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Executive Summary 
 
As the Department of Defense (DOD) seeks to increasingly leverage Modeling and Simulation 
(M&S) in the development of weapons systems, it is becoming progressively more important for 
models to be well understood and well vetted for use in order to mitigate the risks posed by 
relying on inaccurate, insufficient, or incorrectly applied models. Validation is intended as an 
assessment process to establish trust in models. However, validation criteria is often subjective, 
and is defined only to support a pass-fail understanding of validity at static points in time. This 
fails to provide a proper understanding of validity as requirements change, mission scope is 
redefined, new data is collected, or models are adapted to a new use. The metrics discussed 
here provide a rigorous, objective method to evaluate the trust that can be placed in a model 
according to fidelity, appropriate referents, and the specific intended use. These three pillars of 
validation will factor into a Model Validation Level (MVL), which will enable M&S to be employed 
in the engineering of complex defense systems with full comprehension of model capabilities 
and risk. 
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Introduction 
 
Model validation in digital engineering suffers from the lack of a clear definition. Simply put, 
model validation compares a model to some basis to determine whether a model is “good 
enough”, but there is no standard for how to conduct such a comparison, what constitutes an 
acceptable basis for comparison, or even what constitutes “good enough”. Currently, these 
questions are frequently left to subject matter experts (SME) to answer on a case-by-case 
basis, resulting in subjectively defined criteria for validating a model. The lack of rigor leads to 
uncertainty by decision makers on the trustworthiness of a model, and uncertainty by model 
developers on whether a model is relevant under different use cases. In this paper, we discuss 
the mathematical considerations which must be addressed in a rigorous validation approach 
and present metrics and mathematical constructs for use in a Model Validation Level (MVL) 
according to the conceptual framework laid out in A Conceptual Framework for the 
Establishment of Model Readiness Levels (Ahner, 2021). A MVL is a single metric for the 
evaluation of model trustworthiness, and it enables an objective approach to model validation 
which numerically assesses the authority level of a model’s outputs in its intended use case 
rather than a binary “pass/fail” criterion. In doing so, a MVL establishes not only a scalable 
measure of trust to be placed in a model, but also a basis for continual assessment that can 
grade a model consistently as new data is obtained, requirements change, or the model is 
adapted for new use. Through this improved validation framework, MVLs will enable DOD 
program managers and M&S (Modeling & Simulation) developers to effectively employ M&S in 
the engineering of complex defense systems with full comprehension of model capabilities and 
risk. 
 
The remainder of this paper examines the major conceptual elements, or pillars, which must be 
addressed in validation: model-referent fidelity, referent authority, and specific intended use (i.e. 
scope). For each element, this paper addresses the mathematical considerations for validation 
and presents metrics and constructs useful for model validation. This paper additionally 
discusses necessary considerations for incorporating the mathematical constructs and metrics 
associated with the separate pillars of validation into a combined MVL. Finally, this paper 
reiterates the current state of M&S in the Department of Defense (DOD) and the value provided 
by the MVLs for rigorous, consistent, and repeatable validation. 
 
Background 
 
M&S is becoming increasingly integral to the system development process in the DOD. The 
DOD established a goal for Enterprise-level Digital Engineering (DE) across the DOD to reduce 
the length of the acquisition lifecycle (Deputy Assistant Secretary of Defense for Systems 
Engineering (DASD(SE)), 2018). DE is reliant on the use of M&S, and the trustworthiness of 
models is an important consideration in the design and test of complex systems. 
 
Increased usage of DE has led to a need for rigorous methods of model validation. Such 
validation should be consistently applied at an enterprise level and emphasize continuous 
validation that allows model reassessment in response to changing data availability or changes 
in scope as models are adapted for new uses. Rigorous validation requires the examination of a 
model in terms of three pillars: sufficient fidelity, appropriate referents, and a specific intended 
use (Ahner et al., 2021), hereafter referred to as fidelity, referent authority, and scope, 
respectively.  
 
The first pillar of fidelity addresses whether a model accurately matches reality and is perhaps 
the most fundamental pillar in determining the trustworthiness of a model. Second, referent 
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authority addresses the extent to which our knowledge of reality is reliable. In practice, we do 
not perfectly know reality, and a model must be assessed against information sources, or 
referents, that themselves are inaccurate. The model inherits trust from the referents it is 
assessed against. In examining referent authority, we assess how much trust can be placed in 
these referents, and by extension how much trust can be placed in a model. Finally, the pillar of 
scope compares the intended use of a model to the actual realization of a model. That is, we 
must assess whether a model reflects the entire range of operational, environmental, or system 
factors that need to be modeled to support the mission. Below, we further define each pillar and 
the mathematical concepts that must be considered in their assessment. Furthermore, we 
provide metrics and mathematical constructs which provide quantitative assessments of each 
pillar. 
 
