, and interaction effects. Theta represents the model
parameter estimates. Factors that have small theta values have little (or no) impact on prediction. The
main effect is the total variation due to the factor alone. The interaction effects show the variation due
to the interaction of one factor with other factors. The total sensitivity is the sum of the main effect and
all interaction terms for each factor. This is a measure of the influence a factor and all its interactions
have on the response. A common visual representation of the model is plotting the actual Y on the y-
axis and the Y jackknife predicted on the x-axis. The Y jackknife predicted is the predicted value where
the row is excluded from the prediction model for each associated response. Ideally, this will be a
straight line. Figure 9 shows an example of this graph.

1: https://en.wikipedia.org/wiki/File:Goldstein_Price_function.pdf
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Figure 9: (a) Actual vs. Predicted graph for a Gaussian process model and (b) Model Report for a
Gaussian process model

Gaussian process modeling is incredibly powerful for modeling complex systems, but sometimes a
computer experiment can be modeled using stepwise regression. Stepwise regression can fit models
that include interactions, quadratic terms, and higher order terms. These models can be easier to
interpret than a Gaussian process model, but may not adequately characterize the system across the
entire design space. If the stepwise regression technique does not yield a good fitting model, Gaussian
process modeling allows us to model the increased complexity in the system.

Conclusion

Space filling designs are powerful designs for computer systems with deterministic responses. These
designs allow for a spread of points encompassing the entire design space. A variety of different space
filling designs exist depending on the needs of the experiment. In order to model complex deterministic
systems, Gaussian process models seek to find an exact fit to these systems. These methods allow for
the use of rigorous statistical procedures to model computer simulations in a number of scenarios when
physical testing is challenging.
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Example

Design
Suppose we have a computer simulation for two separate sensor models we wish to compare: Model 1
vs Model 2. The goal of these models is to detect enemy targets. The test objective for this phase of
testing is to “characterize and show differences by using a higher fidelity model.” In other words, the
goal is to characterize the performance of Model 1 and how it compares to Model 2 under a variety of
test conditions. The first step is to identify the possible factors. For simplicity, numerical factors will be
considered continuous and can take on any numerical value within a given range. This test used:
e Number of decoys — targets that are intentionally designed by Red forces to deceive Blue forces
into diverting blue resources from the designed mission (Continuous)
o Number of confusers — decoy targets in the scenario that emit a signal similar to that of the
target(s) of interest (Continuous)
e Number of sensors — the number of autonomous vehicles equipped with synthetic aperture
radar (SAR) (Continuous)
e Number of electronic support measures (ESM) — the number of autonomous vehicles equipped
with ESM (Continuous)
e Split - Whether the initial formation of the autonomous vehicles is in a split or co-located format
(Categorical)
e Decoy Distance — max distance between decoys and target(s) of interest (Continuous)
e lLaydown — different patterns of red forces placements (Categorical)
e Model —the sensor model being utilized (Categorical)

Table 1: Summary of Factor Levels

Factor Number of Number of Numberof Number Decoy
Confusers Decoys Sensors of ESM Split  Distance Laydown Model
0 0 2 2 No .05 L1 Model 1
4 4 4 4 Yes A L2 Model 2
L3
Levels L4
L5
L6

We know this system is a deterministic model, so we elect to use a space filling design. Since we have
categorical variables, we use a fast flexible design. The following steps show how to create this design in
JMP V.13.

1. Open a New Data table.
2. Select “DOE -> Special Purpose -> Space Filling Design.”
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Analyze Graph Tools Add-Ins View Window Help
g Custom Design = i@ E S
1 Augment Design

Definitive Screening 3
Classical r
Design Diagnostics 3
Consumer Studies I
Special Purpose v | 7 | Covering Array

Space Filling Design

ot
4
Ar | Accelerated Life Test Design
4

Nonlinear Design

3. Enter the factors into the factor window. Select the role of the variable and the number of levels
and enter in the appropriate values.

