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Executive Summary 
Many computer programs and programming languages have built-in functions to randomly sample from 
common probability distributions (uniform, normal, etc.). This capability is particularly useful when 
performing Monte Carlo simulations. However, what is one to do if actual data are used to build the 
model, and none of those common distributions adequately represent the data? The rejection method is 
a process that can be used to sample from any distribution – even those with complex functional forms 
from which direct sampling may be difficult. This paper discusses how to use the rejection method to 
sample from an arbitrary distribution and provides advice on how to apply the method. 

Keywords: sampling, MCMC, Monte Carlo, rejection, acceptance-rejection, Bayesian  

Introduction 
Monte Carlo simulation is an analysis technique that requires random sampling from distributions. For 
example, consider a case where the analyst wishes to predict a physical parameter, 𝑦𝑦, where 𝑦𝑦 =
𝑥𝑥/(𝑥𝑥 + 𝑤𝑤) and 𝑥𝑥 and 𝑤𝑤 are random variables. The analyst has decided that 𝑥𝑥 comes from a uniform 
distribution between the values 𝑎𝑎 and 𝑏𝑏, and 𝑤𝑤 comes from a normal distribution with mean 𝜇𝜇 and 
standard deviation 𝜎𝜎. In statistical notation, where upper-case letters represent populations and lower-
case letters represent a particular instance of a population, these assumptions can be written as 
𝑋𝑋~Unif(𝑎𝑎, 𝑏𝑏) and 𝑊𝑊~Normal(𝜇𝜇,𝜎𝜎). Thus 𝑥𝑥 is an observation drawn from 𝑋𝑋 and 𝑤𝑤 is an observation 
drawn from 𝑊𝑊. Monte Carlo simulation involves repeatedly calculating 𝑦𝑦 via the formula 𝑦𝑦 = 𝑥𝑥/(𝑥𝑥 + 𝑤𝑤) 
using different instances of 𝑥𝑥 and 𝑤𝑤 each time. In this manner, a large set of values for 𝑦𝑦 can be 
obtained, displayed as a histogram, and used to make inferences and decisions. 

To perform this Monte Carlo simulation in Excel, the fundamental function is RAND(), which produces a 
random sample from a uniform distribution within the range [0,1]. Thus, every value from zero to one 
has the same probability of occurrence. In this example, a value for 𝑥𝑥 can be sampled by typing in the 
function =RAND()*(a-b)+b, and a value for 𝑤𝑤 can be obtained by using the equation 
=NORM.INV(RAND(),𝜇𝜇, 𝜎𝜎) with the variables replaced by the corresponding cell references. 
Programming languages like Python, R, and MATLAB have built-in functions that efficiently perform the 
same operations for common distributions. 

Sometimes, however, the underlying distributions cannot be adequately represented by one of these 
simple formulas. For example, Fig. 1 is a JMP-produced histogram of wave data from a buoy off the 
Oregon coast. In particular, it displays the occurrences of the average wave height in feet for each hour 
of December, 20041. The histogram clearly indicates a bimodal distribution (i.e., the histogram has two 
peaks), so it is unlikely there will be simple equations or built-in functions that will allow random 

                                                            
 

1 https://www.ndbc.noaa.gov/station_history.php?station=46029  

https://www.ndbc.noaa.gov/station_history.php?station=46029
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sampling from it. The rejection method, also called the acceptance-rejection method, is a way to obtain 
those random samples. 

 

 

Figure 1: Histogram of hourly average wave heights (feet) from December, 2004 

Another application is Bayesian analysis. In this setting, random sampling often provides a more 
computationally efficient alternative to numerical integration. However, the underlying distribution is 
typically complex, leading to the development of numerous Markov Chain Monte Carlo (MCMC) 
sampling methods. The rejection method is a simple algorithm that can be employed for this purpose. 

Method  

Overview 
This section explains the process of randomly sampling from a one-dimensional distribution using the 
rejection method as described in Gamerman (2006). The concept is the same for multi-dimensional 
distributions. Suppose there is a need to sample a random value 𝑥𝑥𝑖𝑖  from a target distribution, 𝜋𝜋(𝑥𝑥). The 
expression for 𝜋𝜋(𝑥𝑥) is known, so the value of the function can be calculated for any given value of 𝑥𝑥. 
Figure 2 illustrates an example of 𝜋𝜋(𝑥𝑥). 

