
STAT COE-Report-7-2018 

STAT Center of Excellence 
2950 Hobson Way – Wright-Patterson AFB, OH 45433 

Computer Experiments: 
Space Filling Design and 

Gaussian Process Modeling 
Authored by: Cory Natoli 

Sarah Burke, Ph.D. 

30 March 2018 

Revised 5 September 2018 

The goal of the STAT COE is to assist in developing rigorous, defensible test 

strategies to more effectively quantify and characterize system performance 

and provide information that reduces risk.  This and other COE products are 

available at www.afit.edu/STAT. 

D
IS

TR
IB

U
TI

O
N

 S
TA

TE
M

EN
T 

A.
 A

pp
ro

ve
d 

fo
r p

ub
lic

 re
le

as
e;

 d
is

tri
bu

tio
n 

is
 u

nl
im

ite
d.

 
C

LE
AR

ED
 o

n 
29

 M
ay

 2
01

8.
 C

as
e 

N
um

be
r:8

8A
BW

-2
01

8-
27

00
 

http://www.afit.edu/STAT


STAT COE-Report-7-2018 

 

Table of Contents 
 

Executive Summary ....................................................................................................................................... 2 

Introduction .................................................................................................................................................. 2 

Space Filling Designs ..................................................................................................................................... 3 

Sphere Packing Design .............................................................................................................................. 3 

Uniform Design ......................................................................................................................................... 5 

Latin Hypercube Design ............................................................................................................................ 6 

Fast Flexible Filling .................................................................................................................................... 7 

Sample Size ............................................................................................................................................... 8 

Gaussian Process Modeling .......................................................................................................................... 8 

Conclusion ................................................................................................................................................... 10 

Example ....................................................................................................................................................... 11 

Design ...................................................................................................................................................... 11 

Analysis ................................................................................................................................................... 14 

References .................................................................................................................................................. 19 

 

Revision 1, 5 Sep 2018: Formatting and minor typographical/grammatical edits.



 

 

Executive Summary 
Computer simulations provide an interesting change to classic design choices because the responses are 

typically deterministic or have very little noise.  More importantly, test designs should exhibit this 

characteristic, as the test design always reflects the type of model used to fit the response. In computer 

experiments, higher order terms are frequently necessary to adequately characterize a response. 

Therefore, space filling designs are often excellent design choices because the design points are spread 

out evenly throughout the design region. These designs provide flexibility to form appropriate models to 

characterize the system. 

Keywords: Space filling designs, computer simulations, experiments, deterministic response 

Introduction 
As computer processing power rapidly increases, computer simulations are being utilized in a number of 

scenarios, especially when physical testing is too challenging. For example, computer experiments may 

be preferred when testing the physical system is expensive, the physical system is difficult to operate, 

there are safety concerns, or the computer model allows for faster exploration of 

alternatives/development of prototypes (Montgomery, 2017). In general, simulations are capable of 

running a larger sample size than we could on the physical system; however, in some computer 

experiments each run may still take a long time to run due to the complex nature of the simulation. A 

well-designed, efficient test is still, therefore, required for these types of computer experiments. 

The response of a computer experiment is often deterministic, meaning the computer experiment will 

always produce the same output when the initial input conditions remain constant. The model we fit on 

the data from a computer experiment, therefore, must reflect that there is little to no noise in the 

response. This model also informs the type of design used for the test itself. In classical designs, the 

three foundations of design of experiments (DOE) (randomization, replication, and blocking) are 

emphasized when selecting a design for a given test. However, these principles are irrelevant for 

deterministic models, because the response will always be the same for the same factor combination 

regardless of when tested. In other words, replicates waste resources and the effect of potential noise 

factors (e.g., day) are no longer a concern. Another characteristic of computer experiments with a 

deterministic output is that these models often require higher order terms, particularly with the 

interaction terms between factors. Higher order terms are included because the computer simulations 

are typically an attempt to replicate a complex process. The goal of these tests is generally 

characterization over comparison in order to understand the properties of the true physical system. 

Therefore, choosing only corner points (like in a factorial design) will not be sufficient to characterize the 

response due to its more complex nature. Rather than just using corner points, the designs for computer 

experiments should fill the design space. This allows us to fit many types of models that can explain the 

complexity of these systems (Montgomery, 2017).   
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Space Filling Designs  
Space filling designs are recommended for tests with deterministic models because the design points 

are spread out evenly throughout the design region. In order to use these design choices, an important 

assumption is necessary: the computer simulation must reflect the true physical system. This paper does 

not explore the ability for space filling designs to help validate a simulation with physical test data, but 

does explain using these designs on a validated simulation to characterize a physical system. 

