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Executive Summary 
 
There are many techniques to choose from when training data-driven models to ensure that one 
finds the best fit; however, it is vital to avoid over-fitting a model. Over-fitting occurs when a 
model “learns” to fit the training set so well that it begins to fit the random sampling variation as 
if it were predictive. To address this challenge, this Best Practice reviews fitting principles such 
as examining multiple models and decision metrics and offers model developers methods to 
avoid over-fitting models. We present methods including Train/Validate/Test and Cross-
Validation techniques, as well as fundamental principles such as never to validate the model on 
training data. For this Best Practice it is assumed that the user has already formulated a well-
defined purpose for the model and has appropriate training data. This paper aims to help model 
developers select appropriate training and validation methods to best isolate true predictive 
relationships from the noise of a system. 
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Introduction 
 
Data is well recognized as a source of insight in a wide variety of fields. However, reliable 
insights typically require more than examination of the raw values. Data-driven mathematical 
models are valuable tools for prediction or characterization of a system. With modern software 
they are also deceptively easy to implement, but care must be taken if the results are to be 
useful. Machine Learning models, despite their name, have no awareness of the concepts that 
we use them to describe. 
 
If a model is trained carelessly it will build ‘superstitions,’ using random variation as if it were 
predictive. Although it is not possible to eliminate that risk, techniques do exist to minimize that 
effect and then measure the reliability of a model for future events. This Best Practice 
introduces these techniques so that users avoid missteps that may result in severely misleading 
models. More specifically, it will cover three prominent issues in training a model to data: over-
fitting, generalizability, and model comparison. This paper will also describe standard 
techniques such as training versus validation sets, cross-validation, and out of sample validation 
to potentially implement with said principles for any algorithm/model that may fit the reader’s 
needs. 
 
Observational Data Limits 
Data-driven model training is frequently performed where the system is too complex to model 
(exclusively) through known causal relations. Observational data is commonly used because it 
is typically easier to gather and is effective for prediction. Further measures would be necessary 
to imply causation, but some of the techniques below include measures to examine the 
resilience of predictive relationships. 
 
The methods below assume that the modeler already has a well-defined purpose for the model 
tied to a practical, measurable response variable, as well as having already collected 
appropriate training data. 
 
Validation Principles 
 
Here we present general principles that should always apply to any method when training a 
data-driven model, before we discuss specific applications of these principles. The following 
principles are: 

• always validate, 
• do not validate on training data, 
• use multiple models and methods, and 
• examine multiple decision metrics. 

 
Always Validate 
Sampling variation or inherent noise in a system can not only mask important relationships, but 
it can also create false appearance of relationships that would not hold for future observations. 
The more complex and precise a model is made, the more likely it is to pick up false patterns of 
random variation as if it were predictive. Validation on “new” data is a safeguard against such 
over-fitting, preserving the usefulness of a model. 
 
Do Not Validate on Training Data 
Do not validate on data that was used to train the model. It is already known that training data 
appear to have any relationship that the model developed, whether it is a true relationship or 
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chance. Validating on data used to train the model, or adjusting the model from the validation 
data, reports a self-fulfilling prophecy and provides none of the safeguards associated with 
validation. 
 
Use Multiple Models and Methods 
Data-driven model training is an exploratory process. Build multiple models for comparison and 
use multiple types of models when possible and acceptable for your model’s purpose. 
 
Examine Multiple Decision Metrics 
For a given type of response there will be several metrics by which to measure goodness of fit 
and predictive value, and each will report on different aspects of the fit. The most common 
metrics measure an overall fit throughout the range of the model. Such metrics should be 
examined but may not be the most appropriate for a given model’s purpose. 
 
For example, common metrics to measure predictive power for a quantitative response include 
Adjusted R2 and AIC. These are robust metrics to measure total fit, but if a model is designed to 
estimate the potential benefit of an opportunity, then a more targeted metric could better suit the 
purpose. For example, it may be of particular interest not to over-estimate the benefit of 
opportunities near the threshold level for a decision. 
 
Also, graphical metrics that display goodness of fit or predictive value over the range of 
predictors or depth of a population provide much more information for a robust decision than 
single-number summaries. 
 
Each of the principles above should be applied in any validation. There are many methods in 
which this can be done; each with its own requirements, strengths, and weaknesses. The next 
section describes how to implement a few of these methods. 
 