To capitalize on the built-in functions of the software, define the auxiliary distribution function, 𝑞𝑞(𝑥𝑥) 
from which a random value for 𝑥𝑥 can easily be drawn by a formula. Practical, commonly-available 
choices include a uniform distribution or a normal distribution as mentioned in the introduction. Figure 
2 depicts an example auxiliary distribution function. 

Next, choose a value for the “envelope constant,” 𝐴𝐴, such that 0 < 𝐴𝐴 < ∞. The envelope constant 
multiplies the auxiliary distribution to create the “blanket function,” 𝐴𝐴𝑞𝑞(𝑥𝑥). The selections of 𝑞𝑞 and 𝐴𝐴 
must be such that the blanket function satisfies the following condition: 

 𝐴𝐴𝑞𝑞(𝑥𝑥) ≥ 𝜋𝜋(𝑥𝑥)  for all 𝑥𝑥 (1) 



STAT COE-Report-37-2018 

 

 Page 4  
  

 

 

  

Figure 2: Target distribution (normal), auxiliary distribution (gamma), and blanket function where A=3 

 

In other words, the blanket function must be at or above the target distribution everywhere. Later 
sections will provide advice for building the blanket function and checking if it violates the assumption. 
Figure 2 demonstrates a blanket function (purple dashed line) that is at or above the target distribution 
(solid blue line) everywhere, satisfying the requirement in Eq. (1). 

Having built the blanket function 𝐴𝐴𝑞𝑞, follow the next steps multiple times to obtain the desired sample 
size. Obtain values for the random variables 𝑥𝑥𝑖𝑖  and 𝑢𝑢𝑖𝑖, where 𝑢𝑢𝑖𝑖 is drawn from the population 
𝑈𝑈~Unif(0,1). Recall that 𝑥𝑥𝑖𝑖  is drawn from the conveniently-chosen distribution 𝑞𝑞. Then, use the 
following decision rule to determine whether to accept or reject the current value of 𝑥𝑥𝑖𝑖: 

 �𝑢𝑢𝑖𝑖𝐴𝐴𝑞𝑞
(𝑥𝑥𝑖𝑖) ≤ 𝜋𝜋(𝑥𝑥𝑖𝑖),          accept 𝑥𝑥𝑖𝑖

𝑢𝑢𝑖𝑖𝐴𝐴𝑞𝑞(𝑥𝑥𝑖𝑖) > 𝜋𝜋(𝑥𝑥𝑖𝑖),           reject 𝑥𝑥𝑖𝑖
  

 
(2) 

This process is repeated a set number of times, or until the number of accepted values of 𝑥𝑥𝑖𝑖  is adequate 
for the analysis. A summary of the rejection method is listed below. 
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Steps 
 

INITIALIZATION: 

1. Identify the target distribution, 𝜋𝜋(𝑥𝑥). 

2. Choose an auxiliary distribution function, 𝑞𝑞(𝑥𝑥). 

3. Choose an envelope constant, 𝐴𝐴, such that the condition of Eq. (1) is satisfied. 

FOR ITERATION 𝑖𝑖: 

4. Draw 𝑢𝑢𝑖𝑖 from Unif(0,1). 

5. Draw 𝑥𝑥𝑖𝑖  from 𝑞𝑞(𝑥𝑥). 

6. Calculate 𝜋𝜋(𝑥𝑥𝑖𝑖). 

7. Calculate 𝑞𝑞(𝑥𝑥𝑖𝑖). 

8. Use Eq. (2) to decide whether to accept or reject 𝑥𝑥𝑖𝑖. 

Repeat steps 4 – 8 either a set number of times or until a desired number of values for 𝑥𝑥 have been 
accepted. When enough values have been obtained, they can be used to pull off the 𝑝𝑝(𝑡𝑡ℎ) quantile to 
calculate a nonparametric estimate of the mean and variance. 

