
STAT COE-Report-39-2018

STAT Center of Excellence
2950 Hobson Way – Wright-Patterson AFB, OH 45433

Software Reliability Fundamentals
for

Information Technology Systems
Authored by: Bill Rowell, PhD and Kyle Kolsti, PhD

9 November 2018

The goal of the STAT COE is to assist in developing rigorous, defensible test
strategies to more effectively quantify and characterize system performance
and provide information that reduces risk. This and other COE products are

available at www.afit.edu/STAT.

D
IS

TR
IB

U
TI

O
N

 S
TA

TE
M

EN
T

A.
 A

pp
ro

ve
d

fo
r p

ub
lic

 re
le

as
e;

 d
is

tri
bu

tio
n

is
 u

nl
im

ite
d.

C

LE
AR

ED
 o

n
24

 J
an

 2
01

9.
 C

as
e

N
um

be
r:

88
AB

W
-2

01
9-

03
33

http://www.afit.edu/STAT

STAT COE-Report-39-2018

Table of Contents
Executive Summary ... 2

Introduction .. 2

Key Definitions .. 3

Metrics .. 6

Formulation ... 7

Failures .. 7

Defects .. 8

Tracking ... 9

Development Environment ... 11

Finding and Removing Defects ... 11

Software Reliability Working Group (SRWG) .. 11

Reliability Data Collection and Management ... 12

Operational Environment ... 12

Need for Understanding the Operational Environment ... 12

Developing Operational Profiles ... 12

Conclusion ... 14

References .. 14

STAT COE-Report-39-2018

 Page 2

Executive Summary
To be effective, software reliability programs for federal government Information Technology (IT)
systems must focus on a number of key goals:

• Establishing common, meaningful software reliability definitions among all program participants
• Developing, implementing, and tracking useful software reliability metrics
• Implementing processes and supporting organizational structures in the development

environment to efficiently and effectively
o Identify, remove, and fix defects
o Capture, process, and display failure and defect data

• Understanding and capturing key reliability aspects of the operational environment

This paper lays out fundamental practices that the leadership of federal government IT software
reliability programs can adopt to achieve these goals.

Keywords: Software, reliability, information technology

Introduction
Department of Defense (DoD) IT systems are comprised of National Security Systems (NSS) and Defense
Business Systems (DBS). Typically, NSS encompass telecommunications or information systems involving
intelligence activities, cryptologic activities related to national security, command and control of military
forces, or equipment that is an integral part of a weapon system. On the other hand, DBS typically
involve systems performing financial, contracting, planning and budgeting, installations management,
human resources management, or training/readiness. DBS are software intensive and do not contain
separate hardware components that perform any function other than hosting the software that
performs the business function. The breakdown of DoD IT systems into hardware/software vs. software-
intensive categories is also reflected in IT systems procured by the Department of Homeland Security
(DHS) and other federal agencies. Regardless of the category of IT system, implementing an efficient,
effective software reliability program is critical to the accomplishment of the mission of federal
government IT systems.

Developing a reliability program for the hardware components of an IT system is a well-established,
widely understood discipline. On the other hand, developing one for the software components is more
challenging because key concepts of software reliability are often not known, not well understood, or
confused with those of hardware components. Not surprisingly, IT acquisition programs vary greatly in
their approaches to software reliability programs. Some adopt hardware-based reliability approaches
and consequently struggle to find useful metrics for measuring progress whereas others adopt efficient,
effective software reliability metrics and methods that drive successful decision making.

STAT COE-Report-39-2018

 Page 3

Although we are aware of a variety of philosophies and techniques for implementing a software
reliability program, we will take a pragmatic approach focusing instead on the fundamental best
practices that we believe need to be a part of every software reliability program. This paper
systematically lays out the best practices essential for an IT system software manager to incorporate
into a federal government IT software reliability program. After discussing the key definitions that
should be shared by all members of the software reliability team and formulating and tracking software
reliability metrics, we discuss reliability best practices critical to a federal IT system’s development and
operational environments.