Validation Strategies  
 
It is important to validate a trained model on new data. If training data is used to assess the 
performance of a model, then the result is likely to overestimate the value of the model. A model 
will often pick up spurious relationships, things that only seemed related due to chance and will 
not hold in future observations. It is impossible to find or guard against spurious relationships 
with the data that was used to create them. 
 
The validation method should be chosen before model training begins. The validation structure 
should be chosen and implemented before dimension reduction for parameter selection, if 
applicable. The best validation method to choose depends upon the data available and the 
purpose of the model. We will describe two methods below: Train/Validation/Test and Cross-
Validation. 
 
The Train/Validate/Test Validation Method 
A comprehensive validation method is to divide the available data into three sets: one for model 
training, another for model comparison and selection, and one to test performance. A common 
format is to use 50%-80% of the data for training and split the remainder for the validation and 
test sets. The split should be performed by random selection so that each set remains as 
representative of the population as possible. 
 
This three-way split is the preferred method when there is plenty of data. There must be enough 
data in the training set to properly identify relationships, with enough left over to provide a good 
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estimate of fit vs over-fit in the validation set, and to confirm performance in the test set. 
 
The training set, and only the training set, should be used for attribute selection and model 
parameter estimation. The validation set is used to compare models. Since the validation set 
was randomly split from the training set, it should not maintain most spurious relationships from 
the training set. A large difference in performance between the training and validation sets is an 
indicator of having over-fit the model. 
 
If the validation set guards against over-fitting, then why do we need the test set? Some models 
will include spurious relations in the training that overlap with some spurious relations in the 
validation set by chance. This is typically minimal but can be exaggerated by fitting many 
models and choosing the one that maximizes apparent performance on the validation set. In 
addition, many model algorithms use the validation set to determine when to stop fitting. Any 
model decision to improve performance that is made using the validation set is a potential 
source of over-fitting. Hence the need for a final test set that was not used in any stage of model 
design. The model performance on the test set should be similar to that of the validation set: a 
large drop in performance indicates over-fitting. 
 

The Use of Out of Sample or Out of Time Sets 
Alternative approaches to the test set are known as Out Of Sample (OOS) or Out Of Time 
(OOT). In these cases, the original data is split between only the training and validation sets. 
For OOS the test set data is taken from a different population that is expected to be like the one 
of primary interest: this could be data for a similar device or with participants from a different 
region, etc. An OOT sample would be taken from the same population but at a significantly 
removed time: typically, older data is used but it could also be from data that had not yet been 
collected when the modeling project began. 
 
The purpose of both OOS and OOT are to provide insight into the persistence of relationships. 
This is particularly important for observational studies and for models focused on prediction 
rather than explanation. Model terms may not have a causal relationship to the response: there 
may be a lurking causal factor which happens to be correlated with the model attribute, a 
relationship that may or may not persist. Continued good performance on an OOS or OOT 
sample is support for the reliability of predictive relationships used by the model. 
 
Model performance on OOS and/or OOT sets is not expected to be as powerful as on the 
validation set, but an unexplained large drop in performance would be cause for concern for the 
life expectancy or generalizability of the model, in addition to checking for over-fit. 
 
Cross-Validation Methods 
Cross-Validation is an approach used when there is not enough data for a useful 
Training/Validation/Test split. The entire dataset is used to train the model. It is not possible to 
create a direct comparison to estimate the over-fitting of the model. However, the data is then 
split into “Training” and “Validation” sets, and the same method, with the same attribute 
selection and stopping rules, is used to build a model on the training set, and the fit of the model 
trained on this reduced set is measured on the validation set. This model trained on the reduced 
training set will be different from the model designed on the total data set. 
 
This process is then repeated several times with different splits for training and validation. The 
model is trained the same way on each training set, which will result in somewhat different 
models, and each model’s performance is measured on the corresponding validation set. The 
performance metrics for all the training/validation splits are averaged for the final fit metrics. This 
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will not give a direct measure of the over-fit of the total model, but it does provide a measure of 
the degree to which that method tends to over-fit relationships for this population and sample. 
This can be repeated for each candidate model for model selection. 
 
There are several approaches to cross-validation, and a few of them are described in greater 
detail below. 
 

