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Introduction 
This document is the second part in a series on the steps of the (statistical) model building process. Part 

1 (Burke, 2017) discussed methods to assess whether the error assumptions in a linear regression model 

had been satisfied and suggested several remedial measures. The purpose of this best practice is to 

highlight methods and metrics to assess the remaining model assumptions. Specifically, this paper 

shows how to assess whether the inputs into the model are independent and if the model itself is 

adequate.   

Keywords: linear regression, multicollinearity, lack of fit, variance inflation factor 

Assumption:  Input Variables are Independent 
When building a linear regression model, apart from the assumptions on the error terms (which were 

discussed in Part 1 of this series [Burke, 2017]), we also assume the input variables (factors) are 

independent of each other. Multicollinearity occurs when factors are correlated with one another. Note 

this correlation does not relate to how the factors are correlated with the response, only with each 

other. For example, when estimating miles per gallon (mpg) of a car, potential factors impacting mpg 

might include the number of cylinders, horsepower, weight, model year, and acceleration associated 

with the car. Horsepower and weight, however, are positively correlated with each other; as weight of 

the car increases, horsepower tends to increase (or vice versa; recall that correlation does not imply 

causation!). A regression model that estimates mpg will not require both of these terms because they 

are so closely associated with each other.  

From a design of experiments (DOE) viewpoint, an important design property to evaluate when building 

a design is the degree of aliasing or confounding. When two terms are aliased (confounded) with each 

other, it is impossible to distinguish which term caused the change in the response. When there is 

severe aliasing/confounding, multicollinearity can become an issue when analyzing the data from that 

design. An orthogonal designed experiment is one in which the factors and model terms are 

uncorrelated with each other. In a well-designed experiment, the values of the factors are controlled to 

ensure that the factors are uncorrelated with each other. When the factors are orthogonal, the 

estimated parameter for one model term will be the same value whether another model term is 

included in the model or not. This property makes model-fitting straightforward because there is no 

aliasing, meaning there is no ambiguity on which factor has the true effect on the response and the 

order in which terms are added or removed from the model does not matter. In an observational study, 

this attribute is often not present in the data precisely because the factor levels are not controlled.  

Consequences of Multicollinearity 
The repercussions of multicollinearity can be severe, particularly with data from an observational study, 

so an assessment of the degree of multicollinearity should be done. When the factors are highly 

correlated with each other, the variance estimates of the model coefficients are inflated resulting in an 
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unstable linear model fit. This can result in an increase in the Type II error (i.e., terms are deemed not 

statistically significant when they really are). Interpretation of the model coefficients is also no longer 

straightforward because the value of the model parameters depends on which other model terms are 

included. This means the order in which terms are added or removed from the model now matters. In 

addition, the model coefficients can have the wrong magnitude and the wrong sign, leading to incorrect 

conclusions (Silvestrini and Burke, 2018).  

Methods to Assess Multicollinearity 
Several methods to informally and formally assess multicollinearity include graphing, studying the sign 

and magnitude of the model coefficients for unusual or unexpected results, assessing the correlation 

among the model coefficient estimates, and calculating the variance inflation factor (VIF).  

One informal way to detect multicollinearity is to examine a scatterplot matrix of the factor values. 

Visually discernable patterns in this plot are indicators of multicollinearity.  Figure 1a shows a scatterplot 

matrix of data for different cars from an observational study done to estimate miles per gallon (mpg). 

This dataset was obtained from the University of California, Irvine (UCI) Data Mining Repository (Dua 

and Taniskidou, 2017). If these variables were independent, then there should be no discernable pattern 

in this plot. However, we see in particular that displacement is linearly correlated with horsepower, 

weight, and acceleration. In addition, horsepower is correlated with weight and acceleration. In 

contrast, Figure 1b shows a scatterplot matrix for a designed experiment (a factorial design with center 

points) with six factors, demonstrating orthogonal factors and no multicollinearity. 

 

Figure 1. Scatterplot matrix for (a) mpg observational dataset and (b) full factorial design 
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Subject matter expertise can also provide an informal assessment of the presence of multicollinearity. 