Key Definitions
The first recommendation for a software reliability program is to adopt authoritative definitions from
established sources (for example, IEEE standards, which are available by subscription from IEEE.org and
cited in this document). These and similar authoritative definitions provide a common basis for
communicating effectively among all parties to the acquisition system development. We encourage
programs to reference these definitions in early program documentation (like requirements and
Requests for Proposals) and use these kinds of definitions as the foundation for developing future
documents as well as in their reliability discussions. Early adoption of a coherent set of authoritative
definitions will minimize confusion/misunderstandings throughout the software reliability program.

Table 1 displays the IEEE 1633 definitions for software reliability, software reliability engineering as well
as software quality. A few points are in order. Per its definition, software reliability engineering applies
to both the development and operational environment. Software quality and reliability have significantly
different definitions: software quality is associated with how the functionality of the software compares
with some known standard (specifications, attributes, expectations, needs) while reliability focuses on
the period of time the software continues to operate under specified conditions in an acceptable
manner (usually without failure). Understanding the difference between these two definitions will come
in handy when we discuss how the focus of software reliability needs to change between the
development and operational environments.

Table 1: Fundamental Software Quality/Reliability Definitions

Term IEEE 1633 Definition
Software
Reliability (SR)

(A) The probability that software will not cause the failure of a system for a specified
time under specified conditions.
(B) The ability of a program to perform a required function under stated conditions
for a stated period of time.
NOTE—For definition (A), the probability is a function of the inputs to and use of the
system, as well as a function of the existence of defects in the software. The inputs
to the system determine whether existing defects, if any, are encountered.

STAT COE-Report-39-2018

 Page 4

Software
Reliability
Engineering
(SRE)

(A) The application of statistical techniques to data collected during system
development and operation to specify, estimate, or assess the reliability of
software-based systems.
(B) The application of software reliability best practices to enhance software
reliability characteristics of software being developed and integrated into a system.

Software
Quality (SQ)

(A) The totality of features and characteristics of a software product that bear on its
ability to satisfy given needs, such as conforming to specifications.
(B) The degree to which software possesses a desired combination of attributes.
(C) The degree to which a customer or user perceives that software meets the user’s
composite expectations.
(D) The composite characteristics of software that determine the degree to which
the software in use will meet the expectations of the customer.
(E) Capability of the software product to satisfy stated and implied needs when used
under specified conditions.

Each software reliability program must precisely define the conditions under which the software will
operate as well as what constitutes an “unreliable” event (software failure). These definitions are
necessary for ensuring process consistency and fostering a common understanding among the vendors,
contracting officers, and acquisition program personnel. Consequently, products and deliverables should
be using these terms in a manner consistent with the formal program definitions. For example, guidance
in both DoD and DHS calls for Test and Evaluation Master Plans (TEMPs) to include failure definitions
and scoring criteria.

Table 2 provides IEEE 1633 definitions for commonly used (but not always commonly understood)
software terms (“error”, “defect”, “fault”, “failure”, and “problem”). Other words like “bug” and “issue”
may be encountered, but they should be studiously avoided when talking about software reliability or
clearly defined in program documentation for their intended usage. In common English all of these
terms are more or less synonymous; however, the preciseness of definitions such as those in Table 2
serves to distinguish among these frequently-used terms in a way that enables clear, effective, and
efficient conversations among individuals involved in a software reliability program based on them.

Table 2: Definitions Related to Defects and Failures

Term IEEE 1633 Definition
Error A human action that produced an incorrect result, such as software containing a

fault.
Defect A problem that, if not corrected, could cause an application to either fail or to

produce incorrect results.
NOTE—For the purposes of this standard, defects are the result of errors that are
manifest in the system requirements, software requirements, interfaces,
architecture, detailed design, or code. A defect may result in one or more failures. It
is also possible that a defect may never result in a fault if the operational profile is
such that the code containing the defect is never executed.

