
STAT COE-Report-02-2017

STAT Center of Excellence
2950 Hobson Way – Wright-Patterson AFB, OH 45433

Automated Software Testing Practices
and Pitfalls

Authored by: Thomas Pestak

William Rowell, PhD

April 2017

Revised 30 September 2018

The goal of the STAT COE is to assist in developing rigorous, defensible test

strategies to more effectively quantify and characterize system performance

and provide information that reduces risk. This and other COE products are

available at www.afit.edu/STAT.

http://www.afit.edu/STAT

STAT COE-Report-02-2017

Table of Contents

Executive Summary ... 4

Background ... 4

The First Programmable Computer .. 4

Automation in Computing .. 5

Validation and Verification ... 6

Oracles .. 6

Positive Testing ... 6

Negative Testing ... 7

Myth of Complete Testing .. 9

Test Coverage .. 10

Software Testing Techniques .. 11

What Can Be Automated? .. 11

Unit Testing ... 12

New Function Testing ... 13

Regression Testing .. 13

Integration Testing .. 13

System Testing .. 13

Other Candidates for Automation .. 14

Before you Begin ... 14

Understand the Benefits of AST .. 15

Understand the Limitations of AST ... 15

Understand the Challenges Created by AST ... 15

Set Clear, Deliberate, and Attainable Goals .. 16

Commit from the Top Down ... 17

Research the Return on Investment ... 17

Establish and Maintain Communication ... 18

Start Small ... 18

Understand Competing Incentives ... 18

Prevent Automation Burdens ... 19

Roles and Skillsets ... 19

STAT COE-Report-02-2017

Google as an Exemplar .. 19

Recommended Roles for AST .. 20

Test Automation Architect .. 20

Test Automator ... 20

Test Executor .. 20

Test Creator... 20

Program Management .. 21

Systems Engineering ... 21

Software Development ... 21

Configuration Management .. 21

Design of Experiments .. 22

Certification, Standards, and Training .. 22

ISTQB ... 22

ISO 29119 .. 22

BBST .. 22

Tips for Good Testware ... 22

Abstraction .. 23

Signs of Well-Designed Testware .. 23

Investments and Goals .. 24

Tools for AST ... 24

Functional Testing for Enterprise Applications ... 25

Testing Graphical User Interfaces (GUIs) Natively .. 25

Browser Testing .. 25

Web Testing .. 26

API Testing .. 26

Unit Testing ... 26

Continuous Testing Tools .. 26

Other ... 26

Conclusion ... 26

Further Reading .. 27

Complementary STAT COE Reports .. 27

Associated STAT COE Reports ... 27

STAT COE-Report-02-2017

Books ... 27

Articles .. 28

Other ... 28

References .. 29

Appendix A: Acronym List ... 31

Revision 1, 30 Sep 2018: formatting and minor edits.

STAT COE-Report-02-2017

Page 4

Executive Summary
This document focuses on automated software testing (abbreviated AST in this document, but not to be

confused with the Association for Software Testing). As the name suggests, automated software testing

means nothing more than automating any part of the testing of software at any stage in the software

development process. Any software testing that can be automated can be tested manually. The goal of

AST is the same as the goal of automation in a production line: to optimize throughput and quality by

improving the speed of each stage and the repeatability of each process. In the world of software

testing, automation can reduce the time it takes to uncover design flaws or trace bugs. It can also

improve software quality by reducing uncertainty. This is accomplished by checking a greater

percentage of the software or system under test (SUT) for errors (increased coverage), especially by way

of negative testing. In many cases, AST frees up human testers to focus on manual exploratory (and

context-specific) testing, which can be better suited to finding faults.

This document seeks to provide information and insight into the planning, architectures or

implementations, and test design strategies for AST, and to describe how AST folds into the larger issue

of software economics. AST can be as simple or complex as the SUT it is testing, and while the goals may

seem obvious and the benefits guaranteed, successful AST is difficult to achieve for many reasons. At

the risk of sometimes reading like a “worst practice,” this document seeks to shed light on the pitfalls to

successful implementation of AST, many of which are non-technical in nature. In general, the AST

exemplars aligned resources and training with the goals of the business case. Many of the success

stories were sandboxed pilot programs and/or the second time trying, using lessons learned from

previous attempts.

Background

The First Programmable Computer
It is worthwhile to understand how software testing and AST fit into a larger vignette. In 1943, the Mark

1 Colossus computer became operational. This would be the world’s first fully operational

programmable digital computer and had five parallel processors capable of performing digital logic. The

motivation for the Colossus was to automate W.T. Tutte’s “Statistical Method” which could solve for the

starting wheel positions of the German Tunny Lorenz cipher in World War II (Gannon, 2006). Knowledge

of the cipher’s starting wheel positions was needed to decrypt each message, and since the Germans

changed the starting wheel positions each day, automating the “Statistical Method” was necessary to

stay ahead of the Tunny machine (Copeland, 2008). Programmable computers then, like now, are tasked

with automating mathematical operations, as shown in Figure 1. The Colossus computer was

programmed not with software, but with a panel of switches and jacks that would set the algorithms to

be used. The first computer to execute software instructions was the ENIAC just a few years later in

1948. Before the ENIAC was even finished, its engineers realized that the task of creating and setting up

STAT COE-Report-02-2017

Page 5

new calculations was difficult, error prone, and time consuming. These engineers needed a way to

automate the hardware using controllers that could read and execute instruction sets from a computer

program. One year after the initial ENIAC was released, a modified version was able to run computer

programs. The task of the ENIAC was to perform Monte-Carlo simulations of neutron decay during

nuclear fission. Today we refer to these computer programs and their associated non-executable data as

software. Software then, like now, is tasked with automating programmable computers.

Figure 1: Automation in computing

Automation in Computing
The essence of computing is automation. But that automation is not limited to the execution realm (like

the control of hardware from instruction sets or the inversion of matrices); it is also used in building and

testing. As computer hardware was built less by hand soldering wires or installing vacuum tubes and

more by semiconductor foundries, automation became mandatory for testing hardware designs. Figure

2 describes the process of test generation to expose faults.

Figure 2: Generic test generation procedure (adapted from Murray and Hayes, 1996)

STAT COE-Report-02-2017

Page 6

Similarly, as software design has grown in complexity, scale, and levels of abstraction, incorporating

automation into the testing of software has become an attractive endeavor. Today, a portion of

software testing is performed automatically by syntax checkers and compile-time operations performed

by compilers. But the phrase “software testing” generally refers to a human tester performing run-time

testing for errors to validate and verify the correct operation of the software.

Validation and Verification
Validation is defined as: “Confirmation by examination and through provision of objective evidence that

the requirements for a specific intended use or application have been fulfilled [ISO 9000]” (Standard

Glossary of Terms Used in Software Engineering, 2011).

Verification is defined as: “Confirmation by examination and through provision of objective evidence

that specified requirements have been fulfilled [ISO 9000]” (Standard Glossary of Terms Used in Software

Engineering, 2011).

The wording in the ISO 9000 seems like a minor distinction without a difference. Williams uses the

following questions to illustrate the difference between validation and verification. Validation asks the

question “Are we building the correct product?” while verification asks the question “Are we building

the product correctly?” (Williams, 2016).