Due to the spread out points, space filling designs are able to capture the different behaviors of 

responses in different areas of the design region. Because of the complex nature of these simulations, 

the behavior of the response can change dramatically across the design space. Space filling designs 

typically seek to not have replicates in 𝑘 dimensions (where 𝑘 is the number of factors). If the dimension 

of the design space is reduced upon finding factors with no statistical effect on the response, an ideal 

space filling design will not have replicate points in the lower dimension design space. For instance, if a 

factor is determined to be not significant and the design is projected onto the lower dimension of 

remaining factors, replicates will not be present. This allows us to gain more information on the system 

since replicated test points do not provide additional information and the response is deterministic.  

The design diagnostics for space filling designs are not as extensive (or meaningful) as compared to 

classical designs. Metrics such as power, prediction variance, and the alias properties of the design are 

no longer meaningful for models with a deterministic response. Space filling design metrics include the 

minimum distance between points and discrepancy. These diagnostics are meaningful when comparing 

multiple designs. The larger the minimum distance between points, the better, for a fixed sample size. 

Discrepancy is a metric for how evenly spaced the design points are throughout the design region. The 

smaller the discrepancy, the better, for a fixed sample size, as this indicates a more uniformly spaced 

design. Four different space filling designs are discussed in the next sections. 

Sphere Packing Design 
Sphere packing designs choose design points such that the minimum distance between pairs of design 

points is maximized. All factors must be continuous to create a sphere packing design. The algorithm for 

creating a sphere packing design uses min-max optimization. This design type does not consider 

discrepancy, so sphere packing designs typically have large values for the minimum distance between 

points and discrepancy. Figure 1 shows an example of a sphere packing design for three factors. 
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Figure 1: Sphere packing design 

Simply observing the design in all dimensions may be difficult to interpret. To help clarify, often two 

variables will be plotted against each other, or a scatterplot matrix will be created. Both can be seen in 

Figure 2. 

 

Figure 2: Sphere packing design for (a) two factors and (b) three factors  

These graphs help determine what areas of the design space have been covered. In observing the 

scatterplot matrix, it is clear to see that sphere packing designs favor the edges of the design space 

before putting points into the middle of the design space. This approach helps to maximize the 

minimum distance between points.  Sphere packing designs clearly favor areas of the design space and 

are not uniformly spread throughout which is why there are large discrepancy values. 
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Uniform Design 
Uniform designs choose points that are uniformly scattered throughout the design region. Once again, 

all factors must be continuous to create this type of design. Uniform designs seek to minimize the 

discrepancy, but do not consider the minimum distance between points metric. Therefore, uniform 

designs typically have small values for the minimum distance between points and small values for 

discrepancy. Figure 3 shows an example of a uniform design for two factors, three factors, and the 

scatterplot matrix for the three factor design. 

   

Figure 3: Uniform space filling design for (a) two factors (b) three factors (c) three factors illustrated 

using a scatterplot matrix 

The scatterplot matrix of the uniform design in Figure 3c shows a much more even spread when 

compared to the sphere packing design. However, the points can be very close together which may 

indicate a lack of information in certain areas in the design region. For example, in Figure 3a and 3b, the 

corner points are not captured in the uniform design, which may be important areas of interest.  Both 

the sphere packing design and uniform design are very effective at optimizing one of the two main 
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metrics for space filling designs. Another type of space filling design attempts to balance the two 

metrics. 

Latin Hypercube Design 
Latin hypercube designs provide a balance between the objectives of sphere packing and uniform 

designs. The algorithm to select design points is constrained optimization: the objective is to maximize 

the minimum distance between design points (like the sphere packing design), but requires points to be 

evenly spaced (like the uniform design). This design type also requires that all factors be continuous.  

Figure 4 shows a Latin hypercube design for three factors. 

 

Figure 4: Latin hypercube design 

Latin hypercube designs are most commonly used in practice due to its balanced nature. The Latin 

hypercube design is the most effective design to capture the different behaviors of responses in 

different regions of the design region. Figure 5 shows a Latin hypercube design for two and three 

factors, respectively.  Note that this method captures the boundaries and interior of the space. 

 

Figure 5: Latin hypercube design for (a) two factors and (b) three factors 
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The Latin hypercube design best captures the design space by selecting both points on the outsides of 

the design region and in the center. The Latin hypercube is the most frequently used space filling design 

when all factors are continuous. However, when there are categorical factors, a different type of design 

is required. 