For example, if scientific principles or prior information indicate an estimated regression coefficient 

should have a specific sign, then seeing the opposite sign may indicate multicollinearity is present.  

A more formal method to assess multicollinearity is to calculate the correlation coefficients between all 

pairs of model coefficient estimates. Correlation coefficients range from 0 to 1 in magnitude; the larger 

the value, the more linearly correlated two terms are. Correlations greater than 0.7 in magnitude are 

signals that multicollinearity is an issue in the dataset. Figure 2a shows the model term correlation 

coefficients for a specified model of the mpg dataset. As expected, several of the model coefficients are 

highly correlated with each other, including the two-factor interactions (e.g., the correlation coefficient 

between the main effects of weight and horsepower is -0.8282). This is further evidence that 

multicollinearity is a concern for this observational dataset. Figure 2b shows the pairwise correlations 

for the full factorial design shown in Figure 1b. As designed, the correlations between all terms in the 

model (including the interactions) are zero, indicating the factors are uncorrelated.  

 

Figure 2. Correlation matrix of model estimates for (a) mpg dataset and (b) full factorial design 

Because of the issues that arise due to multicollinearity, it is critical to use a color map on correlations to 

assess the level of multicollinearity in a designed experiment. If the design has a large amount of 

aliasing, then it will be difficult to build an acceptable linear regression model. Not only will it be 

challenging to resolve which terms affect the response, but the inflated variances of the model 
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estimates will affect the power of the design. The matrix of correlation values is displayed in the color 

map on correlations when evaluating a design. As a comparison, Figure 3 shows the color maps for the 

mpg dataset and the full factorial design. Recall that the ideal plot has a red line across the diagonal with 

blue in the off diagonal (i.e., the full factorial design in Figure 3b). Severe amounts of aliasing is present 

in the mpg dataset as observed in Figure 3a.  

 

Figure 3. Color map on correlations for (a) mpg dataset and (b) full factorial design 

A formal metric for multicollinearity is the variance inflation factor (VIF). VIF is calculated for each model 

term as:  

𝑉𝐼𝐹𝑗 =
1

1 − 𝑅𝑗
2 

where 𝑅𝑗
2 is the coefficient of determination (𝑅2) from a model where the factor or model term 𝑥𝑗 is 

used as the response and all of the other factors in the original model are used as independent variables 

to predict values of 𝑥𝑗. When there is a strong relationship among factors, this 𝑅𝑗
2 value will be large, 

resulting in a large value of VIF (Silvestrini and Burke, 2018). The VIF is 1 when the predictor is not 

linearly related to the other independent factors since 𝑅𝑗
2 is zero when the factors are orthogonal to 

each other. A VIF greater than 10 is often an indication that severe multicollinearity is present in the 

data. Note that if a factor has a perfect linear association with another model term, the VIF is infinity. 

Figure 4 shows the parameter estimates table for specified models for the mpg dataset and the full 

factorial design. The last column in each of these tables shows the VIF values for each model term. 

Figure 4a shows that all of the VIF values are greater than 10, another indication that multicollinearity is 

an issue in this dataset.  Figure 4b shows VIF values of 1, as expected, for the model parameters from 

the full factorial design.  

(1) 
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Figure 4. Variance inflation factor values for models (a) mpg dataset and (b) full factorial design 

Dealing with Multicollinearity 
What should you do if your dataset has multicollinearity? Centering the data for the predictor variables 

can reduce multicollinearity among first- and second-order terms. Centered data is simply the value 

minus the mean for that factor (Kutner et al., 2004). Alternative analysis methods such as principal 

component analysis (PCA), ridge regression, or Least Absolute Shrinkage and Selection Operator (LASSO) 

are more often used to account for multicollinearity (Silvestrini and Burke, 2018; Kutner et al., 2004). 