Oracles
Testing for validation should confirm that the software contains the feature set and operates according

to the requirements established before development began. In general, most types of testing used in

validation are positive tests. In software testing, a positive test is defined as a test where valid input is

provided and the observed results are compared to the output from an oracle. An oracle is a mechanism

for determining whether a program has passed or failed a test (Kaner, 2005). Examples of common

oracles include:

 Specifications and documentation

 Other products (for instance, a second program that uses a different algorithm to evaluate the

same mathematical expression as the product under test and is considered an accurate source

of correct behavior)

 Heuristic oracle that provides approximate results or exact results for a set of a few test inputs

 Statistical oracle that uses statistical characteristics

 Consistency oracle that compares the results of one test execution to another for similarity

 Model-based oracle that uses the same model to generate and verify system behavior

 Human oracle (i.e. the correctness of the system under test is determined by manual analysis)

Positive Testing
Consider a simple application that converts 3-dimensional coordinates between different coordinate

frames. A positive test would be to type valid coordinate data into the input text fields, click a button

STAT COE-Report-02-2017

Page 7

labeled “Convert,” and observe whether the values in the output text fields match that given by the

oracle.

In this case, the positive test passes if the observed behavior is as intended. Did the application convert

from Latitude, Longitude, Altitude (WGS84 Coordinate Frame) to X, Y, Z (Earth-Centered, Earth-Fixed

Coordinate Frame)? More specifically, are the observed values for X, Y, and Z in the Output pane the

values that were expected based on the oracle – be it a human calculating the values using a calculator

and the correct formulas or another (known to be accurate) application with the appropriate conversion

algorithms like www.gpsvisualizer.com? If the actual output matched the expected output, the test

passes and validates a requirement. This is an obvious requirement (that the software titled Coordinate

Conversion converts coordinates correctly); however, consider a design requirement that all output

conforms to a fixed width. A positive test to validate that requirement would fail in the screenshot

shown in Figure 3, as the X, Y, and Z outputs have different widths.

Figure 3: Example of a failed positive test due to varying output lengths

Negative Testing
Successful positive tests for validation are not sufficient evidence of verification, or, that the product is

built correctly. Defects or faults (bugs) can easily exist within software and go unnoticed by tests for

validation. Negative testing is one method to attempt to observe a failure in order to uncover faults. In

software testing, a negative test is defined as a test where invalid input or improper or unexpected

behavior is applied to the SUT to observe if it can gracefully maintain its required functionality. Using the

example above, does the Coordinate Conversion gracefully deal with the user failing to enter data in one

of the input fields?

file:///C:/Users/sebur/AppData/Local/Packages/Microsoft.MicrosoftEdge_8wekyb3d8bbwe/TempState/Downloads/www.gpsvisualizer.com

STAT COE-Report-02-2017

Page 8

Figure 4 shows an example of missing input entered in by the user. As seen in the screenshot, the

application handled the lack of input data gracefully. It neither crashed nor produced values in the

output fields (which would be garbage values), and it notified the user of the mistake.

Figure 4: Example of a negative test handled gracefully

What about a negative test for bad input data? Assuming the oracle expects that the application

similarly provides a message box to indicate the input error, the negative test depicted in Figure 5 would

fail, uncovering a fault or defect in the code. However, the application did not crash and it did not report

garbage values. The value for Z is correct in this case, so whether or not the application handled the bad

data gracefully enough is determined by the oracle for the test.

STAT COE-Report-02-2017

Page 9

Figure 5: Another example of a negative test, perhaps not handled gracefully enough

There are many different types of negative testing scenarios for dealing with input fields, such as:

 How the SUT handles empty data

 How the SUT handles improper data type input (e.g., string instead of integer)

 How the SUT handles data boundaries (integer overflow)

 How the SUT handles unreasonably bounded data (-1 entered in a field titled: Age)

Myth of Complete Testing
The above examples (Figures 3-5) illustrate the types of testing that can be performed on a rather

simple application. An oft-stated intention of software testing is to “completely test” a program. For

nontrivial programs, this is an impossible goal. It is important to understand that goals or claims of

testing that use the word “complete” e.g., complete code coverage or complete path coverage are

almost always referring to a complete exercise of either requirements (validation), or a complete

exercise of all functions of code or even lines of code. This sounds comprehensive, but it does not mean

every function is run through an exhaustive gauntlet of negative tests and time-varying tests. It means

that each line of code is exercised at least once in some way by a test – usually a positive test. There are

too many possible inputs and too many branching paths to test completely. Consider that in addition to

testing all valid inputs, complete testing would require:

 All invalid inputs, which include anything that can be entered on a keyboard

 All edited inputs, which include all possible character entries, deletions, and new characters

 All variations of input timing

STAT COE-Report-02-2017

 Page
10

In addition to testing against all possible inputs, complete testing requires testing all possible states of

the program, which requires all possible paths through the code. Kaner et al. (1999) describe a real-life

state machine with only six possible states. Seemingly easy enough to “test completely,” a latent fault

existed that was only exposed if the program transitioned between State4 and State5 30 times before

finally transitioning to State6.

For a more contemporary example, the video game speed-running community recently exploited a

redundant controller input polling loop to create a buffer overflow, allowing them to ‘beat’ Super Mario

Bros 3 for the Nintendo Entertainment System (NES) in two seconds. In order to exploit the loop, they

had a robot cycle through 6,000 button presses on the NES’s controller without any button being

pressed twice in succession (Orland, 2016). The speedrunners had come across online documentation

discussing the function of the redundant controller input polling function. They used those release notes

to dream up the sequence of valid inputs required to create the buffer overflow and to then execute

machine code to ‘break’ the game. By now it should be self-evident that a tester could dream up an

unlimited number of negative tests that can be applied to even a simple software application. For those

that remain skeptical of the inherent limitations of software testing, Kaner et al. (1999) dedicate an

entire chapter to delivering the bad news, using real world bugs (some that were catastrophic) to

illustrate the myth of complete testing.

Test Coverage
Many studies have estimated that software testing accounts for at least 50 percent of the overall budget

on any software development effort (Beizer, 2003). Since complete testing in the strictest sense is

impossible, the resource allocation for software testing is arbitrary as there is no finite amount of testing

that can guarantee complete testing of software. In practice, the actual cost of software testing is

determined by how much it costs to reduce uncertainty of the software quality to the appropriate

amount for that application. Test coverage (also sometimes called code coverage) refers to the types of

metrics used to qualify the effectiveness of a testing effort by quantifying (at various levels of depth and

granularity) the amount of the SUT that has been exercised by testing. The National Institute of

Standards and Technology’s (NIST) Computer Security Resource Center outlines some of the better

known coverage metrics (Computer Security Division).

 Statement coverage: This is the simplest of coverage criteria and is the percentage of
statements exercised by the test set. While it may seem at first that 100 percent statement
coverage should provide good confidence in the program, in practice, statement coverage is
often considered nearly worthless. At best, less than nearly full statement coverage indicates
that a test set is inadequate.

 Decision or branch coverage: The percentage of branches that have been evaluated to be
both true and false by the test set.

 Condition coverage: The percentage of conditions within decision expressions that have been
evaluated to be both true and false. Note that 100 percent condition coverage does not
guarantee 100 percent decision coverage. For example, if (A || B) {do something} else {do

STAT COE-Report-02-2017

 Page
11

something else} is tested with [0 1], [1 0], then A and B will both have been evaluated to 0 and
1, but the else branch will not be taken since neither test leaves both A and B false.

 Modified condition decision coverage (MCDC): This is a strong coverage criterion that is
required by the U.S. Federal Aviation Administration for Level A (catastrophic failure
consequence) software; i.e., software whose failure could lead to complete loss of life. It
requires that every condition in a decision in the program has taken on all possible outcomes at
least once, and each condition has been shown to independently affect the decision outcome,
and that each entry and exit point have been invoked at least once.