Model-Referent Fidelity 
 
An assessment of fidelity makes a direct comparison of model outputs to referent information, 
which represents the reality a model is intended to reflect. This comparison is the central goal of 
validation, and proper assessment of fidelity forms the backbone of our MVL assessment. 
 
The detailed considerations and construction of a fidelity metric are discussed in the Scientific 
Test and Analysis Techniques (STAT) Center of Excellence (COE) Best Practice, Constructing 
a Metric for Fidelity in Model Validation (Weeks, 2022). Here, we will present a condensed look 
at the mathematical considerations for a fidelity metric. 
 
To adequately capture the dimensions of accuracy, repeatability and resolution, the fidelity 
quantification approach uses two sub-metrics. The first sub-metric assesses accuracy, and the 
second sub-metric addresses repeatability and resolution as a single-variability assessment. 
 
The accuracy sub-metric 𝑓𝑓𝑎𝑎 is defined in Equation 1.1 and assesses the model’s accuracy with 
respect to the referent.  
 

 𝑓𝑓𝑎𝑎 = 𝑒𝑒−
1
2�
𝑥𝑥�𝑚𝑚−𝑥𝑥�𝑟𝑟

𝑠𝑠𝑟𝑟∗
�
2

  (1.1) 
 
In Equation 1.1, 𝑥̅𝑥𝑚𝑚 and 𝑥̅𝑥𝑟𝑟 are the sample means of the model and referent, respectively; 𝑠𝑠𝑟𝑟∗ is 
the resolution-modified standard deviation for the referent. 
 
The variability sub-metric 𝑓𝑓𝑣𝑣 is defined in Equation 1.2 and assesses the similarity in variability 
between the model and the referent. In this case, variability refers to both the aleatory and 
epistemic uncertainty of the model and referent. 
 

 𝑓𝑓𝑣𝑣 = 𝑒𝑒−
(𝑠𝑠𝑚𝑚∗ −𝑠𝑠𝑟𝑟∗ )2

𝑠𝑠𝑚𝑚∗ 𝑠𝑠𝑟𝑟∗   (1.2) 
 
In Equation 1.2, s𝑚𝑚∗  and s𝑟𝑟∗ are the resolution-modified standard deviations of the model and 
referent, respectively. The calculation for these modified standard deviations can be seen in 
Equation 1.3, where 𝑠𝑠 represents the standard deviation of the referent or model, and δ 
represents the resolution. Resolution is the degree of granularity with which a variable can be 
determined and is present due to any number of issues that would obfuscate our knowledge, 
such as simplifying assumptions in physics estimates, measurement error, or even rounding 
error. 
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 𝑠𝑠∗ = �𝑠𝑠2 + δ2

12
 (1.3) 

 
The overall metric for fidelity is given in Equation 1.4, where the accuracy and variability sub-
metrics are multiplied together to form a single metric for assessing the level of consistency 
between the model and the referent. 
 

 𝑓𝑓 = 𝑓𝑓𝑎𝑎𝑓𝑓𝑣𝑣 = 𝑒𝑒−
1
2�
𝑥𝑥�𝑚𝑚−𝑥𝑥�𝑟𝑟

𝑠𝑠𝑟𝑟∗
�
2

𝑒𝑒−
(𝑠𝑠𝑚𝑚∗ −𝑠𝑠𝑟𝑟∗ )2

𝑠𝑠𝑚𝑚∗ 𝑠𝑠𝑟𝑟∗  (1.4) 
 
The multiplicative combination of metrics means that the overall fidelity metric may only be as 
high as the fidelity of either of its components. That is, the overall fidelity metric is strictly less 
than or equal to its accuracy and variability components. If either the accuracy or variability is 
low, the overall fidelity metric will be low as well. This results in a metric bounded from 0 to 1 
where 1 implies perfect fidelity in terms of both accuracy and variability and scores close to 0 
imply poor fidelity in at least one aspect. 
 
This fidelity metric only compares a model to a single referent at a single point in the mission 
space or scope. As we discuss the remaining pillars of validation, we will further detail how to 
extend this measure to examine a model against multiple referents of varying authority as well 
as how to apply this measure as we assess the entirety of the model scope. 
 
Referent Authority 
 
Referent authority reflects the amount of trust that can be placed in a source of information, or 
referent, to reflect reality. Model validation aims to compare a model to the reality that the model 
is intended to reflect, but in practice, true reality is unknown and can only be approximately 
measured. Assessing trust in our information sources is a critical step in validating a model.  
 