Examples 

Example 1: Demonstrating the method 
The purpose of this first example is to demonstrate that the rejection method works by showing that 
after taking many samples it reproduces a well-known distribution. This procedure is also useful for 
verifying code to make sure it is working properly before using it on more complicated distributions. 

For Step 1, let the target distribution to be sampled, 𝜋𝜋(𝑥𝑥), be a normal distribution with a mean of 4.5 
and a standard deviation of 1. For Step 2, choose the auxiliary distribution, 𝑞𝑞(𝑥𝑥), to be a gamma 
distribution with a mean of 4 and a standard deviation of 2, which results in the parameters 𝑠𝑠ℎ𝑎𝑎𝑝𝑝𝑎𝑎 = 4 
and 𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠𝑎𝑎 = 1. (There is no particular reason to use the gamma distribution here – it was chosen 
primarily to distinguish it from the normal target distribution and to facilitate the examples to follow.) 
Though theoretically the normal distribution extends from −∞ to ∞ and the gamma distribution 
extends from 0 to ∞, it is reasonable here to only consider values of 𝑥𝑥 between 0 and 13. These target 
distribution and auxiliary distribution were shown in Fig. 2 as solid blue and dashed orange lines, 
respectively.  
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For Step 3, the envelope constant 𝐴𝐴 must be chosen so that the blanket function 𝐴𝐴𝑞𝑞(𝑥𝑥) satisfies the 
condition of Eq. (1). Figure 2 shows the blanket function (dashed purple) for this example with 𝐴𝐴 =  3. 
The blanket function is above the target function for all values of 𝑥𝑥, so it satisfies Eq. (1). 

Having verified that the blanket function satisfies Eq. (1), the sampling process can begin. The steps of 
the method as described previously will be listed. Steps 1-3 were just completed in the previous 
paragraphs but are repeated here for completeness. 

STEP 1: Let 𝜋𝜋(𝑥𝑥) be Normal(4.5,1) 

STEP 2: Choose 𝑞𝑞(𝑥𝑥) to be Gamma(4,1) 

STEP 3: Choose 𝐴𝐴 =  3 

The remaining steps are to randomly sample to obtain 𝑥𝑥𝑖𝑖  and 𝑢𝑢𝑖𝑖, then test if Eq. (2) is satisfied. The 
following table shows numerical examples that would lead to accepting and rejecting the sampled 𝑥𝑥𝑖𝑖. 

 

Table 1: Example calculations 

STEP Example for accept Example for reject 

4 – Draw 𝑢𝑢𝑖𝑖 from 𝑈𝑈𝑈𝑈𝑖𝑖𝑈𝑈(0,1) 𝑢𝑢𝑖𝑖  =  0.1500 𝑢𝑢𝑖𝑖  =  0.7300 

5 – Draw 𝑥𝑥𝑖𝑖  from 𝑞𝑞(𝑥𝑥) 𝑥𝑥𝑖𝑖  =  3.0643 𝑥𝑥𝑖𝑖  =  1.4199 

6 – Calculate 𝜋𝜋(𝑥𝑥𝑖𝑖) 𝜋𝜋(𝑥𝑥𝑖𝑖) = 0.1423 𝜋𝜋(𝑥𝑥𝑖𝑖) = 0.0035 

7 – Calculate 𝑞𝑞(𝑥𝑥𝑖𝑖) 𝑞𝑞(𝑥𝑥𝑖𝑖) =0.2239 𝑞𝑞(𝑥𝑥𝑖𝑖) =0.1153 

8 – Decide using Eq. (2) 0.1008 ≤ 0.1423 ? 

Yes Accept 𝑥𝑥𝑖𝑖  

0.2526 ≤ 0.0035 ? 