Software Testing Techniques
While it is beyond the scope of this document, the field of software testing employs many advanced

techniques to improve the quality of testing. The Scientific Test and Analysis Techniques Center of

Excellence (STAT COE) has published two best practices on software testing: Combinatorial Test Designs

(Bush and Ortiz, 2014) and Scientific Test and Analysis Techniques for Software Testing (Ortiz, 2015). The

research of Dr. Charlie Colburn at Arizona State University and Drs. Rick Kuhn and Raghu Kacker at NIST

is at the forefront of improving software testing techniques. See Section Further Reading for additional

resources. Since complete testing is impossible, pragmatic testing is about finding shortcuts to reduce

the number of tests, employing a hacker’s mindset when testing software, and increasing the efficiency

of test generation, test execution, and test evaluation. This brings us to automation and the role it can

play in improving software testing.

What Can Be Automated?
The software development life cycle (SDLC) generally speaks to testing as a discrete stage that occurs

after requirements and development but before release and then feeds back into development in the

form of debugging. This is a waterfall paradigm that has existed for decades and is still followed for

many software development efforts as displayed in Figure 6. In this model, there are four types of

testing that are delineated: implementation, unit, integration, and system testing.

STAT COE-Report-02-2017

 Page
12

Figure 6: Software development lifecycle (Tassey, 2002)

Different organizations have different categories of tests for these testing stages of the software
development process. The general stages of testing are defined by Jones (1997):

 Subroutine or Unit Testing

 New Function Testing

 Regression Testing

 Integration Testing

 System Testing

Unit Testing
Unit testing is used to validate the smallest functional units of code – be they termed subroutines,

functions, methods, or modules. Unit tests are written by software developers and they contain no

working knowledge of the rest of the program. As such, they require faked environments to run and

generally use stubs (sometimes called mocks or fakes) to take the placeholder of dependencies that

would otherwise be needed to exercise the module of code under test. Unit tests are more useful for

developers to ensure robust code vs testers; however, unit testing can be automated as regression

testing to maintain a peace of mind that new functionality doesn’t break established code. The

automation of unit testing is one of the hallmarks of Test-Driven Development (TDD), which is discussed

at length in the STAT COE Report-3-2017: Automated Software Testing State of DoD and Industry.

Quality unit tests expose bugs earlier than any other form of testing, making it the cheapest form of

debugging. However, the number of exposed bugs uncovered by the automation of unit testing for

regression testing is much less than running manual tests at the system level, which exercises the

relationships between units of code. At the system level, faults are more likely to be hidden since the

STAT COE-Report-02-2017

 Page
13

unit tests have already been written and conceivably run at least once to ensure proper behavior of the

units of code. That said, having quality unit tests makes code refactoring a much safer endeavor.

New Function Testing
New function testing is simply checking a new piece of code for possible bugs, which can be done with a

quality unit test or any other test that isolates the new functionality.

Regression Testing
Regression testing is more of a process with a goal than a specific stage. Regression testing seeks to

check if any recent changes to the code base have exposed bugs in any other previously stable parts of

the code base. One form of regression testing is running every unit test after adding or refactoring code.

Smoke testing, which is sometimes referred to as “Build Verification Testing,” is like safe-mode testing,

where a subset of tests is run to validate the most important functions of the SUT. This subset is usually

much smaller than exhaustive regression testing and can be used to decide if the current state of the

SUT is stable enough to proceed with further testing. Exhaustive regression and smoke testing are

outstanding candidates for automation. The actual tests that make up the regression and smoke testing

are likely to be executed many times throughout the SDLC. By automating these tests, testers can

proceed to test new functions or create new exploratory manual tests knowing that the code base is

stable or in the case of smoke testing, that the main functionality is stable.

Integration Testing
Integration testing checks whether connecting multiple code components together exposes bugs.

Compare integration testing to unit testing, which completely isolates each code component. The scale

of integration testing can be two components or the entire end-to-end system. However, integration

testing still implies that the environment in many ways is faked to isolate some subset of the code base.

In that sense, integration testing is still a form of white-box testing where the tester has the access to

the internal systems. As a general rule of thumb, increased isolation of the components being integrated

plus a controlled environment (using fakes and limiting shared resources) ensures that the tests are

more reliable. Miller (2015) provides some key best practices for automating integration tests.

System Testing
System testing exercises the entire SUT through its publicly exposed interfaces. In other words, system

testing uses tests that are characteristic of possible user/customer behavior. Any testing described as

“black box testing” is usually system testing. There are many ways to automate system testing. It is

important to note that in many cases, the test execution involves the user interfaces and thus is limited

to the real-time operation of the SUT. Because of this, any efficiency gains from automation do not

necessarily manifest in time savings of test execution over a manual approach. However, through

automation, data can be input more quickly into text boxes or button clicks can happen more rapidly. In

many case studies, other factors and overhead actually made the automated testing slightly slower than

manual test execution. However, the benefits of automation are that it releases the tester from the

mundane task of entering data over and over. Mundane testing tasks can lead to tester fatigue, so

STAT COE-Report-02-2017

 Page
14

automation mitigates those types of human errors. Additionally, automating the system testing can

allow tightly integrated logging and recording of not only test results but the state of various system

objects. Even simple things like screenshots or short video capture can be linked to the test cases and

gives the tester much more insight about an error. Additionally, with an excellent logging system in

place, tests can be executed overnight without the presence of a tester.

Other Candidates for Automation
AST is not limited to executing tests. One of the most beneficial uses of automation throughout the

software development process is in analysis. Take, for example, a program that receives message traffic

over a data link and after some conditioning logs it to a data file. While a useful test case might expect

traffic or a log file upon the completion of some function, the data in the file probably cannot be

predicted accurately in a system test. In a manual case, a tester might perform a cyclic redundancy

check (CRC) or peruse the file for anomalies (assuming it is readable by humans). If, however, during the

process of testing, multiple files of this nature are generated, it can quickly become a burden for manual

testing and is a prime candidate for an automated analysis tool. Automation can also be leveraged to

trace test cases to requirements.

Prioritizing what to automate is an important step for any newly fledged AST effort. Figure 7 provides a

sample checklist similar to an AST effort that was completed for an Air Traffic Controller System of

Systems (Graham and Fewster, 2012).

Table 1: Checklist for prioritizing test cases to automate

 Assessment Criteria Notes

1 How many times will the test be repeated?

2 Does execution require more than 1 person? Automation can accomplish tasks that require
more than 1 person

3 How much time is saved by automating this test? Don’t forget time for test generation and analysis

4 Does this test exercise the critical path? Will it become more important over time?

5 Are the requirements being verified by this test low
risk or unlikely to be impacted by change?

Is the benefit worth the maintenance cost?

6 Is the test likely to be reusable by other projects? Anticipated shared costs and benefits down the
road is attractive

7 Is the test susceptible to human error? Overly complex

8 Is there significant idle time between test steps?

9 Is the testing mundane or highly repetitive? Eliminate tester fatigue

10 Does the test require domain expertise? Automation can minimize reliance on domain
experts

Before you Begin
In a survey of over 700 test professionals, 70 percent of respondents said they believe that automation

for software testing is a high payoff endeavor; however, they were not sure why that was or how

STAT COE-Report-02-2017

 Page
15

automation fit with their project (Dustin et al. [2009]). This sort of uninformed optimism requires a

deeper understanding in order to proceed with a business case for implementing AST.