Fault (A) A defect in the code that can be the cause of one or more failures.

STAT COE-Report-39-2018

 Page 5

(B) A manifestation of an error in the software.
Failure (A) The inability of a system or system component to perform a required function

within specified limits.
(B) The termination of the ability of a product to perform a required function or its
inability to perform within previously specified limits.
(C) A departure of program operation from program requirements.
A failure may be produced when a fault is encountered and a loss of the expected
service results.
NOTE 1— A failure may be produced when a fault is encountered and a loss of the
expected service to the user results.
NOTE 2— There may not be a one-to-one relationship between faults and failures.
This can happen if the system has been designed to be fault tolerant. It can also
happen if a fault does not result in a failure either because it is not severe enough to
result in a failure or does not manifest into a failure due to the system not achieving
that operational or environmental state that would trigger it.

Problem (A) Difficulty or uncertainty experienced by one or more persons, resulting from an
unsatisfactory encounter with a system in use.
(B) A negative situation to overcome.

Let's look at how these terms are used in a simple example. Assume that a software developer makes an
error in the source code, such as coding a numerical division operation where the value of the
denominator may have a value of zero but the code doesn't check that the denominator's value has
been set to zero and prevent the fault from occurring. Thus, a fault (division by zero) occurs whenever
the line of code is executed and the value of the denominator is zero. Depending on how the code
handles the fault, the fault may or may not cause a failure, a situation where the expected behavior
does not occur. If a fault can cause a failure to occur, then the error in the source code is also a defect.
However, if the defective line of code is never executed because the path of the users’ requests never
includes the line of code containing the defect, failures will not occur even though a defect exists. The
more often the operational profile executes the defective line of code, the more frequently failures will
occur. A problem arises when the defective line of code prevents the user from receiving the service
requested.

Tables 3 and 4 below display the definitions of various attributes of a failure and defect from IEEE
Standard 1044, respectively, which could serve as a solid foundation for the program’s software
reliability data acquisition effort.

Table 3: Definitions of Attributes of a Failure

Attribute IEEE 1044 Definition
Failure ID Unique identifier for the failure.
Status Current state within failure report life cycle. See Table B.1.
Title Brief description of the failure for summary reporting purposes.

Description Full description of the anomalous behavior and the conditions under which it occurred,
including the sequence of events and/or user actions that preceded the failure.

Environment Identification of the operating environment in which the failure was observed.

STAT COE-Report-39-2018

 Page 6

Configuration Configuration details including relevant product and version identifiers.

Severity As determined by (from the perspective of) the organization responsible for software
engineering. See Table B.1.

Analysis Final results of causal analysis on conclusion of failure investigation.
Disposition Final disposition of the failure report. See Table B.1.
Observed by Person who observed the failure (and from whom additional detail can be obtained).
Opened by Person who opened (submitted) the failure report.
Assigned to Person or organization assigned to investigate the cause of the failure.
Closed by Person who closed the failure report.
Date observed Date/time the failure was observed.
Date opened Date/time the failure report is opened (submitted).
Date closed Date/time the failure report is closed and the final disposition is assigned.
Test reference Identification of the specific test being conducted (if any) when the failure occurred.

Incident reference Identification of the associated incident if the failure report was precipitated by a service
desk or help desk call/contact.

Defect reference Identification of the defect asserted to be the cause of the failure.
Failure reference Identification of a related failure report.

Table 4: Definitions of Attributes of a Defect

Attribute IEEE 1044 Definitions
Defect ID Unique identifier for the defect.
Description Description of what is missing, wrong, or unnecessary.
Status Current state within defect report life cycle.
Asset The software asset (product, component, module, etc.) containing the defect.
Artifact The specific software work product containing the defect.
Version detected Identification of the software version in which the defect was detected.
Version corrected Identification of the software version in which the defect was corrected.