EH, DOE - Space Filling Design - JMP Pro - O X
File Edit Tables Rows Cols DOE Analyze Graph Teols Add-lns View Window Help
4= Space Filling Design

4 Responses

|Add Response V‘ ‘ Remove ||NumbEr of Responses... ‘

Response Mame Goal Lower Limit Upper Limit Importance
Y Maximize . .
4 Factors
|Continuous||Categorica\ v|| Remove | Add N Factors 1
Name Rele Walues
dlNumber of Confuser  Continuous 0 4
dll Number of Decoys Continuous 0 4
ll Mumber of Sensors Continuous 2 4
_dl Mumber of ESM Continuous 2 4
+ Split Categorical No Yes
dll Decoy Distance Continucus 0.05 0.1
+ Laydown Categorical K] e Tz Ja [i5 Jie
+ Model Categorical Model 1 \Model 2
Specify Factors

Specify desired number of factors. Double click on a factor name or setting
to edit it.

4. Select “Continue.”
5. Specify the number of runs (80 since we have 8 factors) and Fast Flexible Filling design. There is
an option for factor constraints, of which we have none, in this window.

4 Define Factor Constraints
(@ None
Specify Linear Constraints
() Use Disallowed Combinations Filter
() Use Disallowed Combinations Script

8 Factors
Space Filling Design Methods
Number of Runs: |80
Sphere Packing Optimal Packing of Spheres
: Inside of a Cube.

Latin Hypercube Latin HyperCube with Optimal Spacing
Uniform Uniform Design
Minimum Potential Minimum energy designs in a spherical region.
Maximum Entrop Maximum entropy designs for a Gaussian process

1SE Optimal| Integrated mean square error optimal designs for a Gaussian
process

Fast Flexible Filling Space filling design through clustering.

Gal n Proc
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6. The following window will show the design, but first to view the diagnostics, scroll to the bottom
and expand the design diagnostics tab.

80 0.01045  1.80980 2053022 3.72694 Yes 0.09753 L3 Model 2

[> Design Diagnostics
Design Table

7. Observe the discrepancy (located near the bottom of the window) and the minimum distances

to compare this design with others.
<1~ Space Filling Design
< Design Diagnostics

ScaledN ScaledNumk ScaledNumk ScaledNumk ScaledDecoy Minimum MNearest

Run of Confuser of Decoys of Sensors of ESM Distance  Distance Point
76 0.34366 0.69587 0.00475 0.83360 0.52045 0.46 3
77 0.14647 0.47402 0.57361 0.13163 0.77046 0.328 52
78 0.49016 0.83138 0.06672 0.14548 0.98466 0.502 75
79 0.07281 0.77609 0.64513 0.59000 0.95733 0.388 25
20 0.33267 0.97562 0.66905 0.113% 0.52830 0.495 72

discrepancy = 0.0104

8. Select “Make Table” at the bottom of the window to show the design in a data table now. An
example of the first 7 observations is shown below.

4 -

- Mumber of Confuser Number of Decoys  NMumber of Sensors | Number of ESM | Split | Decoy Distance | Laydown = Model Y
1 2.5386768001 1.5474278315 391044566 20225116548 No 0.0779258206 L3 Model 1 .
2 3.2207813045 33774042804 3.7513520502 31490874226 No 00637948427 L4 Model 2 .
3 3.805868063 1.5560552251 3.4815080615 33654030879 Yes 0.051640427 L5 Model 1 .
4 3.0508264702 28700352280 3.3081838305 20450310532 Yes 00568137324 L1 Maodel 2 .
5 2.7399951163 2.1305646597 3.0510272958 2.5135128523 No 00650277708 L2 Model 1 .
6 14770135206 315494609865 34001712001 2.6370482456 Yes 00511578399 L4 Model 2 .
i 0.8825723868 32745579677 39006070545 2.1062936912 No 0.0575302977 L5 Model 2 .

9. In order to observe the design space captured by this design, we can create a scatterplot matrix.
Select “Graph -> Scatterplot Matrix.”

Tools Add-Ins  View
Graph Builder

&% Bubble Plot
$3 Scatterplot Matrix |

10. Load the 8 factors into the “Y, Columns” window and select “OK.”

Scatterplot Matrix - JMP Pro - O X
Scatterplots of all pairs of ¥ variables, or all X-Y pairs if X's specified

Select Columns Cast Selected Columns into Roles Action

19 Columns _diNumber of Confuser
4

PJHumber of Confuser Number of Decoys
Plumber of Decoys diNumber of Sensors
P|Hurmber of Sensors dlMumber of ESM
thSplit

dl Decoy Distance
th Laydown
thModel

Matrix Format | | qwer Triangular
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11. Observe the scatterplot matrix and make sure the design appropriately covers the design space.
Jitter may be selected and can be removed by selecting the red drop down and unchecking
“points jittered.”