Understand the Benefits of AST
The goal of AST is to improve efficiency and effectiveness throughout the software testing lifecycle. In

many cases, AST can achieve this goal by enhancing the efforts of manual testers. As an example, AST

can replace the tedious and repeatable process of entering various data into text fields, freeing up a

tester to focus on designing new and better test cases or working to implement better software testing

techniques. Additionally, the repeatability of AST mitigates various human errors on the part of testers.

Once implemented, AST can reduce the uncertainty of testing efforts.

Understand the Limitations of AST
Good automation of software testing is no substitute for good software testing. Automating poorly

throughout test cases just means faster and more repeatable tests of marginal utility. Having the manual

testing process in order is a prerequisite to any successful automation effort. Also, some of the inherent

challenges in manual software testing cannot be overcome by automation: complete testing is still

impossible. Within the larger understanding of software economics, automation is not always

considered a holy grail. According to Brown et al. (2013), in most cases, productivity gains from

automation are between 5 and 25 percent of the overall software development effort. See Figure 8 for

Brown et al.’s Chart on the Economic Impacts of Software Development Decisions.

Figure 8: The economic impacts of software development decisions (Brown et al., 2013)

Understand the Challenges Created by AST
AST poses some unique testing challenges that could otherwise be mitigated by an experienced manual

tester. As an example, consider a manual tester presiding over a battery of test cases. The tester will run

STAT COE-Report-02-2017

 Page
16

a test, monitor the SUT, and in the event that the test fails, will write up a bug report. Ascertaining

whether or not the test has revealed a bug is known as the “oracle problem.” Kaner (2012) provides a

focus group-like description of the “oracle problem” and how it uniquely affects automated testing. To

demonstrate the difference between a human tester executing a manual test and a test execution tool

running automated tests, consider a test to verify that a calculator program adds 2 + 2 correctly. A

human might recognize that a certain test uncovered a bug because it took the calculator a few minutes

to produce the value 4 – an unacceptable amount of computing time. An automation framework

without some sort of expectation of timeliness spelled out in the oracle would pass this test, failing to

report what a human would recognize as an obvious symptom of a bug. Alternatively, imagine an

automated test that fails because some other program, system, or hardware created a resource conflict

(perhaps opening a file). AST would report a failed test but had a human been inspecting the SUT during

the execution of the test, he or she could have realized that the SUT behaved appropriately even if the

outputs did not match the oracle. This lack of situational awareness over the testing can create a false

sense of security when tests pass, and can engender inappropriate lack of interest over presumed false

alarms when tests fail.

Additionally, for AST to be useful at helping testers trace failed tests to the underlying bugs, the

“testability” of code needs to exist within the SUT or a monitor recording the application state and

diagnostic information needs to be part of the testware. Improving testability could involve refactoring

the code so that every component logs its state, the state of the data it is reading or writing, and

provides timestamps and other relevant information to aid in debugging. Testability can also refer to

different components being exposed to test cases. If a requirement for testing is some code coverage

metric, then the software developers will have to create hooks to expose otherwise untestable parts of

the source code.

Set Clear, Deliberate, and Attainable Goals
Having smart and clearly defined goals for automation (not testing – this is an important distinction) is

the first in a line of necessary (but not sufficient) practices to achieve successful AST. This seems

obvious, but a lack of clearly defined goals for automation is dooming the initiatives from the beginning.

For example, a goal of software testing is to expose faults, or “find as many bugs as possible.” This may

be a poor goal for AST. One of the most common uses for automation is the overnight execution of

regression tests to ensure that changes to the code base did not break something that was previously

working (or regress). In most cases, these types of tests are ill-suited to find bugs. One reason is that unit

tests are generally written as positive tests – meant to exercise the function of the smallest units of

code, not run it through a battery of negative tests. Another is that unit tests are written, not auto-

generated. Therefore, a developer will certainly test his or her code with the unit test at least once

before moving on. The automated regression testing of unit tests, then, is less likely to find bugs than

manual exploratory testing performed by experienced testers. This does not necessarily mean that the

automation effort was a failure, but it could be interpreted as such by management if the goals of

automation are not aligned with the strengths of automation and the needs of the project. In one of the

STAT COE-Report-02-2017

 Page
17

case studies by Graham and Fewster (2012), the automation team reported that only 9.3 percent of

bugs were found using automated tests. However, the effort to automate was considered a wild success

because the goal of the automation was to free up time for testers to perform manual exploratory tests.

After three release cycles with the automation in place, the team reported that 58.2 percent of bugs

were found using manual exploratory (mostly negative) tests.

Commit from the Top Down
It is tempting to think of automation as simply “faster testing” or “saving time” – platitudes that are

difficult to evaluate. This is a major pitfall. Effective AST requires investments up front: new resources,

culture changes, enabling skillsets, and robust architectures. In short, there is not much of a business

case for automation with limited up-front investment or a lack of patience. Treating automation as a

side project is almost guaranteed to lead to disappointing results. Because of this pitfall, the goals of any

automation effort must be matched by a willingness of leadership to invest and lead from the top down.

Very few efforts to automate software testing succeed with a bottom-up approach. In many case

studies, the consequences of a lack of commitment from leadership included misplaced personnel and

team-wide frustration as the testers were asked to become coders and the coders to become testers. In

this scenario, the quality of both functions suffered.

Research the Return on Investment
It is a good practice to estimate return on investment (ROI) at the outset of an automation effort. One

pitfall is to assume that the investment portion is limited to the cost of a commercial AST tool. There are

other significant investments, including:

 Research and development of an overarching testware architecture, of which tools are usually

sub-components

 Designing automation solutions that address the project needs while being robust enough to be

useful down the road

 Maintenance costs of the testware. Remember, software is used to automate software testing.

Easier maintenance down the road requires a better architecture (more investment) up front.

The principles of software economics apply to Testware just the same.

 New project management processes. This is part of the culture change that needs to happen for

successful AST.

 Pilot programs. Automation tools for software testing have existed for many decades. By now,

many have realized that an adequately funded pilot program sandboxed from other software

development efforts is the most fruitful way to inject useful automation into software testing.

 Refactoring legacy code. In order for legacy code to become testable using automation, it very

often needs to be refactored to be more modular or at least have injection points (hooks) for

the automated scripts to insert test vectors for unit and integration testing.

 Personnel overhaul. New hires are often required for a successful implementation of AST and

existing software developers and testers may require training and certification.

STAT COE-Report-02-2017

 Page
18

The European Space Agency (ESA) underwent an overhaul of software testing to include tightly

integrated automation to test their Multi-Mission User Services. Upon completion, they reported an up-

front cost of 812 hours to implement test automation using a model-based approach. Lindholm (2017)

provides a good overview of the process that is referred to as Model-Based Testing. Manual testing to

create and run the same tests required just 315 hours. The difference is almost entirely based on the

added investment needed to automate. However, due to serious time savings in the execution of tests

and the maintenance savings (which they found to be significant) enabled by model-based test creation,

the break-even point between the manual and automated approaches occurred after the fourth test

cycle. A test cycle in this case was required to achieve 100 percent requirements coverage (positive

testing). One thing to note is that the ESA used an in-house test execution tool called “Test Commander”

in their testware that they had previously developed to automate efforts on another software project.

They reported that this tool required about one person-year of development effort. If that extra 2,000

hours is included in the upfront investment of the AST effort, it slides the ROI break-even point to the

15th test cycle (Graham and Fewster, 2012).