Priority Ranking for processing assigned by the organization responsible for the evaluation,
resolution, and closure of the defect relative to other reported defects.

Severity The highest failure impact that the defect could (or did) cause, as determined by
(from the perspective of) the organization responsible for software engineering.

Probability Probability of recurring failure caused by this defect.
Effect The class of requirement that is impacted by a failure caused by a defect.

Type A categorization based on the class of code within which the defect is found or the
work product within which the defect is found.

Mode A categorization based on whether the defect is due to incorrect implementation or
representation, the addition of something that is not needed, or an omission.

Insertion activity The activity during which the defect was injected/inserted (i.e., during which the
artifact containing the defect originated).

Detection activity The activity during which the defect was detected (i.e., inspection or testing).
Failure reference(s) Identifier of the failure(s) caused by the defect.
Change reference Identifier of the corrective change request initiated to correct the defect.
Disposition Final disposition of defect report upon closure.

Metrics
When the key definitions for the software reliability program have been identified, the software
reliability program needs to focus its attention on formulating and tracking software reliability metrics.
Before addressing these aspects of metrics, it is worthwhile identifying the various decisions that these
metrics are expected to support to ensure we are choosing the right metrics and displaying them
appropriately. Below is a short list of decisions that properly formulated and computed software
reliability metrics can support:

STAT COE-Report-39-2018

 Page 7

• Is the system ready to proceed to the next stage of its life cycle?
• Which failures should be investigated at this time?
• Which defects should be fixed at this time?
• What is the impact of this failure/defect on the mission of the system?
• What software modules are most in need of attention?
• Does the end-to-end software development process (requirements, design, code,

documentation, code fixes) need to be improved?
• What part(s) of the end-to-end software development process need(s) the most improvement?

Formulation
The first sub-section focuses on failure-based metrics while the second on defect-based metrics.

Failures
When estimating hardware reliability failures occurring during the operation of a hardware component,
a standard assumption is that the observed failure rate is the output of a stable Poisson process, that is,
a statistical distribution with a mean inter-arrival time that doesn’t change over time. See Table 5 for
IEEE 1633 Standard definition of failure rate. However, the rate of arrival of software failures doesn’t
depend exclusively on users simply operating the system, such as operating an engine on a motor
vehicle, but depends on the rate that users exercise software paths that contain defects and therefore
result in software failures. For example, if there are 50 paths that result in faults, the system failure rate
is determined by the expected number of user actions that access these paths in a given period of time.
Thus, metrics for software reliability must take into account that software failure rates are dependent
on the software paths exercised by user requests.

Table 5: IEEE 1633 Failure Rate Definition

Term IEEE 1633 Definition
Failure Rate (A) The ratio of the number of failures of a given category or severity to a given

period of time; for example, failures per second of execution time, failures per
month. Synonym: failure intensity.
(B) The ratio of the number of failures to a given unit of measure, such as failures
per unit of time, failures per number of transactions, failures per number of
computer runs.

The predominant hardware reliability failure-based metric is the Mean Time Between Failures (𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀),
which is also called the Mean Time Between Operational Failures (𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀). 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 is typically
expressed in units that indicate how much use the system has undergone since the last failure, such as
hours. Other units of time may be more appropriate; for example, aircraft landing gear may fail based
on the number of retract/extend cycles, and the tires may fail based on the number of touchdowns,
rather than flight hours. 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 is the average time it takes from the time the system returns to
operation until a failure is experienced, averaged out over the future lifecycle of the system. For

STAT COE-Report-39-2018

 Page 8

software systems a single MBTF number as a measure of reliability isn’t as useful as it is for hardware
systems and may be misleading. As previously mentioned, for software, a failure only occurs when a
user accesses a particular path, whereas for mechanical components, failures are caused by prolonged
or repeated operation (wear and tear, fatigue, and so forth). A reported MTBF for a software system
must be accompanied by information about the logic paths that were accessed and the severity of the
failures that were experienced.