No Reject 𝑥𝑥𝑖𝑖  

 

Steps 4-8 were performed until 20,000 values of 𝑥𝑥 were accepted. Figure 3 overlays the histogram of 
those 20,000 accepted points along with a plot of 𝜋𝜋(𝑥𝑥). By inspection, the histogram of values sampled 
from 𝜋𝜋(𝑥𝑥) reproduce 𝜋𝜋(𝑥𝑥), demonstrating that the rejection method successfully drew random samples 
from the target distribution 𝜋𝜋. Importantly, note that the method was able to do this without using a 
random number-generating expression for the target distribution, which was a normal distribution in 
this case. 
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Figure 3: Histogram of 20,000 values drawn from 𝝅𝝅(𝒙𝒙) with A = 3 

Example 2: When A is excessively large 
The choices of 𝐴𝐴 and 𝑞𝑞 affect the computational efficiency of the algorithm. Any blanket function 𝐴𝐴𝑞𝑞 
that satisfies the condition of Eq. (2) will work; however, a blanket function excessively larger than the 
target distribution will require substantially more iterations to collect a certain number of accepted 
points. This inefficiency can be seen by manipulating Eq. (2) to the following form: 

 𝑢𝑢𝑖𝑖 ≤
𝜋𝜋(𝑥𝑥𝑖𝑖)
𝐴𝐴𝑞𝑞(𝑥𝑥𝑖𝑖)

 (3) 

 

According to Eq. (3), for a proposed point 𝑥𝑥𝑖𝑖  to be accepted, 𝑢𝑢𝑖𝑖 must be less than the ratio of the 
amplitudes of the target and blanket functions at 𝑥𝑥𝑖𝑖. As the amplitude of the blanket function grows, the 
ratio becomes smaller and it’s less likely that 𝑢𝑢𝑖𝑖 will be less than the ratio. Thus, more proposed points 
will be rejected. This could be problematic because as the number of rejections increases, the total 
amount of time and cost to reach a desired number of accepted values also increases. 

The previous example will now be revisited to demonstrate the drop in efficiency with a large-
magnitude blanket function. This time, the target distribution and auxiliary distribution are the same as 
in Example 1; however, the envelope constant, 𝐴𝐴, is chosen to be 8. This scenario is shown in Fig. 4. 
Clearly the ratios of the amplitudes (target/blanket) are very small. 

Total Accepted  = 20,000 
Total Rejected   = 40,077 
Total Iterations = 60,077 
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Figure 4: Distributions and blanket function with A = 8 

  

Figure 5: Histogram of 20,000 values drawn from 𝝅𝝅(𝒙𝒙) with A = 8 

As before, the rejection method was used to obtain 20,000 accepted values. The results in Fig. 5 
demonstrate that since the blanket function meets the condition, the target distribution was again 
successfully reproduced. However, with 𝐴𝐴 = 8 instead of 𝐴𝐴 = 3, the number of iterations required to 
accept 20,000 values increased from approximately 60,000 to 160,000. By calculating efficiency as the 
proportion of proposed values that were accepted, the efficiency dropped from 33.3% to 12.5%. Note 
that both values are equal to 1/𝐴𝐴 – since 𝑞𝑞 has an area of one by definition, the blanket function has an 
area of 𝐴𝐴. Thus, the target distribution area makes up “1/𝐴𝐴 th” the area of the blanket function, a direct 
indication of how difficult it is for a proposed value to be accepted. Though handy here for conceptual 
purposes, this prediction would be difficult to utilize in complex problems. 

For complex, multi-dimensional problems the inefficiency of large values for 𝐴𝐴 can lead to excessive 
computation times. A clever choice for 𝑞𝑞 can permit smaller values of 𝐴𝐴. Clearly it is beneficial from a 

Total Accepted  = 20,000 
Total Rejected   = 139,997 
Total Iterations = 159,997 
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computational perspective for a blanket function to satisfy the condition of Eq. (1) by only a small 
margin. 

Example 3: When the blanket function violates its condition 
In the last section, it was shown that it is computationally beneficial to satisfy the condition of Eq. (1) by 
as small a margin as possible. However, for complex problems, the choices of 𝐴𝐴 and 𝑞𝑞 are not obvious. 
What happens if in the pursuit of efficiency, 𝐴𝐴 and 𝑞𝑞 are chosen such that the condition of Eq. (1) is 
inadvertently violated? This example demonstrates a way to recognize that such a situation has 
occurred so the method can be re-executed with a new blanket function. 