PCA creates one or more linear combinations of the input variables that are uncorrelated and that 

explain a large portion of the variability in the data. These linear combinations then become the 

“factors” used in a linear regression model to model the response. Because these new variables have 

been constructed so that they are orthogonal to each other, multicollinearity is no longer an issue in the 

model. The downside is that interpretation becomes much harder. If predicting the response is more 

important than understanding which variables are associated with changes in the response, PCA is a 

reasonable approach. Ridge regression and LASSO are also alternative models to a traditional linear 

regression model. These methods are called penalized likelihood methods and produce biased 

regression coefficients with smaller standard errors. The advantages in reducing the variability of the 

parameter estimates often outweighs the disadvantages of the biased model parameters. Ridge 

regression and LASSO are techniques often used in observational studies to reduce the number of 

potential predictors in the model. These methods can be used to reduce the pool of variables to 

consider in a model of the response. For more information on ridge regression and LASSO, see Silvestrini 

and Burke (2018).  

Assumption:  The Model is Correct 
The final assumption when fitting a linear regression model is that the fitted model is correct or 

adequate. This means all terms affecting the response are included in the model and we have captured 

the appropriate relationship between the factors and the response. This model is typically assessed 

using simple plots of residuals, and when possible, a statistical test for lack of fit.  
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Informal Method to Assess Model Fit 
Initial graphical analysis of the factors and the response can often suggest the types of model terms 

required (e.g., main effects or quadratic terms). Once you have fit a model and are evaluating it, you can 

utilize some of the residual plots discussed in Part 1 of this series (Burke, 2017) to assess the model fit. 

For example, when graphing the model residuals by each factor, look for any visually discernable 

patterns. Patterns in these types of plots indicate that something (e.g., a higher order model term) is 

missing from the model. For example, if the residuals have a parabolic shape, this is an indication that a 

quadratic term should be included in the model. Follow-on testing may be required to be able to fit 

additional or higher order model terms like a quadratic.  

When fitting a model using data from an observational study, not all input variables may be initially 

included in the model. If a plot of the residuals versus an input variable not currently in the model has a 

visually discernable pattern, then we should consider adding that variable into the model.  

Lack of Fit Test 
A statistical lack of fit test provides a more formal approach to assess model fit. The lack of fit test is 

typically utilized for data from a designed experiment because the test itself requires replicated test 

points at one or more levels of the factors. This does not always happen in data from an observational 

study, but it can be enforced in a designed experiment. The lack of fit test uses a sum of squares for lack 

of fit defined as:  

𝑆𝑆𝐿𝑂𝐹 = ∑ 𝑛𝑖(𝑦̅𝑖 − 𝑦̂𝑖)2

𝑚

𝑖=1

 

where 𝑚 is the number of levels of the factor, 𝑛𝑖 is the total observations at the 𝑖th level of factor 𝑥𝑖, 𝑦̅𝑖  

is the average response at the 𝑖th level of factor 𝑥𝑖, and 𝑦̂𝑖  is the estimated response at the 𝑖th level of 

factor 𝑥𝑖 (Kutner et al., 2004). When the lack of fit sum of squares can be calculated, it is used in a 

hypothesis test where the hypotheses are stated as:  

H0: The current model is adequate 

H𝑎: The current model is inadequate 

 

The alternative hypothesis typically means important terms (such as interaction effects or higher order 

terms) have been excluded from the model. In the lack of fit test, when p-values are greater than 0.05 

we have confidence in a good fit as this results in failing to reject H0, demonstrating the model is 

sufficient to explain the variability in the response. Consider the following example using data from the 

factorial design originally shown in Figure 1b.  To assess the model fit, Figure 5a shows a plot of the 

model residuals by factor X1. Because there is a parabolic pattern in this plot, a quadratic term is likely 

missing from the model. The lack of fit test for the model in Figure 5b has a small p-value (<0.0001), 

further indicating that the model is not sufficient. Additional testing is necessary to determine which 

factor is contributing to the curvature in the response. 

(2) 
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Figure 5. Assessing lack of fit using (a) graphical analysis of residuals and (b) lack of fit test 

Conclusion 
In addition to checking the error assumptions when fitting a linear regression model, assessing the 

presence of multicollinearity and model fit is essential to ensure you draw the correct conclusions. 

Multicollinearity can make determining what factor truly impacted the response impossible. A well-

designed experiment can eliminate multicollinearity and provide results that are accurate and easier to 

interpret. The methods discussed in this best practice are readily accessible within statistical software 

packages such as JMP and R.  
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