Establish and Maintain Communication
In the example of the ESA, the test automation experts had experience automating other software

projects and had experience with most of the tools (commercial and in-house) that they used to design

their testware. Embarking on AST with little to no experience necessitates not only appropriate goals

and the backing of leadership, but also a constant line of communication between developers,

automators, and all levels of management stakeholders. Imagine taking on the ESA initiative and

eventually arriving at the unforeseen conclusion that you need to develop an in-house test execution

tool because none of the commercially available tools suit your project. Constant communication and

expectation management is critical to avoid disappointment and sticker shock.

Start Small
In case studies and testimonials, many efforts to do AST succeeded because they were preceded by a

pilot program. In this case, a pilot program is great way to reduce uncertainty surrounding the

implementation of AST. The extent of the technical challenges is not always understood beforehand and

AST implementation can often conflict with the deadlines and milestones of the software development

process. In some implementations, the delayed payoff from AST is neither well-understood nor accepted

by the team and/or its leadership. AST is also a group effort, and a pilot program is an opportunity to

monitor group dynamics and evaluate the resilience or resistance to some of the culture changes

required for effective AST.

Understand Competing Incentives
In many cases, developers need to architect or refactor their software to make it more testable. This is

more work without obvious benefits to the developer, whose goals are usually adding features to the

code base. Similarly, many testers view automation as a threat to their livelihood and are not fond of

having to write any code or struggle with testware. Finally, a new role is required for implementing AST:

STAT COE-Report-02-2017

 Page
19

the role of the test automator. In many cases, a group will not have any experience with such a role and

there will be a lot of uncertainty about how that role fits into the team. Consultants are often brought in

to assist with this task, but quite often the long-term solution is to employ a test automator that

maintains the testware. Because of all these things, getting the recipe for AST right the first time for a

specific team or application is daunting. The best play is to sandbox off a small team so they can gain

experience and confidence in automating tests and use the lessons learned on low hanging fruit to

devise a reusable testware.

Prevent Automation Burdens
It is very important to use automation of software testing as an enabling technology for developers and

testers and not a burden. To be effective, automated tests must be reliable and repeatable. If they are

“overly brittle” (too many false positives) the tester is going to be overly burdened trying to discern if a

test failure is “real” or not. Over time, this will induce a lack of faith in the automated tests. Additionally,

if there is no traceability between tests and requirements or code, even if there is confidence that a

failure was real, it can be very difficult to know why a test failed. Certain types of tests are more reliable

than others. It is often better to have a reduced set of automated tests with less code coverage than an

expansive test suite that is not reliable.

Roles and Skillsets

Google as an Exemplar
Google names their software tests by scope and not function and are called: “Small,” “Medium,” and

“Large” tests. The scope in most cases dictates the functionality. They define them as follows:

Small tests cover a single unit of code in a completely faked environment. Medium tests cover multiple

and interacting units of code in a fake or real environment. Large tests cover any number of units of

code in the actual production environment with real and not fake resources. This may seem a bit

ambiguous but it aligns very nicely with the roles that Google has identified as necessary for automated

software testing. Those roles are: Software Engineer (SWE), Software Engineer in Test (SET), and Test

Engineer (TE). The roles are defined as follows:

The SWEs are the traditional developers who spend the vast majority of their time writing and reviewing

code. They write a good amount of test code, mostly small tests, but participate in medium and large

tests as well.

The SETs are software developers as well, but their focus is on testability of code and maintaining the

test infrastructure. They write the unit testing frameworks and enable the automation of software

testing. They refactor code to make it more testable. Their concerns are quality and test coverage over

adding new features of increasing performance and supporting the SWEs.

STAT COE-Report-02-2017

 Page
20

The TEs are more akin to traditional manual testers in that they test on behalf of the user. They organize

the testing work of the SWEs and SETs, interpret test results, and drive test execution, especially of large

tests.

Being a leading software company, Google’s journey towards AST began with a disruptive decision:

testers needed to be proficient programmers, and programmers needed to become quality testers. This

idea was met with derision and frustration, so a small group at Google proceeded to hire candidates as

part of a pilot program. Over time, the program succeeded and one of its main initiatives was to create a

company-wide training certification program called “Test Certified” where every team had the

opportunity to compete for prizes and bragging rights. They were all being trained to become part of a

company-wide directive towards shared responsible for quality, as opposed to using testing at the end

of a development cycle to try to “test in quality.” While few Department of Defense (DoD) organizations

have the need or the ambition to completely overhaul their way of doing business the way Google did,

there is a universal truth for all efforts to implement AST: you need distinct skillsets to build the

architecture/framework/testware that may require targeted hiring Whittaker et al. (2012).

Recommended Roles for AST
There are four distinct roles that are required to implement AST, although one person could manage

more than one role. They are: Test Automation Architect, Test Automator, Test Executor, and Test

Creator.

Test Automation Architect

The Test Automation Architect is most likely the role that does not currently exist if a group is

embarking on an effort to implement AST. The Test Automation Architect is the person who designs the

overall structure for the automation or selects and adapts the framework used to achieve a good

testware architecture.

Test Automator

The Test Automator (which could be the same person as the test automation architect) is responsible

for designing, writing, and maintaining the automation software, the scripts, the data, the oracles, and

any additional tools or utilities (Graham and Fewster, Chapter A.5, 2012). Both the Test Automation

Architect and the Test Automator need to have excellent programming skills and the Test Automation

Architect should be familiar with Systems Engineering Principles.

Test Executor

The Test Executor is the person that uses the testware to create, initialize, and record the results of

automated test scenarios.

Test Creator

The Test Creator is the closest to the traditional tester role. This is the person that understands the SUT

more than any of the other roles and has the testing skillsets required to implement the best (manual)

STAT COE-Report-02-2017

 Page
21

testing techniques. If the testware makes it easy to write automated tests then the Test Creator will

more than likely fulfill the role of Test Executor as well and just be called the “Tester.” This is the case

with most DoD organizations.

A number of skillsets are useful or required to successfully implement AST. They are: Program

Management, Systems Engineering, Software Development, Configuration Management, and Design of

Experiments. We describe each of these skills in more detail below.

Program Management
 Gathering requirements for AST initiatives

 Establishing processes, metrics, and monitoring progress and outcomes

 Prioritizing the scope of AST and where it will and will not be injected as part of the SDLC

 Establishing the success criterion for the AST effort

 Evaluating manual testing efforts to estimate ROI

 Hiring new employees to fill AST roles and/or bringing in SMEs as consultants

 Procuring commercial AST tools

 Resource management

 Nurturing good communication between the AST team, the software developers, and upper

management

 Constantly monitoring progress and documenting all lessons learned (most initial AST efforts

look a lot different than their successors)

Systems Engineering
 Subject matter expertise on the SUT

 Develop the test plan and expected results (oracles)

 Understand the interfaces and their specifications

 Prioritize test cases to be automated

Software Development
 Identifying operating system (OS) and programming languages used by the SUT

 Identifying any tools used in manual testing and their ability to be repurposed for AST

 Designing and developing the software or software modifications to implement the testware

 Designing and developing test scripts

Configuration Management
 Developing a configuration management plan for AST

 Locking down baselines for the SUT, testware, and environment with configuration control

 Managing source code version control, product release schedules, bug reports within an AST

framework

STAT COE-Report-02-2017

 Page
22

Design of Experiments
 Understanding various testing technique (boundary value, equivalence portioning, risk-based

testing, orthogonal classification, combinatorial testing)

 Evaluating efficacy of AST implementation and making recommendations

 Helping prioritize test cases to be automated based on the AST effort requirements

Certification, Standards, and Training

ISTQB
The International Software Testing Qualifications Board (ISTQB) offers certification as a Test Automation

Engineer. See: http://www.istqb.org/certification-path-root/test-automation-engineer.html. The

syllabus can be found here: http://www.istqb.org/downloads/send/48-advanced-level-test-automation-

engineer-documents/201-advanced-test-automation-engineer-syllabus-ga-2016.html

ISO 29119
The International Organization for Standardization (ISO), in conjunction with the International Electro-

technical Commission (IEC) and Institute of Electrical and Electronics Engineers (IEEE) released

ISO/IEC/IEEE 29119—ISO 29119 for short—a set of standards governing testing processes,

documentation, techniques, and keyword-driven testing designed to create uniform testing practices

within any SDLC or organization. Parts 1, 2, and 3 of the standard were published in September 2013,

with Part 4 published in 2015, and Part 5 published in November of 2016 (International Organization for

Standardization).