Once again, the same target (normal) and auxiliary (gamma) distributions will be used. However, this 
time, the envelope constant is set to 𝐴𝐴 = 1. Equation (1) is not satisfied as shown in Fig. 6 since the 
blanket function is not greater than the target distribution for all values of 𝑥𝑥. Consequently, Fig. 7 shows 
that the method failed to randomly draw from the target distribution. 

 

 

Figure 6: Distributions and blanket function with A = 1 

The reason the method fails when Eq. (1) is not satisfied can be demonstrated by inspecting the 
distribution of the rejections that occur. In Fig. 7, look at the region where the condition is violated, 
when 𝑥𝑥 is between 3.4 and 6.3. Because the amplitude of the blanket function 𝐴𝐴𝑞𝑞 is less than that of the 
target distribution 𝜋𝜋, and the random value 𝑢𝑢 cannot exceed one, 𝑢𝑢𝐴𝐴𝑞𝑞 is always less than 𝜋𝜋. Therefore, 
every point will be accepted and none will be rejected in this interval. This result is confirmed in Fig. 8, 
which shows the histogram of rejected values. When there are unexpected regions of the rejection 
histogram where no points were rejected, it is likely that the blanket function is not covering the 
arbitrary distribution. 
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Figure 7: Result of 20,000 random draws from 𝝅𝝅(𝒙𝒙) with A = 1 

Referring back to the predictor of efficiency, one would expect an efficiency of 100% since 1/𝐴𝐴 = 1. This 
makes sense because if 𝐴𝐴 = 1, the only way the condition of Eq. (1) can be satisfied is if 𝜋𝜋 and 𝑞𝑞 are the 
same distribution. Then, it will always be true that 𝑢𝑢𝐴𝐴𝑞𝑞 ≤ 𝜋𝜋 at a given 𝑥𝑥. This same logic also leads to 
the conclusion that 𝐴𝐴 must be greater than or equal to one. For this example, it turns out that only 
about 60% of the attempts were accepted, indicating a problem with the blanket function. 

 

 

Figure 8: Histogram of rejected values with A = 1 

 

Example 4: Sampling from a complicated distribution 
As a final demonstration of the rejection method, consider a deliberately complicated piece-wise target 
distribution, shown in Fig. 9 by the solid blue line. There are no known convenient functions that can 
randomly sample from this distribution. The auxiliary distribution, 𝑞𝑞, was chosen to be the uniform 
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distribution from 0 to 8. The envelope constant was chosen to be 𝐴𝐴 = 2.4. The auxiliary distribution and 
the blanket function are also shown in Fig. 9 (dashed orange line and dashed purple line, respectively). 
By visual inspection, the condition of Eq. (1) is satisfied. 

The histograms of accepted and rejected values are shown in Fig. 10. There are no regions where zero 
rejections occurred, confirming that Eq. (1) was not inadvertently violated. The histogram of accepted 
points matches the target distribution, confirming the validity of the sampling method. 

 

 

Figure 9: Distributions and blanket function with A = 2.4 

 

  

(a)                                                                                       (b) 

Figure 10: Histograms of accepted values (9a) and rejected values (9b). 

Total Accepted = 20,000 
Total Rejected  = 27,734 
Total Iterations =47,734 
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Conclusion 
This paper explained how to perform the MCMC rejection method to randomly sample from an arbitrary 
distribution. One useful application of this method is performing simulations where data do not fit a 
distribution from which software can readily provide random values. A series of examples demonstrated 
the validity of the method and the pitfalls of inefficient or invalid blanket functions. Sample code from 
MATLAB is available in Appendix A.  

References 
Gamerman, Dani, and Lopes, Hedibert. Markov Chain Monte Carlo – Stochastic Simulation for Bayesian 
Inference. 2nd ed., Chapman & Hall/CRC, 2006. 
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Appendix A: MATLAB code 
 

%{ 
Rejection Method Demo 
  
Basic demonstration of MCMC rejection method. Written to reproduce 
figures in the STAT Best Practice, "Sampling from Arbitrary Distributions 
using the Rejection Method." 
  
Primary Reference: 
Gamerman and Lopes, "Markov Chain Monte Carlo - Stochastic Simulation for  
Bayesian Inference," 2nd Edition, Chapman & Hall/CRC, 2006. 
  