For software reliability the activity we are interested in may be the number of software failures that
occur (1) during a nightly regression test or other test runs, (2) while executing a specified number of
transactions that may cause the failures of interest, or (3) during some time duration (hour, day, week,
month, year, or perhaps user-hours, the sum of times that multiple users are logged in). See Table 6 for
IEEE 1633 Standard definitions of time measures. In selecting an activity it’s important to know how
frequently the activity exercises the software paths associated with the failures of interest.

Table 6: Software “Time” Measures

Term IEEE 1633 Definition
Clock time Elapsed wall-clock time from the start of program execution to the end of

program execution.
Execution time (A) The amount of actual or central processor time used in executing a program.

(B) The period of time during which a program is executing.
Calendar time Chronological time, including time during which a computer may not be running.

Defects
Table 7 summarizes three practical software defect-based metrics (Godbole, 2004). Defect Density (DD)
measures the defects relative to software size and provides the development organization with data
that can be used to help them improve their testing processes. Defect Rate (DR) is the expected number
of defects reported over a certain period of time and is important for cost and resource estimates of the
maintenance phase of the software life cycle. Finally, there is Defect Removal Efficiency (DRE), which is
the efficiency of eliminating defects before delivering the product to the customer and reflects the
goodness of the software development process in delivering high quality (defect-free) software to the
customer. Of special interest to software reliability programs seeking a metric to incentivize the
developer’s delivery of high quality software is the assertion of Capers Jones, a well-known specialist in
software engineering methodologies and widely published author, that DRE is “the most important
single metric for software quality” (Jones, 2011).

STAT COE-Report-39-2018

 Page 9

Table 7: Software “Defect” Metrics

Term Definition

Defect Density

[Total number of defects identified during specified testing phase]

 [Actual Size of the product]

where size is measured by a suitable measure—most typically either as lines of code
(LOC) or Function Points/Features Points (FP)

Defect Rate

[Total number of defects reported]

[Length of reporting period]

Defect Removal
Efficiency

[Number of defects identified before delivering product to customer]

[(Number of defects identified before delivering product to customer)+(Number of
defects identified by the customer within a specified period of time after delivery])

Tracking
Reliability tracking is the process of collecting data and reporting appropriate metrics to discover trends
in software program reliability. It provides insight into the health of the program and gives program
managers and decision makers important risk information supporting critical decisions. Figure 1 depicts
typical patterns of software reliability metrics (Failures/CPU hour (right vertical axis) and Defects at
completion (left vertical axis)) over the course of multiple, consecutive agile sprints. The upward
segments in the figure typically reflect activity coding new functionality while the downward segments
reflect activity fixing defects.

STAT COE-Report-39-2018

 Page 10

Figure 1: Tracking Software Reliability in an Agile Development Environment

Instituting this process early in the program greatly enhances the program’s ability to assess software
quality and reliability during development. It is recommended that programs consider writing the
contract to include deliverables with metrics that truly enable effective reliability tracking.

During the software development process developers are focused on adding features and capabilities
and repairing defects that arise in the new code. We believe it’s still worthwhile to track the number of
failures and defects at this time, such as those that occur in regression testing following a nightly build,
to ensure that development process is under control. However, the focus at this stage should not yet be
on meeting reliability goals but rather on evaluating software quality (availability of new capability).
Thus, reliability tracking should be more fine-grained in the development environment, for example,
tracking failure rates at the module level, to better support identifying the areas of the software that
need the most quality improvement.

In the operational environment during the maintenance life cycle phase we are more interested in
improving the reliability of a stable code base. Here we would focus on software reliability growth. See
Table 8 for the IEEE 1633 Standard definition.