Unfortunately, there is no accepted standard for assessing the trustworthiness of a referent. 
Trust itself is not observable or otherwise directly measurable. However, referent authority can 
be understood in terms of relative comparison. That is, by comparing different types of 
referents, we can understand which referents are more or less trustworthy relative to each 
other. For example, expert opinion and physics predictions are generally less trusted than 
observed data, and observed data from a prototype is less trusted than observations of an 
operationally-ready system.  
 
This understanding of trust informs the mathematical assessment of referent authority in 
validation. The first aspect we will discuss is a hierarchal weighting scheme allowing us to 
weight the fidelity assessment of a model according to the authority of the referents that the 
model is validated against. The second aspect we will discuss is a Bayesian method of pooling 
information from various referents to validate a model against the entire body of knowledge 
while still emphasizing the most trusted data sources. 
 
Referent Authority Hierarchal Weighting 
A referent authority hierarchy enables the weighting of fidelity by the amount of authority it 
inherits from the referents considered in the metric. A model that is highly consistent with a less 
trusted referent should carry less authority than a model that is highly consistent with a highly 
trusted referent. A weighting scale assigns a weight, or ceiling value, such that a model can 
have, at most, as much authority as the referent that it is measured against. A weighting scale 
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should also be intuitive, with levels that represent apparent differences in authority. Finally, it 
should be consistently applied between different models to allow for authority comparison 
between models. 
 
To meet these desired qualities, an authority weighting scale should be bounded between 0 and 
1 such that a referent that best reflects reality confers an authority weight of 1 and a referent 
with no bearing in reality confers a weight of 0. This combines multiplicatively with the fidelity 
metric to yield an authority-weighted fidelity metric whose maximum value is determined by 
referent level as seen in Equation 2.1. Since each element of the equation is bounded between 
0 and 1, we can state that 𝑓𝑓∗ ≤ 𝑤𝑤, or the authority-weighted fidelity of the model, is no greater 
than the authority of the referent it is measured against. 
 

 𝑓𝑓∗ = w𝑓𝑓𝑎𝑎𝑓𝑓𝑣𝑣 = 𝑤𝑤 ∗ 𝑒𝑒−
1
2�
𝑥𝑥�𝑚𝑚−𝑥𝑥�𝑟𝑟

𝑠𝑠𝑟𝑟∗
�
2

𝑒𝑒−
(𝑠𝑠𝑚𝑚∗ −𝑠𝑠𝑟𝑟∗)2

𝑠𝑠𝑚𝑚∗ 𝑠𝑠𝑟𝑟∗  (2.1) 
 
We propose a 9-level weighting scale in the manner of Technology Readiness Levels (TRLs) 
with weights defined in Table 1 according to a geometric series descending from level 9, 
operational real-world data. 
 

Table 1 
Referent Authority Level Weights 

AUTHORITY 
LEVEL 

RELEVANT REFERENT WEIGHT 

1 SME Judgement 0.0183 
2 First Principles/Physics Predictions 0.0302 
3 Subcomponent Lab Test Data 0.0498 
4 Component Lab Test Data 0.0821 
5 Lab-Scale System Test Data 0.1353 
6 Full Scale Prototype Test Data 0.2231 
7 Production HW/SW- 

in-the-loop Data 
0.3679 

8 Live System Test Data 0.6065 
9 Operational Real-World Data 1.0000 

 
The choice to include 9 levels is largely arbitrary in terms of mathematical implications but is 
convenient for interpretation. Using a geometric series gives a consistent rate of reduction so 
that the amount of authority between levels can be consistently understood. The rate of 
reduction is defined as 𝑒𝑒−1/2, and is set such that a difference of one standard deviation 
between the mean response of a model and a referent results in a one referent level reduction 
in authority. The weighting for a 9-level referent authority scale is given in Equation 2.2 where 𝑖𝑖  
is the referent authority level. 
 
 𝑤𝑤𝑖𝑖 = 𝑒𝑒−

1
2(9−𝑖𝑖) ,   𝑖𝑖 = 1, … ,9 (2.2) 

 
A benefit of the geometric series weighting is the heavier emphasis on higher referent levels for 
assessing a model. That is, consistency with high-level referents will be significantly more 
impactful to an MVL score than consistency with low-level referents. 
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Referent Pooling with Normalized Power Priors 
The referent authority weighting scale enables us to consider fidelity and referent authority of a 
model, but there remains a question of how to measure fidelity when we have multiple referents 
to assess a model against. A common response may be to measure fidelity against the most 
trusted referent while discarding the rest. However, since no referent presents a truly perfect or 
complete picture of reality, a better approach is to use a method that can leverage every source 
of information available. Emphasis should be placed on the referents known to be the most 
trustworthy while still allowing other sources of relevant knowledge to refine our understanding 
of reality. 
 