Created at the Scientific Test and Analysis Techniques (STAT) Center of 
Excellence (COE). Contact info at www.AFIT.edu/STAT 
DISCLAIMER: This code has been checked using known examples and functions 
correctly to the best of our knowledge. 
  
Nathaniel Choo and Dr. Kyle Kolsti 
Version 3.0 10/30/2018 
%} 
  
% Clear and initialize 
close all; 
clear; 
clc; 
  
%% DEFINE THE DISTRIBUTIONS AND PARAMETERS 
% Comment out unwanted lines to choose distributions 
  
% Define the target distribution, pi(x), here called "p" 
mu = 4.5;   % Mean for normal distribution 
sigma = 1;  % Standard deviation for normal distribution 
p = @(x) (1/(sigma.*sqrt(2*pi))).*exp(-1.*(x-mu).^2/(2*sigma.^2)); % Normal 
% p = @(x) (abs(sin(x)) .* heaviside(x) - abs(sin(x)) .* heaviside(x - 4)+ 
abs(sin(x+2)) .* heaviside(x+2 - (4 + pi)) - abs(sin(x+2)) .* heaviside(x+2 - 
3 * pi)) / (4); 
  
% Define the auxiliary distribution, q(x), and function to randomly sample 
% from it. 
alpha = 4;   % Scale parameter for gamma distribution 
beta = 1;    % Shape parameter for gamma distribution 
q = @(x) (x.^(alpha-1).*exp(-1.*(x./beta)))./(beta.^alpha.*gamma(alpha)); 
randomx = @(x) gamrnd(alpha, beta); % Random draw from gamma distribution 
  
% a = 0;  % left limit of uniform distribution 
% b = 8;  % right limit of uniform distribution 
% q = @(x) 1/(b-a) + x .* 0; % Uniform distribution from a to b 
% randomx = @(x) a + (b-a)*rand(); % Random draw from uniform dist, a to b 
  
% Choose value for A 
A = 3; 
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% Choose number of values desired (this many values will be accepted) 
N = 20000; 
  
% Define x axis 
x = 0 : 0.01 : 13; 
% x = 0 : 0.001/(2*pi) : 8; 
  
%% Rejection Method 
  
accept = zeros(N,1); 
reject = zeros(1000*N,1); 
i = 0; 
j = 0; 
tic 
while i < N 
    xi = randomx(); 
    u = rand(); 
    if u*A*q(xi) <= p(xi) 
        i = i + 1; 
        accept(i) = xi; 
    else 
        j = j + 1; 
        reject(j) = xi; 
    end 
end 
reject = reject(1:j);  % Chop off unused cells from array 
toc  % This times how long it takes to accept "N" samples 
  
%% PLOT CHOSEN DISTRIBUTIONS 
  
% Plot target function, p(x) 
figure 
plot(x, p(x), 'linewidth', 3) 
  
% Plot auxiliary distribution, q(x) 
hold on 
plot(x, q(x), 'linewidth', 2, 'linestyle', '--') 
  
% Plot blanket function, Aq(x) 
hold on 
plot(x, A .* q(x), 'linewidth', 3, 'linestyle', '--', 'color', [0.5,0,0.5]) 
  
% Plot admin 
legend('\pi(x)', 'q(x)', 'Aq(x)') 
xlabel('x', 'Fontweight', 'bold') 
ylabel('pdf', 'fontweight', 'bold') 
grid on 
  
 
%% PLOT RESULTS OF SAMPLING 
  
% Plot original target function, p(x) 
figure 
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plot(x, p(x), 'linewidth', 3) 
  
% Plot histogram of sampled values. Should reproduce p(x). 
% If histogram of rejects is esired, replace 'accept' with 'reject' 
hold on 
Nbins = 40; 
histogram(accept, Nbins, 'normalization', 'pdf') 
  
% Plot admin 
legend('\pi(x)') 
xlabel('x', 'Fontweight', 'bold') 
ylabel('pdf', 'fontweight', 'bold') 
grid on 
  
%% Compare coefficient to proportion of proposed values that were accepted 
predictedratio = 1/A 
ratio = N/(N+j) 
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