Table 8: Definition of Software Reliability Growth

Term IEEE 1633 Definition
Reliability
Growth

(A) The amount the software reliability improves from operational usage and other
stresses.
(B) The improvement in reliability that results from correction of faults.

STAT COE-Report-39-2018

 Page 11

Development Environment
Next we will cover best practices for implementing a software reliability program for the IT systems
development environment.

Finding and Removing Defects
An important aspect of a software reliability program is the capability to efficiently find and remove
defects during the systems development process. The formal testing process (unit, integration, system,
acceptance, regression) plays a key role in finding defects as well as verifying that the defects are fixed
correctly. The capability to design tests that efficiently find defects is especially helpful when there is a
need to test a deterministic process with a binary (no fault/fault) output (response) that is dependent
on a large number of discrete inputs (factors) where each input may have many valid settings (levels). In
this case it is frequently impossible to execute all of the possible test cases (exhaustive testing) due to
the large number of combinations in the factor space. Fortunately, empirical studies by the National
Institute of Standards and Technology (NIST) have shown that a very high percentage of software faults
arise from the interaction of a small number of factors (typically six or less). This phenomenon makes
the use of Combinatorial Optimization (CO) for software testing highly beneficial. CO is an advanced
mathematical technique that identifies an efficient number of test cases that effectively covers
potentially enormous factor spaces. Using CO tools, such as the NIST’s Automated Combinatorial Testing
for Software (ACTS), enables the software tester to design a test set for a large test space that is proven
to find a high percentage of the existing faults with a test set much smaller than the exhaustive testing
approach. ACTS is a proven method for more effective software testing at lower cost. For more
information on CO designs, see the STAT COE web site’s repository of best practices at
www.afit.edu/stat (Bush et al, 2014).

Despite the widespread usage of formal software testing for finding and removing defects, research
indicates that pre-test defect removal activities such as inspection of requirements, design, code, user
manual, and other system documentation; static analysis of code; informal peer reviews; desk checking;
and pair programming are essential to achieving high quality software. Jones found that most forms of
testing have a DRE of less than 50% but formal design and code inspections have a DRE of 65% and often
top 85% (Jones, 2011). He concluded that improving U.S. average DRE of 85% to acceptable DRE levels
of 95% and beyond required pre-test inspections and static analysis (Jones, 2011). Thus, a best practice
for software reliability programs is to augment formal testing with an array of high-payoff pre-test
defect removal activities.

Software Reliability Working Group (SRWG)
Before entry into the development environment, a process must be created to efficiently and effectively
capture and process failure data. A SRWG with both government and vendor membership should be
formed to begin collecting and reporting reliability data at the occurrence of a specified event.
Requesting reliability data as early as possible in the program motivates the SRWG to create and

http://www.afit.edu/stat

STAT COE-Report-39-2018

 Page 12

exercise the process so it is mature before key test activities commence. Establishing a proactive SRWG
in preparation for entering the development environment centralizes the implementation of a software
reliability program, increasing the likelihood that software reliability issues are given the attention they
deserve.

Reliability Data Collection and Management
The foundation of capturing and processing failure data should be a failure reporting, analysis, and
corrective action system (FRACAS) – a system, sometimes carried out using automated software
management tools, such as the web-based ReliaSoft’s XFRACAS. A FRACAS provides a process for
reporting, classifying, and analyzing failures, and planning corrective actions in response to those
failures. It is typically used in an industrial environment to collect data and record and analyze system
failures. A FRACAS system may attempt to manage multiple failure reports and produces a history of
failure and corrective actions. FRACAS records the problems related to a product or process and their
associated root causes and failure analyses to assist in identifying and implementing corrective actions.

Implementing the FRACAS method promotes the reliability of the software development process by
establishing a formal process followed by the entire organization. Some specific benefits of FRACAS
include (1) identification of defect patterns, (2) failure data for reliability analysis and (3) central location
for lessons learned.

Operational Environment
Finally, we will address best practices for preparing the software reliability program for the IT systems
operational environment.