Leave-p-Out (LpO) 
Choose a small value, say p=2. Fit the model on all but two observations and evaluate the 
model on the remaining two observations. Repeat for all possible splits for this value of p. LpO 
is often recommended in the context of a binary response. 
 

K-Fold 
Divide the data into k equal sets, say 10. Fit the model on all but one of the sets, evaluating fit 
on the remaining set that was left out. Repeat leaving a different set out of the training until each 
set has been left out once. 
 

Stratified 
Rather than a type of cross-validation, stratified sampling is a technique that can be applied in 
the creation of splits in any cross-validation method. When a particular subset of interest in the 
population is rare, it is possible that random splits will not result in an appropriately 
representative proportion. To account for this, first divide the dataset into “strata” based on the 
characteristic(s) of interest. Perform the training/validation split separately for each stratum and 
then recombine for one training and one validation set. This technique may also apply 
Train/Validate/Test splits but is more likely to be important in the smaller sample sizes that 
motivate the use of cross-validation. 
 
We have briefly covered a variety of strategies that would meet the needs for most training and 
validation of data-driven models. Next we walk through an example that demonstrates some 
issues that might arise in practice. 
 
Illustrative Example 
 
Consider the modeling of a continuous response variable with sufficient data for a 
Train/Validate/Test split. Three models have been fit using the training data set: a decision tree, 
forward stepwise regression, and backwards stepwise regression. Fit statistics are shown in 
Figure 1. 
 

Decision Tree 
R2 RMSE AICc 

0.876 0.158 502.375 
 

Forwards Regression 
R2 RMSE AICc 

0.644 0.308 398.518 
 

Backwards Regression 
R2 RMSE AICc 

0.721 0.293 410.372 
 

 
Figure 1 

Model Performance on the Training Set 
 

At initial glance the decision tree seems to be the most powerful model, explaining the most 
variation from the system. Lower AICc is desired though and is a more robust measure of model 
fit. The regression models have very similar lower AICc, with the backwards stepwise 
regression capturing more variation of the system according to the higher explained variance R2 
and a correspondingly lower Root Mean Squared Error (RMSE). However, the model’s 
performance on the validation set, shown in Figure 2, is of greater importance for model 
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comparison and projected usefulness. 
 
 

Decision Tree 
R2 RMSE AICc 

0.52 0.368 660.518 
  

Forwards Regression 
R2 RMSE AICc 

0.619 0.329 401.351 

Backwards Regression 
R2 RMSE AICc 

0.621 0.328 399.853 
 

 
Figure 2 

Model Performance on the Validation Set  
 

The decision tree has a comparatively poor fit on the validation data in this case. It has lower R2 
and higher RMSE and AICc than either regression model. Further, the decision tree metrics 
have a much greater difference between the training and validation sets than these two 
regression models. This would indicate a troubling degree of over-fit on the training data. 
 
The regression models in this case provide a much better prediction on the validation data. The 
backwards stepwise regression seems to perform slightly better than the forwards stepwise 
regression, but the differences are very small and likely due to sampling variation. Although the 
difference from training to validation for backwards stepwise regression is not extreme, the 
forwards stepwise regression model has very similar performance on the validation and almost 
identical degree of prediction to its performance on the training set, showing no sign of over-fit. 
Thus we will choose the forward stepwise regression model in this case. Finally, we check this 
model’s performance on the test set. 
 
The test set also has similar performance which indicates that there was no over-fit on the 
validation data, for example from excessive model comparison and refinement on the validation 
set. This model is likely to perform similarly well on future observations. 
 
Conclusion 
 
Data-driven models have extraordinary potential to predict performance in systems too complex 
to sufficiently model through causal relations, but care must be taken if the resulting model is to 
be useful. The modeling process is frequently a significant undertaking between infrastructure to 
hold and manipulate data, collection of the data itself, modeling, and implementation. If 
validation principles are ignored or misused, the resulting model may have disastrously poor 
performance in operation which can cause losses far beyond the resources spent to create it. 
 
The principles and techniques outlined in this paper should provide a good foundation for 
training data-driven models and obtaining reliable expectations of performance. When 
attempting to find the best fit use multiple metrics and metrics tailored to your use case, and use 
validation techniques such as those above that do not validate a model on the data that was 
used to train it. 
 
 