Scatterplot Matrix
© HE
is o R
£ 3 27 e azaedy
TRNRSL
z 0 ¢
° - gt -
R ES
= 2 ‘.\3
E g 25 "o?§ )
EREERE 10 B2 X
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Se 35 Vpaes #.'.‘ 55 8%,
2 3 [ .$ L
20~ E )
= 2 -,
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S5 008 . .
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€ |:E WEN 2088 | WIIER (e Summ @ wm | @ " e mee
[ || wssssems osme me wmsmmos o sms . * emms =
2 (- seomees e e & SIS S8 - - [ ¥ 1)
) |2 ®ems sss &» smms seEmem ®wE ® & ] s smiswm
L1 wee am s sun | ows e w o L] * (e mmem
< Model 2 L] S GESammeE SR eS
©
I+
2 Model 1 - cmmens | cemsme | acenes | emseme | o  CaEseame 10408
0123 0123 2 3 2 3 Mo Yes 0.05 008 L1 L3 L5
Mumber of Mumberof Mumberof MNumber of Decoy
Confuser Decoys Sensors ESM Split Distance  Laydown

Analysis
Now, let’s assume we collected data on this experiment and wish to fit a model. The traditional method
would be to use the “Fit Model” command in JMP.

1. Select “Analyze -> Fit Model.”

AnalEe Graph Tools Add-lns

E=  Distribution

< FitVhyX |
f

[Z] Tabulate :

Bl Text Explorer ]
|

3 Fit Model :

2. Select the response and load it into the Y. Note: Data has been simulated for the response
column for this example. Select all of the factors and select the dropdown “Macros -> Factorial
to degree.” Degree will be set at 2 by default which will add in all of the main effects and two-
factor interactions.

Page
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8 Fit Model - IMP Pro - O
4 ~|Model Specification
Select Columns Pick Role Variables Personality! [ standard Least —
* 10 Columns - A Response - -
F |Number of Confuser aptional Emphasis | Effect Screening
| Weight || optional numeric |
| Help | | Run
| Freq | optional numeric |
. |Va|idation || optional | (] Keep dialog open
—  [remore]
A Response . y optional
Construct Model Effects
Add
Mest
Macros =
Full Factonial
| Factorial to degree Add selected columns and
i | interactions up to the specified
Factorial sorted d -
egree. E.g., degree 2 enters main
Response Surface | | effects and two-way interactions.

3. Select “Run” to build the model.

4. We can look at the Effect Summary of the model and remove insignificant terms at a specified
significance level, however this model has two terms that cannot be estimated since laydown
has many terms associated with it for the main effect and interactions due to the 6 different
levels of laydown. This requires a large number of runs to be able to estimate all of these terms
in the model. This means that there are more terms to fit than are estimable by our design. We
might instead try to fit a Gaussian process model.
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£ Effect Summary
Source LogWaorth
Mumber of Confuser(0,4) 1.211 ]
Mumber of Confuser*Number of Decoys 0.954 [
Laydown 0.888 [,
Mumber of ESM(2,4) 0.766 ]
MNumber of Decoys*Split 0.633 [ !
Mumber of Confuser*Mumber of ESM 0532 1 !
Decoy Distance(0.03,0.1) 04230 |
Mumber of Confuser*Split o408 @
Mumber of Sensors*Mumber of ESM 03841
Mumber of ESM*Model 02420 |
Split*Model 02571 |
MNumber of Sensors™Split 02370 !
MNumber of ESM*Decoy Distance 02130
MNumber of Decoys(0,4) 01800
Split*Laydown 0181 |
Mumber of Decoys*Mumber of Sensors 0168
Decoy Distance*Model 0167
Mumber of ConfuserModel 0165 |
Mumber of ESM*Split 0142
MNumber of Decoys*Decoy Distance 0.131] !
MNumber of Confuser*Decoy Distance 0.126]
Mumber of Sensors*Laydown 0122
Mumber of Sensors*Model 017 |
Mumber of Senscrs*Decoy Distance 0.107|
Split*Decoy Distance 0.003)
Mumber of ConfuserLaydown 0.085
Murmber of ESM*Laydown 0.062
Decoy Distance*Laydown 0.060
MNumber of Decoys*Model 0.0
Mumber of Decoys*Murmber of ESM 0.020
Mumber of Confuser*Mumber of Sensors 0.009
Mumber of Sensors(2,4) 0.005
Mumber of Decoys*Laydown 0.005
Laydown*Model 0.003
Model :
Split
Remove Add Edit [ ] FDR '* denctes effects with containing effects above them)