Need for Understanding the Operational Environment
The software reliability program must have a clear understanding of the stresses the system will
experience when it goes into the operational environment in order to intelligently assess and ensure its
software reliability. First, knowing the magnitude and timing of the stresses placed on the system
enables the program team to plan to make available the necessary computational resources at the right
time, thereby ensuring the software can reliably provide the requested services. Second, detailed
knowledge of the usage patterns of specific transactions allows the program’s software reliability team
to accurately assess the relative impact of failures caused by each software defect. This knowledge
enables the program management team to optimally allocate limited resources to fixing software
defects, thereby improving system reliability and user experience.

Developing Operational Profiles
This understanding of system stresses requires careful study of how the users will operate the system
and how that use varies over time. Each use, often called a use case, a business process, or a
transaction, is a system operation initiated by a user to obtain a desired result (for example, a report is

STAT COE-Report-39-2018

 Page 13

printed, a payment is deposited, etc.). Users will be initiating these transactions according to the mission
needs in the operational environment. The program must examine the needs of each type of user to
perform each type of transaction to develop the operational profile of the system for the period of
interest (Musa 1990). The operational profile of a system is an estimate of the expected number of
transactions of each type that will occur during the period of interest (peak daily, average daily, peak
weekly, etc.). Table 9 is a simple example of operational profile data for an IT system that shows for
each transaction type both the expected mean number of peak daily transactions as well as the
expected spread (standard deviation) of peak daily transactions.

Table 9: Example System Operational Profile Data

Transaction
Type (ID) User/Organization

Service
Category

Mean Number of Peak
Daily Transactions

Standard Deviation of
Peak Daily Transactions

1 Customer Invoice 54.1 1.9
2 Interface, Inc. Report 12.2 0.8
3 Interface, Inc. Budget 5.0 0.1
4 ABC (gov’t agency) Report 23.8 1.3
5 ABC (gov’t agency) Budget 9.4 0.8

The first step in developing operational profiles for the system is to identify those transactions that
require an operational profile to be developed. Obviously there is no universal approach to doing this
step but some questions that may be helpful in identifying transaction types that warrant operational
profiles are listed below:

• Are there performance requirements associated with a transaction type?
• Are there high-level transaction types, such as queries and reports, which have specific lower-

level sub-transactions, such as a query against multiple tables, which are of particular interest?
• Are a relatively large number of a transaction type expected to occur?
• Is there a high priority associated with a transaction type?

One approach to identifying transaction types would be to simply enumerate all possible transaction
types. For example, a transaction could be categorized by user organization (6 interface possibilities),
action (new record creation or database query), and subject (employee, contract, or budget). In this
example there would be 6x2x3 = 36 unique transaction types.

The second step is to estimate of the number of transactions of each transaction type that occur over
the period of interest. For example, the program may be concerned that total system demands in a
single hour could degrade the performance to unsatisfactory levels. Thus, we are interested in
estimating the maximum number of each transaction type that may occur in a single hour over the
course of a day. A simple approach to developing this estimate is to parse every hour of historical data
available to locate the hour with the most transactions. Then count the number of each of the

STAT COE-Report-39-2018

 Page 14

transaction types during that hour. The result is the operational profile to be loaded on the system
during performance testing to ensure the performance requirements are met even under the most
severe conditions expected.

For systems that are replacing legacy systems, historical data may be available to facilitate this task. If
historical data and the resources to perform the analysis are available, the STAT COE recommends a
more thorough analysis to gain a deeper understanding of what the system will be asked to do. The
resulting quantification of uncertainties in the operational environment enables informed, defensible
decisions in the tradeoff between risk and test resources.