Bayesian statistics provides a method referred to as Normalized Power Priors (NPP) which 
incorporates information from various referents while weighting the impact of each referent. The 
output of this method will be a single mean and standard deviation, 𝑥̅𝑥𝑟𝑟 and 𝑠𝑠𝑟𝑟, based on the 
referent information for input into Equation 1.4.  
 
Bayesian statistics is a branch of statistical methods which aims to mathematically describe our 
existing knowledge, referred to as the prior distribution, and update that knowledge with data. 
This results in a new distribution referred to as the posterior. In the case of referent authority, 
our referents are the sources of data we will use to update our knowledge.  
 
The general form of a Bayesian method for updating information is provided in Equation 2.3 
where 𝑝𝑝(𝜃𝜃) is a prior probability distribution modelling our existing understanding of some 
parameter or set of parameters, 𝜃𝜃. In the equation, 𝐿𝐿(𝜃𝜃|data) is a likelihood function that 
assesses the likely values of a parameter of interest according to the observed data. The result, 
𝑝𝑝(𝜃𝜃|data), is our updated understanding that takes into account both our prior knowledge and 
our data. 
 
 𝑝𝑝(𝜃𝜃|data) ∝ 𝐿𝐿(𝜃𝜃|data) ∗ 𝑝𝑝(𝜃𝜃) (2.3) 
 
To accommodate the fidelity calculation, we define 𝜃𝜃 as (𝜇𝜇,  𝜎𝜎2), the mean and variance, 
respectively, of the response of interest. The posterior distribution then provides inputs to 𝑥̅𝑥𝑟𝑟 and 
𝑠𝑠𝑟𝑟 respectively for Equation 1.4. 
 
By using NPP, the prior data is discounted depending on how commensurate the prior data is 
with the current data being considered. This method allows us to mathematically model our 
understanding of a system based on multiple referents which have differing levels of referent 
authority. In our approach, the referent with the highest referent authority according to Table 1 
provides a baseline for how we expect the system to behave and acts as the “current” data. All 
other lower-level referents are weighted according to their agreement with the highest-level 
referent, as quantified by 𝜏𝜏, ranging from 0 to 1. The more agreement that is seen between 
referents, the more weight or trust is given to them. If there are multiple referents that share the 
highest referent level, the user must determine which referent is more trusted, or pool the data 
to be considered as a single referent. If no determination is made, the method defaults to using 
the referent with the most data. 
 
The NPP method, including how 𝜏𝜏  is determined, is further described in Ye et al. (2019). 
 
Equation 2.4 gives the posterior distribution, now incorporating the general form of NPP (the 
product term) and depending on all available data: the most authoritative referent, 𝑦𝑦𝑐𝑐, and all 𝑛𝑛 
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lower-level referents, 𝑦𝑦ℎ1,  … ,𝑦𝑦ℎ𝑛𝑛, each with their own weight, 𝜏𝜏𝑖𝑖, where 𝑖𝑖 = 1 …𝑛𝑛. The fidelity 
inputs 𝑥̅𝑥𝑟𝑟 and 𝑠𝑠𝑟𝑟  are the expected value 𝐸𝐸(𝜇𝜇|𝑦𝑦𝑐𝑐 , … , 𝑦𝑦ℎ) and the square root of the expected value 
�𝐸𝐸(𝜎𝜎2|𝑦𝑦𝑐𝑐 , … , 𝑦𝑦ℎ) of the posterior distribution, 𝑝𝑝(𝜇𝜇,  𝜎𝜎2|𝑦𝑦𝑐𝑐 ,𝑦𝑦ℎ1,  … ,𝑦𝑦ℎ𝑛𝑛), in Equation 2.4 (Ye, 
2019). 
 

 𝑝𝑝(𝜇𝜇,  𝜎𝜎2|𝑦𝑦𝑐𝑐 ,𝑦𝑦ℎ1,  … ,𝑦𝑦ℎ𝑛𝑛) = 𝐿𝐿(𝜇𝜇,  𝜎𝜎2|𝑦𝑦𝑐𝑐)∏ �
�𝐿𝐿�𝜇𝜇,  𝜎𝜎2�𝑦𝑦ℎ𝑖𝑖��

𝜏𝜏𝑖𝑖𝑝𝑝0�𝜇𝜇, 𝜎𝜎2�𝑝𝑝0(𝜏𝜏𝑖𝑖)