Fast Flexible Filling 
The three methods so far are applicable only when all factors are continuous. In contrast, the fast 

flexible filling design is utilized when there is one or more categorical factor. In fact, this is the only 

space filling design option currently available in JMP (the statistical software that is used in this paper) 

which allows categorical factors. This design uses a clustering approach to select design points. This 

method also best demonstrates why a space filling design seeks to not have replicates in 𝑘 dimensions 

(where 𝑘 is the number of factors). Among the different levels of a categorical variable, a fast flexible 

filling design will not place the continuous factors at the same level. The reasoning behind this choice is 

that if the categorical factor is not significant, the design will project to an un-replicated design in the 

lower dimension design space. Figure 6 demonstrates this concept where X1 is a continuous factor and 

X2 is a two-level categorical factor. When the design is projected down from the categorical factor, it 

results in no replicated points of X1, seen on the right side of Figure 6. The distance between each 

consecutive design point is also the same in the lower dimensional space providing the most insight in 

the fewest number of points. 

 

Figure 6: A fast flexible design with a 2-level categorical factor (X2) vs. a continuous factor (X1) 

This method also extends to categorical factors with more than two levels. Figure 7 shows a fast flexible 

filling design for X1, a continuous factor, and X2, a 4-level categorical factor. Projecting this design to the 

X1 space, there are no replicated observations.  
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Figure 7: A fast flexible design with a 4-level categorical factor (X2) vs. a continuous factor (X1) 

Sample Size 
Creating a space filling design must balance the cost (time, money, resources, etc.) of executing the 

computer experiment and the number of runs necessary to estimate the model of interest. In general, 

the recommended run size is approximately 10 runs per number of factors (Montgomery, 2017). 

However, the more complex the model, the more runs that are necessary to suitably estimate it. 

Comparing several designs for different run sizes and using scatterplot matrices provides additional 

information for design choices. The designs can also be compared using the minimum distance between 

points and discrepancy. 

Gaussian Process Modeling 
Gaussian process models are one of the most frequently used methods to model the response of a 

deterministic computer experiment. These models seek to find an exact fit to the observations since 

there is no (or little) noise. In linear regression, there is a parameter for every model term. Because 

deterministic models tend to be complex, in that they require high order terms such as quadratic, cubic, 

or high order interactions terms, the number of parameters to estimate can be large. In Gaussian 

process models, the number of parameters is equal to the number of factors, so there are fewer 

parameters to estimate. 

The true relationship between the response and the factors is complex. Therefore, there is no assurance 

that a Gaussian process model will interpolate well in a design region where no data was collected 

(Montgomery, 2017). For example, in Figure 8, if the space filling design did not contain points in the 

corner of the design region, the model would not capture the change in shape in this region. 
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Figure 8: The Goldstein Price function1  

The Gaussian process model is complex and requires a computer to fit the model. The form of the model 

is: 

𝑦 = 𝜇 + 𝑧(𝒙)  

where 𝑧(𝒙) is a Gaussian process with covariance matrix 𝜎2𝐑(𝜃). 

More information on the mathematical details of the Gaussian process model can be found in 

Montgomery (2017). 

Interpreting Gaussian process models requires observing a number of effects. Software will provide 

information on theta, total sensitivity, main effect, and interaction effects. Theta represents the model 

parameter estimates. Factors that have small theta values have little (or no) impact on prediction. The 

main effect is the total variation due to the factor alone. The interaction effects show the variation due 

to the interaction of one factor with other factors. The total sensitivity is the sum of the main effect and 

all interaction terms for each factor. This is a measure of the influence a factor and all its interactions 

have on the response. A common visual representation of the model is plotting the actual Y on the 𝑦-

axis and the Y jackknife predicted on the 𝑥-axis. The Y jackknife predicted is the predicted value where 

the row is excluded from the prediction model for each associated response. Ideally, this will be a 

straight line. Figure 9 shows an example of this graph. 

1: https://en.wikipedia.org/wiki/File:Goldstein_Price_function.pdf 

https://upload.wikimedia.org/wikipedia/commons/8/8c/Goldstein_Price_function.pdf


STAT COE-Report-7-2018 

 

 Page 
10 

 
  

(a)  

(b)   

Figure 9: (a) Actual vs. Predicted graph for a Gaussian process model and (b) Model Report for a 

Gaussian process model 

Gaussian process modeling is incredibly powerful for modeling complex systems, but sometimes a 

computer experiment can be modeled using stepwise regression. Stepwise regression can fit models 

that include interactions, quadratic terms, and higher order terms. These models can be easier to 

interpret than a Gaussian process model, but may not adequately characterize the system across the 

entire design space. If the stepwise regression technique does not yield a good fitting model, Gaussian 

process modeling allows us to model the increased complexity in the system.   