Conclusion
This paper demonstrated the value of implementing a pragmatic software reliability program for a
federal government IT system using the following approaches:

• Establishing common definitions of key software reliability elements based on authoritative
sources

• Implementing software reliability metrics and tracking processes that support effective,
responsive decision making

• Supporting a software development environment with software reliability enhancements
o Efficiently finding and removing software defects
o Software Reliability Working Group
o Failure Reporting, Analysis, and Corrective Action System

• Developing an operational environment with user profiles that help assess the
o Impact of stress on system performance
o Relative impact of each transaction failure on system reliability

References
“Automated Combinatorial Testing for Software” Computer Security Resource Center,
https://csrc.nist.gov/Projects/Automated-Combinatorial-Testing-for-Software.

Bush, Brett, et al. “Combinatorial Test Designs.” Scientific Test and Analysis Techniques Center of
Excellence (STAT COE), 25 March 2014.

“Defense Acquisition Guidebook” Chapter 6 Information Technology & Business Systems,
https://www.dau.mil/tools/dag/Pages/DAG-Page-
Viewer.aspx?source=https://www.dau.mil/guidebooks/Shared%20Documents%20HTML/Chapter%206%

https://csrc.nist.gov/Projects/Automated-Combinatorial-Testing-for-Software
https://www.dau.mil/tools/dag/Pages/DAG-Page-Viewer.aspx?source=https://www.dau.mil/guidebooks/Shared%20Documents%20HTML/Chapter%206%20Information%20Technology%20and%20Business%20Systems.aspx.
https://www.dau.mil/tools/dag/Pages/DAG-Page-Viewer.aspx?source=https://www.dau.mil/guidebooks/Shared%20Documents%20HTML/Chapter%206%20Information%20Technology%20and%20Business%20Systems.aspx.

STAT COE-Report-39-2018

 Page 15

20Information%20Technology%20and%20Business%20Systems.aspx. (Need to log into Defense
Acquisition University web site)

“FRACAS: An Essential Ingredient for Reliability Success” WEIBULL.COM,
http://www.weibull.com/hotwire/issue122/relbasics122.htm.

Godbole, Nina S. Software Quality Assurance: Principles and Practice. Alpha Science International Ltd,
2004.

“IEEE Standard 1044-2009 - IEEE Standard Classification for Software Anomalies”
https://standards.ieee.org/findstds/standard/1044-2009.html.

“IEEE Standard 1633-2016 IEEE Recommended Practice on Software Reliability”
https://standards.ieee.org/findstds/standard/1633-2016.html.

Jones, Capers. Software Defect Removal Efficiency https://www.ppi-int.com/wp-
content/uploads/2017/04/Software-Defect-Removal-Efficiency.pdf, 2011.

Musa, John D., et al. Software Reliability: Measurement, Prediction, Application. McGraw-Hill, 1990.

“XFRACAS” Reliasoft.com, https://www.reliasoft.com/products/reliability-management/xfracas.

https://www.dau.mil/tools/dag/Pages/DAG-Page-Viewer.aspx?source=https://www.dau.mil/guidebooks/Shared%20Documents%20HTML/Chapter%206%20Information%20Technology%20and%20Business%20Systems.aspx.
http://www.weibull.com/hotwire/issue122/relbasics122.htm
https://standards.ieee.org/findstds/standard/1044-2009.html
https://standards.ieee.org/findstds/standard/1633-2016.html
https://www.ppi-int.com/wp-content/uploads/2017/04/Software-Defect-Removal-Efficiency.pdf
https://www.ppi-int.com/wp-content/uploads/2017/04/Software-Defect-Removal-Efficiency.pdf
https://www.reliasoft.com/products/reliability-management/xfracas

	Executive Summary
	Introduction
	Key Definitions
	Metrics
	Formulation
	Failures
	Defects
	Tracking

	Development Environment
	Finding and Removing Defects
	Software Reliability Working Group (SRWG)
	Reliability Data Collection and Management

	Operational Environment
	Need for Understanding the Operational Environment
	Developing Operational Profiles

	Conclusion
	References