∫ ∫ �𝐿𝐿�𝜇𝜇,  𝜎𝜎2�𝑦𝑦ℎ��
𝜏𝜏𝑖𝑖𝑝𝑝0(𝜇𝜇, 𝜎𝜎2)𝑑𝑑𝑑𝑑𝑑𝑑𝜎𝜎2

�𝑛𝑛
𝑖𝑖=1  (2.4) 

 
Here, 𝐿𝐿(𝜇𝜇,  𝜎𝜎2|𝑦𝑦𝑐𝑐) is a likelihood function of the parameters given the most trusted data set 𝑦𝑦𝑐𝑐, 
and 𝐿𝐿(𝜇𝜇,  𝜎𝜎2|𝑦𝑦ℎ𝑖𝑖) is a likelihood function of the parameters given a lower-level referent 𝑦𝑦ℎ𝑖𝑖. Initial 
priors, represented by 𝑝𝑝0(𝜇𝜇,  𝜎𝜎2) and 𝑝𝑝0(𝜏𝜏𝑖𝑖), are chosen to reflect all possible values of our 
parameters, and the possible values of 𝑤𝑤𝑖𝑖, which ranges from 0 to 1. These initial priors are 
uninformative priors whose distributions reflect no previous information and minimally impact the 
posterior distribution (Zellner, 1971). 
 
This paper assumes that the random variation of referent data is normally distributed within a 
given set of factor inputs. While this is often not true, the method will perform well for most 
cases where the data is continuous and roughly symmetric. It may also perform well with non-
symmetric distributions given sufficient data. Given the assumption of normal data, we use a 
normal inverse-gamma prior distribution. However, this structure is easily modified to account 
for other data types. For categorical-response data or number-of-success measures, we can 
assume a binomial distribution for data with a beta distribution as a conjugate prior to describe 
our parameters. For highly-skewed data such as time-to-failure data, we can assume a Weibull 
distribution for data with an inverse-gamma distribution as a conjugate prior. In these alternate 
cases, the output parameters are probability of success, 𝑝𝑝, in the binomial case or alpha and 
beta in the Weibull case. These values would then need to be converted into 𝜇𝜇 and 𝜎𝜎2 
according to the distribution’s properties for the sake of fidelity calculation. 
 
Scope 
 
Scope is the set of model inputs, outputs, assumptions, and limitations representing the 
mission-relevant system parameters, environmental conditions, constraints, and requirements, 
and their allowable values. For a model of a physical system, this would include operational 
parameters and states that the system is intended to operate under, such as, different speeds 
or with stealth capabilities active or inactive for a plane. Scope also reflects the intended use by 
including parameters that define the operational environment of the modeled system such as 
cloud cover, operational altitude, or the presence of jamming signals. Proper validation of a 
model requires that fidelity be assessed across the entire scope. There are infinitely many 
possible input combinations within the scope in the presence of continuous inputs, and as a 
result it is impossible to directly validate a model everywhere in the operational domain. Instead, 
we can assess how well covered the scope is by our referents and model. 
 
Issues of scope in model validation can often be seen as one of four issues; a.) poorly defined 
scope, b.) differing fidelity across the scope, c.) referents not extending across the entire scope, 
and d.) scope regions supported by sparse information. Properly defining the scope, or mission 
space, of a model is critical to validation. No metric will state if the scope is defined correctly, but 
an improperly defined scope will often lead to poor validation metrics in the case where the 
scope covers too much space or irrelevant factors. In addition, poor scope definition can lead to 
a model validated only for a portion of its mission space in the case that the scope does not 
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include all important factors. The issues of differing fidelity, unsupported scope regions, or 
sparsely supported scope regions can be seen in Figure 1. 
 

 
Figure 1 

Notional Live Data Coverage of an Operational Space 

 
Note. Figure from (Institute for Defense Analysis, 2019) 
 
In Figure 1, the red section in the top right represents an operational region that is difficult to 
gain information about whether due to danger, cost, or other factors restricting test. The picture 
on the right represents likely situations where a large portion of the mission region is 
unaccounted for by our referents (the white dots). This may result in a model that seems to be 
high fidelity due to agreement with the available data, but may differ dramatically from reality in 
the unsupported sections. Likewise, in the left picture, we may have referents extending across 
the scope, but with large gaps between referent information. In other words, we may still have 
regions where the model doesn’t capture reality, but fidelity cannot be properly assessed due to 
unavailable data. To account for these issues, we need to not only assess fidelity at various 
points across the scope, but we must also assess how well covered the scope is by our 
referents. 
 