BBST
The Association for Software Testing offers training courses for Black Box Software Testing (BBST).

https://www.associationforsoftwaretesting.org/training-2/courses/

Tips for Good Testware
Testware includes tools, resources, scripts, generators, analyzers, and any other components of an AST

architecture. The testware is the glue that holds everything together. One of the main functions of

testware is to seamlessly link test cases to the test execution tools that apply them to the SUT.

In most cases, the job of testers is to develop good tests. It is easy to lose sight of that when embarking

on an AST effort. In many cases, a team will acquire a test execution tool and expect the testers to get to

work automating their tests cases. But if the testers are not developers they will be unfamiliar with the

scripting language of the tool. If they decide to struggle through it, they will most likely produce poor

automation code that will become very difficult to reuse or maintain. This is where testware, the glue,

comes in.

http://www.istqb.org/certification-path-root/test-automation-engineer.html
http://www.istqb.org/downloads/send/48-advanced-level-test-automation-engineer-documents/201-advanced-test-automation-engineer-syllabus-ga-2016.html
http://www.istqb.org/downloads/send/48-advanced-level-test-automation-engineer-documents/201-advanced-test-automation-engineer-syllabus-ga-2016.html
http://www.iso.org/iso/catalogue_detail.htm?csnumber=45142
https://www.associationforsoftwaretesting.org/training-2/courses/

STAT COE-Report-02-2017

 Page
23

Abstraction
Any useful testware will include a layer of abstraction between the automation scripts that execute the

test cases and the cases themselves. This allows testers to write tests in a domain specific language with

which they are comfortable. One of the jobs of the testware is to translate those into test cases for the

test execution tool for automation. In this way, good testware acts as a compiler from one language (the

testers’ language) to another (the test execution tool’s language).

Additionally, good testware is built to be flexible to include different tools. Very often, AST efforts

involve switching commercial tools or the team decides to build their own. If a testware is too tightly

bound to a specific tool it may have a shorter lifespan or be less reusable. This concept of abstraction

layers is shown below (Figure 9).

Figure 9: A diagram for robust testware through abstraction and delineation

Signs of Well-Designed Testware
 Testers are empowered

o Easy for non-programmers to write tests

o Tests are useful and not overly brittle

 Reused by other teams/programs

o Test cases are shared

o Testware is appropriate for various SUTs

 Maintainability

STAT COE-Report-02-2017

 Page
24

o Changes to the SUT, tool, or environment don’t break everything

o Modular and expandable

Investments and Goals
It is important to decide early how “all-in” to be with respect to the testware. Certainly, there are

commercial products that are useful for automating specific stages of the SDLC. Some are even open

source. Creating a robust and tester-friendly testware is a very challenging and ambitious endeavor.

Figure 10 illustrates the difficulty of trying to overhaul software testing.

Figure 10: Balancing AST goals with the appropriate investments

Testware done right will take much longer to provide a positive ROI. There needs to be a strong business

case to justify the amount of resources and culture change that is required.

Tools for AST
Testing tools tend to be specialized in three ways: the application domain, the kind of interface

supported, and the platform supported. Within these types, tools are typically further specialized by the

kind of quality attribute they can evaluate, of which functionality, performance, and security are the

most common. Listed below are many of the commercial and open source tools used to automate

software testing.

Investments AST Goals

Automate some low
hanging fruit

Automate white box
testing

Easy for non programmer
to write tests

Tool agnostic

Tool + Support + Training

Summon the developers

Pilot program

Hire a rockstar
automation architect

STAT COE-Report-02-2017

 Page
25

Functional Testing for Enterprise Applications
 Hewlett-Packard Unified Functional Testing (Formerly Quick Test Pro): HP UFT started a 3-year

roadmap in 2015 to appeal to Agile developers focused on continuous integration.

http://www8.hp.com/us/en/software-solutions/unified-functional-automated-testing/

 IBM Rational Test Workbench: IBM Rational Test Workbench now appeals to development

groups thanks to an integration strategy that enables deployment and control of test

environments across large numbers of virtualized assets. It has focused on dev-ops and

continuous integration, but not at the expense of end-to-end testing. http://www-

03.ibm.com/software/products/en/rtw

 Microsoft Test Manager: Microsoft Test Manager’s focus on DevOps allows it to execute diverse

sets of tests: unit, Selenium and coded UI, functional non-UI, and load and performance as part

of its build/release automation workflow. https://msdn.microsoft.com/en-

us/library/ms182409(v=vs.110).aspx

 MicroFocus Silk Test https://www.microfocus.com/products/silk-portfolio/silk-test#

 Oracle Application Testing Suite http://www.oracle.com/technetwork/oem/app-test/etest-

101273.html

 SmartBear TestComplete: SmartBear TestComplete is a lesser known AST product that is highly

applicable to DoD. It is fairly easy to learn, graphical user interface (GUI) driven, customizable,

works well with other tools, supports scripts written in other common coding languages (e.g.,

Python), though it is restrictive on the objects sharing repository for reuse.

https://smartbear.com/product/testcomplete/overview/

 IDT ATRT: Innovative Defense Technologies Automated Test and ReTest is the most common

tool in DoD AST. This is not surprising given the mandate to many Navy test organizations to use

the product. It is currently available to all DoD organizations and on-site contractor support is

available at a cost. ATRT uses a technology called bitmap capture-replay to automate GUI

testing, which is a deprecated technology that succumbs to issues with brittle tests that can

result in a large maintenance tail. IDT has succeeded in breaking down automation barriers for

as many as 75 DoD programs. Many program offices echo IDT’s claims of ATRT reducing testing

cost and time; however, some have noted unforeseen difficulties and costs associated with

maintaining the test infrastructure over time. http://idtus.com/products/atrt-test-manager/

Testing Graphical User Interfaces (GUIs) Natively
 Eggplant http://www.testplant.com/eggplant/testing-tools/

 Squish https://www.froglogic.com/squish/gui-testing/index.php

 Ranorex http://www.ranorex.com

 Test Studio http://www.telerik.com/teststudio

Browser Testing
 Selenium: Selenium is a widely used open-source web browser automator for testing web

applications. http://docs.seleniumhq.org

http://www8.hp.com/us/en/software-solutions/unified-functional-automated-testing/
http://www-03.ibm.com/software/products/en/rtw
http://www-03.ibm.com/software/products/en/rtw
https://msdn.microsoft.com/en-us/library/ms182409(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ms182409(v=vs.110).aspx
https://www.microfocus.com/products/silk-portfolio/silk-test
http://www.oracle.com/technetwork/oem/app-test/etest-101273.html
http://www.oracle.com/technetwork/oem/app-test/etest-101273.html
https://smartbear.com/product/testcomplete/overview/
http://idtus.com/products/atrt-test-manager/
http://www.testplant.com/eggplant/testing-tools/
https://www.froglogic.com/squish/gui-testing/index.php
http://www.ranorex.com/
http://www.telerik.com/teststudio
http://docs.seleniumhq.org/