PValue

0.06152
0.11128
0.12942
017157
0.23277
0.29344
0.37758
0.29040
0.41260
0.45481
0.55301
0.57983
0.61172
0.64756
0.65867
0.67928
0.68023
0.68426
0.72073
0.73991
0.74837
0.75437
0.76467
0.78172
0.80641
0.82138
0.86731
0.87106
0.91070
0.95495
0.97977
0.98784
0.08884
0.99407

The two terms with “.” are inestimable.
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5. To fit the Gaussian process model, select “Analyze -> Specialized Modeling -> Gaussian Process.”

Analyze | Graph Tools Add-Ins View Window Help
E=  Distribution i@ By 2
["x  FitYbyX
f Decoys  NMumber of Sensors  Numb
g Tabulate BE507564 20872419925 3.99
$  Text Explorer 08628806 2.9054318682 3.9
3197197 2,2003887154 3.44
Bl [Milsrid 35839749 30374739498 3.1
5 7 4
Pt N , p6240162 20621475386 34
Specialized Modeling v | Fit Curve
Screening *| %, | Nonlinear
Multivariate Methods 4 -
. | %> | Gaussian Process
Clustering 3
Time Seri
Quality and Process ] il
Reliability and Survival 4 Specialized DOE Models »
Consumer Research »| == | Matched Pairs

6. Load the Response into “Y” and the factors into “X” and select “OK.”

% Gaussian Process - JMP Pro — O *
Select Columns Cast Selected Columns into Roles Action
*110 Columns A Response oK
P INumber of Confu: : optional numeric continuy
. ' -Cancel
X dl Mumber of Confuser
A Number of Decoys
4l Mumber of Sensors
4l Mumber of ESM
i Split
A Response 4 Decoy Distance
- th Laydown
Options h Model
Estimate nugget et P
O gget parameter By | optional
Fast GASP
Correlation Type Ferrzmem -
Minimum Theta Value 0
Block Size 80
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4 [*|Gaussian Process Model of Response
4 Actual by Predicted Plot
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a - I .
s L] - -
=40
.
. .
. ®e st .
20 -
.
.
0 -
0 20 40 60 80 100
Response Jackknife Predicted
4 Model Report
Total Mumber of Confuser Number of Decoys MNumber of Sensors Mumber of ESM  Decoy Distance
Column Theta Sensitivity Main Effect Interaction Interaction Interaction Interaction Interaction
Number of Confuser  3.938579  0.790036 0.584207 2 1.222e-12 0.144308 0.018639 0.042882
Number of Decoys ~ 3.3804e7 3.664e12 1.66e-12 1.222e-12 2 5.414e-13 8.612e15 2.321e13
Number of Sensors ~ 2,5400625 0.2412184  0,0898022 0.144308 5.414e-13 1 0.0030171 0.0040011
Number of ESM 0.1709209 0.0316853 0.009179 0.018639 8.612e-15 0.0030171 1 0.0008502
Decoy Distance 2035.0444 0.0503701  0.0026369 0.042882 2.321e13 0.0040011 0.0008502 .

When analyzing the Gaussian process model, the theta is the first parameter of interest. Recall, terms
with small thetas have little impact on the prediction formula. Number of Decoys and Number of ESM
have little effect on the response in this model. Next, main effect shows the total variation due to the
factor alone and Number of Confuser adds the most variation. We can also look at the graph provided,
which would be a straight line if the model fit perfectly. While the line is not perfect, it is clear to see a

positive trend and a relatively strong correlation which indicates this model is a good fit.
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