A metric to assess mission region coverage needs to assess both volume coverage and density 
coverage. Volume coverage describes the volume of mission space covered, while density 
coverage describes the density of points covering a defined scope region. The metric will be a 
multiplicative combination of separate volume and density sub-metrics. These metrics should be 
bounded between 0 and 1, representing no coverage and perfect coverage, respectively. Both 
high-volume coverage and high-density coverage are needed for a high-overall coverage score, 
yet a poor score for either volume coverage or density coverage is sufficient to result in a poor 
overall-coverage score. Finally, a coverage metric should normalize all mission factors to have 
the same weight. This normalization rescales any numerical factors to a scale from 0 to 1. This 
ensures that the impact of a factor isn’t tied to the measurement scale used. Our overall metric 
then takes the form seen in Equation 3.1, where 𝐶𝐶𝑉𝑉 is a volume metric and 𝐶𝐶𝐷𝐷 is a density 
metric. 
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 𝐶𝐶 = 𝐶𝐶𝑉𝑉𝐶𝐶𝐷𝐷 (3.1) 
The following sections will address the considerations for the volume component and the 
density component of the coverage metric in turn. Notably, these metrics are defined below for 
assessing continuous factors. To calculate these metrics with categorical factors, we must 
calculate the metrics individually within each factor level setting and then average the results. 
 
Volume Metric 
The simplest conceptual structure for a volume metric is to measure the ratio of the volume 
covered by data points to the volume of our mission space, where volume is understood not in 
three dimensions but as a 𝑑𝑑-dimensional volume where 𝑑𝑑 is the number of factors that define 
our mission space. This metric is seen in Equation 3.2 (Hemez, 2010) where 𝑉𝑉data is the volume 
of the convex hull around our data and 𝑉𝑉domain is the entire volume of the domain, or mission 
space. 
 
 𝐶𝐶𝑉𝑉 = 𝑉𝑉data

𝑉𝑉domain
 (3.2) 

 
The domain volume is computed with the understanding that each mission factor is rescaled 
and bound from 0 to 1, with 0 representing the minimum factor value of mission interest and 1 
representing the maximum value of mission interest. The domain volume is then simply 1 unless 
some additional constraint is added where the system will not operate. The computation of data 
volume is more demanding. For this, we draw a convex hull around all points containing both 
referent and model information, which is the smallest shape that fully encapsulates our 
information while having no concave surface geometry. However, this construct presents 
computational problems and conceptual problems. Computationally, this calculation is 
straightforward and easily automatable, but as the number of dimensions increase, the time 
requirement for such a calculation increases exponentially. Conceptually, this metric is not 
consistent for interpretation between models with differing amounts of factors. As the number of 
dimensions increases, an increasing proportion of a geometric object’s volume is found near the 
edges. With models, this means that a model with many factors would need data focused much 
closer to the edges of the mission space to cover the same volume proportion as a model with 
few factors. These issues drive the need for a computationally less demanding and more 
consistently interpretable volume metric. 
 
Our proposed volume metric, seen in Equation 3.3, will still compare the 𝑑𝑑-dimensional volume 
of the convex hull around our information to the 𝑑𝑑-dimensional volume of our mission space only 
when our mission space is defined by 5 or less dimensions. In cases where our space is defined 
by more than 5 dimensions, we compensate for the growing issue of dimensionality by looking 
at 5 dimensional projections of our space. Specifically, we consider all 𝑘𝑘 = (𝑑𝑑 choose 5) 
combinations of 5 factors from among the 𝑑𝑑 factors that define our space and calculate the 
coverage volume with only those 5 factors in mind. Upon calculating volume for all 𝑘𝑘 5-factor 
spatial projections, we average the coverage volumes to calculate our volume metric. We define 
𝑉𝑉data,𝑖𝑖 and 𝑉𝑉domain,𝑖𝑖 as the 5-dimensional volume of the data and domain, respectively, in the 𝑖𝑖th 
unique 5-factor projection, where 𝑖𝑖 = 1 …𝑘𝑘. We raise the calculation to a factor of 1/5 or 1/d for 
models with less than 5 dimensions, which has the benefit of providing a similar scale 
regardless of the total number of dimensions involved.  
 
As a final consideration, while calculating the volume of each 5-factor dimensional projection, 
we calculate the hull around a random sample of our points containing both referent and model 
data rather than the full set of points. The random sample size is the total sample size, 𝑛𝑛, scaled 
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down to be approximately proportional to the reduction in dimensions, or 𝑛𝑛sample = ceiling(𝑛𝑛 ∗
5/𝑑𝑑). Keeping the data amount scaled with the number of dimensions prevents our revised 
volume metric from overcompensating and overstating the volume. 
 