STAT COE-Report-02-2017

 Page
26

 Watir https://watir.com

Web Testing

 Tellurium http://www.te52.com

 Sahi http://sahipro.com

API Testing
 SoapUI https://www.soapui.org

Unit Testing
 NUnit http://www.nunit.org

 xUnit https://github.com/xunit/xunit

 pyUnit https://docs.python.org/2/library/unittest.html

 JUnit http://junit.org/junit4/

 Google Test https://github.com/google/googletest

 PHPUnit https://phpunit.de

 TestNG http://testng.org/doc/

 Test::Unit http://ruby-doc.org/stdlib-2.0.0/libdoc/test/unit/rdoc/Test/Unit.html

 T3 https://git.science.uu.nl/prase101/t3/wikis/home

Continuous Testing Tools
 ContinuousTests http://www.continuoustests.com/

 Wallaby.js https://wallabyjs.com/

 Autotest https://github.com/grosser/autotest

 Infinitetest https://infinitest.github.io/

Other
 Automated Combinatorial Testing for Software: NIST ACTS

http://csrc.nist.gov/groups/SNS/acts/index.html

 Model Based Testing: TEMA http://tema.cs.tut.fi/index.html

 Embedded: VectorCAST C++

https://www.vectorcast.com/sites/default/files/pdf/resources/vectorcast_c.pdf

Conclusion
Among many of the case studies that served as source material for this document was a common theme

of uninformed optimism of the prospects of automating software testing followed by enduring

frustration and in some cases, abandonment. Probably the most cited complaint among those

embarking on AST was that after some amount of time, maintainability of test scripts and the testware

architecture became too burdensome. When it comes to any type of software testing, it is easier to

https://watir.com/
http://www.te52.com/
http://sahipro.com/
https://www.soapui.org/
http://www.nunit.org/
https://github.com/xunit/xunit
https://docs.python.org/2/library/unittest.html
http://junit.org/junit4/
https://github.com/google/googletest
https://phpunit.de/
http://testng.org/doc/
http://ruby-doc.org/stdlib-2.0.0/libdoc/test/unit/rdoc/Test/Unit.html
https://git.science.uu.nl/prase101/t3/wikis/home
http://www.continuoustests.com/
https://wallabyjs.com/
https://github.com/grosser/autotest
https://infinitest.github.io/
http://csrc.nist.gov/groups/SNS/acts/index.html
http://tema.cs.tut.fi/index.html
https://www.vectorcast.com/sites/default/files/pdf/resources/vectorcast_c.pdf

STAT COE-Report-02-2017

 Page
27

identify common pitfalls than best practices. In many cases, this is because testing is inherently about

trade-offs and business decisions, not rote processes. Recall the myth of complete testing and how the

amount of testing can be an arbitrary decision. AST can reduce uncertainty around the SUT during the

SDLC through automated unit and regression testing. It can be used in system testing (including Black

Box System Testing) to alleviate errors from human tester fatigue or to run a battery of input and

performance tests on the SUT, often overnight. However, from the source material used for this

document, there was a significant number of testers that found manual, exploratory testing was

superior at finding bugs over automated test cases. Additionally, whether or not to automate depends

in many ways on the SDLC, software architecture, deployment schedule, and tolerance for bugs.

An “Agilista” working on a headless service for ETSY1 – where they push 50+ deployments each day – is

completely immersed in automation. As a philosophy, Google releases code that has enough feature

goodness to be considered useful while fully intending to continuously make improvements, fix bugs,

etc. These companies developed software to scale for millions of users, and the consequences of a fault

occurring are limited by the ability to immediately roll-back to a working version and the nature of the

application. An Air Traffic Control software application is developed with different intentions. As such,

the amount and type of software testing and the affinity of that testing to automation will differ as well.

Before embarking on any venture to inject automation into any part of the SDLC, including testing, there

needs to be a firm grasp on the business case, including the goals and scope of automation and a solid

alignment between goals and investments.

Further Reading

Complementary STAT COE Reports
 Automated Software Test Implementation Guide

 Automated Software Testing State of DoD and Industry

Associated STAT COE Reports
 STAT for Software Testing Best Practice

 Combinatorial Test Designs

Books
 Introduction to Software Testing http://cs.gmu.edu/~offutt/softwaretest/

 Testing Computer Software https://www.amazon.com/dp/0471358460/

 Software Test Automation https://www.amazon.com/dp/0201331403/

 Experiences of Software Test Automation https://www.amazon.com/gp/product/0321754069

1 https://www.etsy.com/

http://cs.gmu.edu/~offutt/softwaretest/
https://www.amazon.com/dp/0471358460/
https://www.amazon.com/dp/0201331403/
https://www.amazon.com/gp/product/0321754069
https://www.etsy.com/

STAT COE-Report-02-2017

 Page
28

 Just Enough Software Test Automation https://www.amazon.com/dp/0130084689/

Articles

 Introduction to Test Driven Development http://www.agiledata.org/essays/tdd.html

 When to Automate Testing http://davidweiss.blogspot.de/2006/08/when-to-automate-

testing.html

 The Software Testing Schism http://sdtimes.com/software-testing-schism/

 Make Testing Great Again http://xndev.com/2016/05/make-testing-great-again/

 The Oracle Problem and the Teaching of Software Testing http://kaner.com/?p=190

 Practical Combinatorial Testing

http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-142.pdf

 Testing Overview and Black-Box Testing Techniques

http://agile.csc.ncsu.edu/SEMaterials/BlackBox.pdf

 The Super Mario Bros Glitch Explained

https://www.reddit.com/r/speedrun/comments/4s29rt/sgdq_2016_tas_block/d55ysqx/?contex

t=1

 Automated Testing Best Practices and Tips https://smartbear.com/learn/automated-

testing/best-practices-for-automation/

Other
 Matt Heusser – “How to talk about Coverage”

https://www.youtube.com/watch?v=cVAlGRgTJ58#t=6m

 Matt Heusser – “How to Speak to Agilistas if you absolutely must”

https://www.youtube.com/watch?v=DmVCdUz_M_k

 NIST http://csrc.nist.gov/groups/SNS/acts/index.html#briefings

 Dr. Charles Colburn http://www.public.asu.edu/~ccolbou/

 Cem Kaner on High Volume Test Automation https://www.youtube.com/watch?v=iP4tZ_i6eDY