Conclusion 
Space filling designs are powerful designs for computer systems with deterministic responses. These 

designs allow for a spread of points encompassing the entire design space. A variety of different space 

filling designs exist depending on the needs of the experiment. In order to model complex deterministic 

systems, Gaussian process models seek to find an exact fit to these systems. These methods allow for 

the use of rigorous statistical procedures to model computer simulations in a number of scenarios when 

physical testing is challenging. 
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Example 

Design 
Suppose we have a computer simulation for two separate sensor models we wish to compare: Model 1 
vs Model 2. The goal of these models is to detect enemy targets. The test objective for this phase of 
testing is to “characterize and show differences by using a higher fidelity model.” In other words, the 
goal is to characterize the performance of Model 1 and how it compares to Model 2 under a variety of 
test conditions. The first step is to identify the possible factors. For simplicity, numerical factors will be 
considered continuous and can take on any numerical value within a given range. This test used: 

 Number of decoys – targets that are intentionally designed by Red forces to deceive Blue forces 
into diverting blue resources from the designed mission (Continuous) 

 Number of confusers – decoy targets in the scenario that emit a signal similar to that of the 
target(s) of interest (Continuous) 

 Number of sensors – the number of autonomous vehicles equipped with synthetic aperture 
radar (SAR) (Continuous) 

 Number of electronic support measures (ESM) – the number of autonomous vehicles equipped 
with ESM (Continuous) 

 Split - Whether the initial formation of the autonomous vehicles is in a split or co-located format 
(Categorical) 

 Decoy Distance – max distance between decoys and target(s) of interest (Continuous) 

 Laydown – different patterns of red forces placements (Categorical) 

 Model – the sensor model being utilized (Categorical) 
 

Table 1: Summary of Factor Levels 
 

Factor 
Number of 
Confusers 

Number of 
Decoys 

Number of 
Sensors  

Number 
of ESM 

 
Split 

Decoy 
Distance 

 
Laydown 

 
Model 

Levels 

0 0 2 2 No .05 L1 Model 1  

4 4 4 4 Yes .1 L2 Model 2 

      L3  

    L4  

     L5  

      L6  

 
We know this system is a deterministic model, so we elect to use a space filling design. Since we have 

categorical variables, we use a fast flexible design. The following steps show how to create this design in 

JMP V.13. 

1. Open a New Data table.  

2. Select “DOE -> Special Purpose -> Space Filling Design.” 
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3. Enter the factors into the factor window. Select the role of the variable and the number of levels 

and enter in the appropriate values.  

 

4. Select “Continue.” 

5. Specify the number of runs (80 since we have 8 factors) and Fast Flexible Filling design. There is 

an option for factor constraints, of which we have none, in this window. 
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6. The following window will show the design, but first to view the diagnostics, scroll to the bottom 

and expand the design diagnostics tab. 

 

7. Observe the discrepancy (located near the bottom of the window) and the minimum distances 

to compare this design with others. 

 
8. Select “Make Table” at the bottom of the window to show the design in a data table now. An 

example of the first 7 observations is shown below. 

 

9. In order to observe the design space captured by this design, we can create a scatterplot matrix. 

Select “Graph -> Scatterplot Matrix.” 

 

10. Load the 8 factors into the “Y, Columns” window and select “OK.” 

 



STAT COE-Report-7-2018 

 

 Page 
14 

 
  

11. Observe the scatterplot matrix and make sure the design appropriately covers the design space. 

Jitter may be selected and can be removed by selecting the red drop down and unchecking 

“points jittered.” 

 

Analysis 
Now, let’s assume we collected data on this experiment and wish to fit a model. The traditional method 

would be to use the “Fit Model” command in JMP. 

1. Select “Analyze -> Fit Model.” 

 
2. Select the response and load it into the Y. Note: Data has been simulated for the response 

column for this example. Select all of the factors and select the dropdown “Macros -> Factorial 

to degree.” Degree will be set at 2 by default which will add in all of the main effects and two-

factor interactions. 
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3. Select “Run” to build the model. 

4. We can look at the Effect Summary of the model and remove insignificant terms at a specified 

significance level, however this model has two terms that cannot be estimated since laydown 

has many terms associated with it for the main effect and interactions due to the 6 different 

levels of laydown. This requires a large number of runs to be able to estimate all of these terms 

in the model. This means that there are more terms to fit than are estimable by our design. We 

might instead try to fit a Gaussian process model. 
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The two terms with “.” are inestimable.  
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5. To fit the Gaussian process model, select “Analyze -> Specialized Modeling -> Gaussian Process.” 

 
6. Load the Response into “Y” and the factors into “X” and select “OK.” 
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When analyzing the Gaussian process model, the theta is the first parameter of interest. Recall, terms 

with small thetas have little impact on the prediction formula. Number of Decoys and Number of ESM 

have little effect on the response in this model. Next, main effect shows the total variation due to the 

factor alone and Number of Confuser adds the most variation. We can also look at the graph provided, 

which would be a straight line if the model fit perfectly. While the line is not perfect, it is clear to see a 

positive trend and a relatively strong correlation which indicates this model is a good fit. 
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