 𝐶𝐶𝑉𝑉 = �
1
𝑘𝑘
∑ � 𝑉𝑉data,𝑖𝑖

𝑉𝑉domain,𝑖𝑖
�
1/5

𝑘𝑘
𝑖𝑖=1  for 𝑑𝑑 > 5

� 𝑉𝑉data
𝑉𝑉domain

�
1/𝑑𝑑

 for 𝑑𝑑 ≤ 5
 (3.3) 

 
The time complexity for computing a convex hull with the Qhull algorithm is 𝑂𝑂(𝑛𝑛^floor(𝑑𝑑/2)) 
(Barber, 1995), where 𝑛𝑛 is the total sample size. The time complexity for the proposed volume 
metric has much more sustainable scaling, allowing computation of the volume coverage in high 
dimensional spaces. The comparison in time complexity is shown in Figure 2 for 𝑛𝑛 = 100. 
 

 
Figure 2 

Time Complexity Comparison between Convex Hull and Volume Metric 
 
Density Metric 
With density, as with volume, we consider a straightforward case and then a more nuanced 
case to correct for shortcomings. In our straightforward density metric, we must keep in mind 
that we are assessing the information density evenly across the whole region of interest. This 
straightforward metric uses a similar approach to that of Atamturktur et al. (2009). As with our 
volume metric, we normalize our factors to a scale from 0 to 1 to ensure consistent presentation 
and interpretation of our metric. Then, to evenly evaluate across our space, we generate 
assessment points using a Latin Hypercube method which generates points distributed across 
the region of interest. All assessment points must be well covered for high coverage to be 
achieved. Coverage of each point is assessed in turn, which together provides a complete 
picture of density across the scope. To assess an individual point, we can use a nearest 
neighbor metric where we calculate the distance from the assessment point to the nearest 
referent point. Looking across the accumulation of assessment points, we will see that an 
informationally dense mission region will on average have data closer to each point while an 
informationally poor region will on average have data further away from each point. To 
compensate for differing scales as the number of dimensions increases, we will scale down the 
measured distance by the maximum distance attainable between two points in the mission 
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space. Finally, as increasing distance from assessment points implies a reduction in coverage, 
we must present the average distance as a reduction from the maximal score of 1. The resulting 
metric is Equation 3.4 where 𝑟𝑟𝑖𝑖 is the nearest neighbor distance from assessment point 𝑖𝑖 to a 
referent point, 𝑞𝑞 is the number of assessment points, and max(𝑟𝑟𝑑𝑑) is the maximum distance 
possible in a mission space of 𝑑𝑑 dimensions with normalized factor ranges, and is equal to √𝑑𝑑 
when no constraints on the mission space are present. 
 
 𝐶𝐶𝐷𝐷 = 1 − ∑𝑟𝑟𝑖𝑖/𝑞𝑞 

max(𝑟𝑟𝑑𝑑) (3.4) 
 
While this metric presents a picture of density scaled from 0 to 1, it suffers from some 
undesirable qualities. Notably, it grants considerable coverage even when data is far from an 
assessment point. For instance, an assessment point in the middle of our space will have a 
scaled distance value no smaller than 0.5 if there is a data point anywhere in the scope region. 
This contributes to sparse referent coverage resulting in inflated density scores. Similarly, even 
data that is very close to an assessment point results in a penalty which causes very dense, 
well-filled spaces to receive understated density scores. For example, data spread by a Latin 
Hypercube method, which fills the scope by design, results in mediocre density metrics. The 
correction for these two problems is to establish maximum and minimum distances, 𝑀𝑀 and 𝐿𝐿, 
where 𝑀𝑀 is the distance beyond which no coverage is awarded and 𝐿𝐿 is the distance within 
which perfect coverage is awarded. For maximum distance, the proposed distance is 𝑀𝑀 = √𝑑𝑑/2, 
which is the distance to ensure that the center of the scope inherits no coverage from corner 
points. For minimum distance, the proposed distance is 𝐿𝐿 = √𝑑𝑑/6, which was chosen by 
simulation as a favorable balance where Latin Hypercube designs receive favorable density 
metrics, and full-factorial designs, where data is located only at the corners, receive unfavorable 
density metrics. Between these minimum and maximum points, distance is awarded a coverage 
score according to a linear scale. Then, the coverage scores are averaged among 𝑞𝑞 
assessment points for an overall coverage metric, as seen in Equation 3.5. 
 