 Standard Glossary of Terms Used in Software Testing

http://www.istqb.org/downloads/send/20-istqb-glossary/189-extract-of-terms-used-in-the-

advanced-test-automation-engineer.html

 Test Automation Guild https://automationguild.com/

https://www.amazon.com/dp/0130084689/
http://www.agiledata.org/essays/tdd.html
http://davidweiss.blogspot.de/2006/08/when-to-automate-testing.html
http://davidweiss.blogspot.de/2006/08/when-to-automate-testing.html
http://sdtimes.com/software-testing-schism/
http://xndev.com/2016/05/make-testing-great-again/
http://kaner.com/?p=190
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-142.pdf
http://agile.csc.ncsu.edu/SEMaterials/BlackBox.pdf
https://www.reddit.com/r/speedrun/comments/4s29rt/sgdq_2016_tas_block/d55ysqx/?context=1
https://www.reddit.com/r/speedrun/comments/4s29rt/sgdq_2016_tas_block/d55ysqx/?context=1
https://smartbear.com/learn/automated-testing/best-practices-for-automation/
https://smartbear.com/learn/automated-testing/best-practices-for-automation/
https://www.youtube.com/watch?v=cVAlGRgTJ58#t=6m
https://www.youtube.com/watch?v=DmVCdUz_M_k
http://csrc.nist.gov/groups/SNS/acts/index.html#briefings
http://www.public.asu.edu/~ccolbou/
https://www.youtube.com/watch?v=iP4tZ_i6eDY
http://www.istqb.org/downloads/send/20-istqb-glossary/189-extract-of-terms-used-in-the-advanced-test-automation-engineer.html
http://www.istqb.org/downloads/send/20-istqb-glossary/189-extract-of-terms-used-in-the-advanced-test-automation-engineer.html
https://automationguild.com/

STAT COE-Report-02-2017

 Page
29

References
“Coverage Measurement - Automated Combinatorial Testing for Software | CSRC.” Computer Security

Resource Center , NIST, http://csrc.nist.gov/Projects/Automated-Combinatorial-Testing-for-

Software/Coverage-Measurement.

“Software and Systems Engineering -- Software Testing .” International Organization for Standardization,

ISO/IEC/IEEE 29119-5:2016, Nov. 2016, www.iso.org/standard/62821.html

“Standard Glossary of Terms Used in Software Engineering.”
https://www.astqb.org/Documents/Standard-Glossary-of-Terms-Used-in-Software-Engineering-
1.0-IQBBA.pdf, 11 Oct. 2011.

Beizer, Boris. Software testing techniques. Dreamtech Press, 2003.

Brown, Alan W., Scott Ambler, and Walker Royce. "Agility at scale: economic governance, measured

improvement, and disciplined delivery." Proceedings of the 2013 International Conference on

Software Engineering. IEEE Press, 2013.

Bush, Brett and Francisco Ortiz. “Combinatorial Test Designs.” Scientific Test and Analysis Techniques

Center of Excellence (STAT COE), 25 Mar. 2014

Copeland, B. Jack. “The Modern History of Computing.” Edited by Edward N Zalta, Stanford Encyclopedia

of Philosophy, Stanford University, 9 June 2006,

plato.stanford.edu/archives/fall2008/entries/computing-history/.

Dustin, Elfriede, Thom Garrett, and Bernie Gauf. Implementing automated software testing: How to save

time and lower costs while raising quality. Pearson Education, 2009.

Gannon, Paul. Colossus: Bletchley Park's Greatest Secret. London: Atlantic, 2006.

Graham, Dorothy, and Mark Fewster. Experiences of test automation: case studies of software test

automation. Addison-Wesley Professional, 2012.

Jones, C.C. Software quality: Analysis and guidelines for success. Thomson Learning, 1997.

Kaner, Cem, Jack Falk, and Hung Quoc Nguyen. Testing Computer Software Second Edition. Dreamtech

Press, 2000.

Kaner, Cem. “A Course in Black Box Software Testing .” Center for Software Testing Education &

Research, 14 Mar. 2005, www.testingeducation.org/k04/OracleExamples.htm.

Kaner, Cem. “The Oracle Problem and the Teaching of Software Testing.” Cem Kaner JD PhD, 11 Sept.

2012, kaner.com/?p=190

http://csrc.nist.gov/Projects/Automated-Combinatorial-Testing-for-Software/Coverage-Measurement
http://csrc.nist.gov/Projects/Automated-Combinatorial-Testing-for-Software/Coverage-Measurement
http://www.iso.org/standard/62821.html
https://www.astqb.org/Documents/Standard-Glossary-of-Terms-Used-in-Software-Engineering-1.0-IQBBA.pdf
https://www.astqb.org/Documents/Standard-Glossary-of-Terms-Used-in-Software-Engineering-1.0-IQBBA.pdf
file://///FSV-AFIT-823/USERS/SBurke/Deliverables/Others%20BPs/BP%20Revamp/plato.stanford.edu/archives/fall2008/entries/computing-history/

STAT COE-Report-02-2017

 Page
30

Lindholm, Joonas. “Model Based Testing.” University of Helsinki, 1 Nov. 2006.

https://www.cs.helsinki.fi/u/paakki/lindholm.pdf

Miller, Jeremy D. “Succeeding with Automated Integration Tests.” The Shade Tree Developer, 25 June

2015, http://jeremydmiller.com/2015/06/25/succeeding_with_integration_testing.

Murray, Brian T., and John P. Hayes. "Testing ICs: Getting to the core of the problem." IEEE

Computer 29.11 (1996): 32-38.

Orland, Kyle. “How to Beat Super Mario Bros. 3 in Less than a Second.” Ars Technica, 12 July 2016,

http://arstechnica.com/gaming/2016/07/how-to-beat-super-mario-bros-3-in-less-than-a-

second/.

Ortiz, Francisco. “Scientific Test and Analysis Techniques for Software Testing.” Scientific Test and

Analysis Techniques Center of Excellence (STAT COE), 17 Apr. 2015.

Royce, Walker, and Dan Sturtevant. “-silverthread- Take Back Control: Improve Design Quality and

Software Economics to Drive Results.” Silverthread Demonstration. 30 June 2016, Hanscom AFB,

MA. Presentation.

Tassey, Gregory. "The economic impacts of inadequate infrastructure for software testing." National

Institute of Standards and Technology, (2002).

Whittaker, James A., Jason Arbon, and Jeff Carollo. How Google tests software. Addison-Wesley, 2012.

Williams, Laurie. Testing Overview and Black-Box Testing Techniques.
http://agile.csc.ncsu.edu/SEMaterials/.

https://www.cs.helsinki.fi/u/paakki/lindholm.pdf
http://jeremydmiller.com/2015/06/25/succeeding_with_integration_testing
https://arstechnica.com/gaming/2016/07/how-to-beat-super-mario-bros-3-in-less-than-a-second/
https://arstechnica.com/gaming/2016/07/how-to-beat-super-mario-bros-3-in-less-than-a-second/
http://agile.csc.ncsu.edu/SEMaterials/

STAT COE-Report-02-2017

 Page
31

Appendix A: Acronym List

Acronym Description
ACTS Automated Combinatorial Testing for Software

AST Automated Software Testing

ATRT Automated Test and ReTest

BBST Black Box Software Testing

COE Center of Excellence

CRC Cyclic Redundancy Check

DoD Department of Defense

ENIAC Electronic Numerical Integrator And Computer

ESA European Space Agency

GUI Graphical User Interface

HP Hewlett Packard

IDT Innovative Defense Technologies

IEC International Electro-technical Commission

IEEE Institute of Electrical and Electronics Engineers

ISO International Organization for Standardization

ISTQB International Software Testing Qualifications Board

MCDC Modified condition Decision Coverage

NES Nintendo Entertainment System

NIST National Institute of Standards and Technology

O/S Operating System

ROI Return on Investment

SDLC Software Development Life Cycle

SET Software Engineer in Test

STAT Scientific Test and Analysis Techniques

SUT System(s) Under Test

SWE Software Engineer

TDD Test-Driven Development

TE Test Engineer

UFT Unified Functional Testing