 𝐶𝐶d = 1
𝑞𝑞
∑ 𝑐𝑐𝑖𝑖
𝑞𝑞
𝑖𝑖=1    where     𝑐𝑐𝑖𝑖 = �

1 for    𝑟𝑟𝑖𝑖 ≤ 𝐿𝐿
𝑟𝑟𝑖𝑖−𝑀𝑀
𝐿𝐿−𝑀𝑀

for    𝐿𝐿 < 𝑟𝑟𝑖𝑖 ≤ 𝑀𝑀
0 for    𝑟𝑟𝑖𝑖 > 𝑀𝑀

 (3.5) 

 
Considerations for a Combined Metric 
 
The separate pillars of fidelity, referent authority, and scope are inherently related, but their 
mathematical considerations are disjoint. Fidelity is measured at single points in space and 
separate measures of fidelity must be made and accumulated in a discussion of scope. 
Referent authority is assessed independent of spatial considerations but must be examined 
against scope as some referents are only available within a limited mission space. Fidelity and 
referent authority have interplay in their calculations as we accumulate multiple referents to 
generate a single-fidelity calculation at a given space, but only part of the referent authority 
considerations are incorporated in such calculations. Care must be taken to address all 
considerations for fidelity, referent authority, and scope in a single MVL measure. 
 
A successfully combined MVL must have several properties. It must: 

• assess fidelity of a model using the full body of knowledge or the whole set of relevant 
referents available across the mission space 

• weigh the fidelity assessment according to the level of trust or authority that can be 
placed on the referents that validation will consider 
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• penalize a model if the entire mission space is not supported by referent knowledge or if 
there is an insufficient amount of support across the mission space 

• be presentable in a concise, interpretable, and actionable manner  
The proposed method of implementing the metrics and mathematical constructs in this paper in 
a single MVL assessment metric will be discussed in a future Best Practice. Along with this best 
practice, the STAT COE will provide a coded tool to automate the MVL process as well as a 
guide to using the tool and a Case Study of MVL implementation in a specific program.  
 
Conclusion 
 
As the DOD engineers defense systems of increasing complexity and comes to rely on M&S to 
understand and develop those systems, it is imperative that the models developed are well 
understood and trustworthy to minimize any risk introduced by the use of models in place of 
physical articles. Validation is the process which establishes the level of trust that can be placed 
in a model to represent the associated physical system. However, in practice, validation is often 
a subjective process resulting in a binary indicator of validity which grants the model validity for 
its entire lifetime without reassessment. MVLs address these problems and provide a rigorous 
validation framework that can be quickly, repeatedly applied to the wide variety of M&S in the 
DOD. MVLs will enable DOD program managers and M&S developers to effectively employ 
M&S in the engineering of complex defense systems with full comprehension of model 
capabilities and risk.   
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Appendix 
Key Definitions 

 
To ensure a common understanding of the subject, the following definitions will be used 
throughout this paper: 
 

accuracy: the degree to which a parameter or variable, or a set of parameters or 
variables, within a model or simulation conforms exactly to reality or to some chosen 
standard or referent (Modeling and Simulation Enterprise, 2021). 
 
aleatory uncertainty: uncertainty arising from an inherent randomness in the properties 
or behavior of the system under study (Helton, 2011). 
 
convex hull: the smallest possible convex space that contains a set of data points 
 
epistemic uncertainty: uncertainty derived from a lack of knowledge about the 
appropriate value to use for a quantity that is assumed to have a fixed value in the 
context of a particular analysis (Helton, 2011). 

 
fidelity: the level of consistency between a model and a referent, defined in the three 
dimensions of accuracy, repeatability, and resolution. 
 
model: a physical, mathematical, or otherwise logical representation of a system, entity, 
phenomenon, or process (DoDI 5000.61). 
 
modeling and simulation (M&S): the use of models, including emulators, prototypes, 
simulators, and stimulators, either statically or over time, to develop data as a basis for 
making managerial or technical decisions (Modeling and Simulation Enterprise, 2021). 
 
referent: a trusted representation of reality. 
 
referent authority: the strength of credibility of a referent’s claim to be a high-fidelity 
representation of reality. 
 
repeatability: the similarity of the results obtained from the same model (or referent) over 
multiple observations under the same input conditions. 
 
resolution: the degree of granularity with which a parameter or variable can be 
determined (Pace, 2015). 
 
scope: the set of model inputs, outputs, assumptions, and limitations representing the 
mission-relevant system parameters, environmental conditions, constraints, and 
requirements, and their allowable values. 
 
simulation: a method for implementing a model over time (DoDI 5000.61). 
 
specific intended use: the set of dimensions, ranges, and assumptions of the model 
inputs and outputs needed to represent a system’s relevant mission parameters, 
environmental conditions, constraints, and requirements, combined with the additional 
constraints imposed by the target modeling environment and the required level of fidelity 
for the specific stage of program development. 
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validation: the process that determines whether a model has sufficient fidelity relative to 
an appropriate referent(s) for a specific intended use. 
 
validity: the fidelity of a model over a pre-specified scope relative to an appropriate 
referent(s). 

 


