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Executive Summary 
This best practice provides an introduction to statistical hypothesis testing, which uses observed data to 

draw conclusions about a claim regarding a larger population or populations. Statistical hypothesis tests 

are the building blocks upon which many statistical analysis methods rely and therefore it is important 

to understand the basics of hypothesis testing. The hypothesis test must be carefully constructed so that 

it accurately reflects the question the tester wants to answer. This includes clearly stating the 

hypotheses and understanding the assumptions that the hypothesis test makes. This best practice 

provides an overview of the logic behind hypothesis testing to introduce key concepts and terminology. 

It highlights the importance of understanding and correctly interpreting the results of a hypothesis test 

as well as common errors and misunderstandings. A simple example of a one sample t-test illustrates 

the concepts presented in the context of Department of Defense (DoD) testing. Many statistical 

analyses, including more complex analyses, utilize hypothesis testing. The analysis of data from a 

designed experiment simultaneously performs multiple hypothesis tests. 

Keywords: statistical inference, risk, significance level, p-value, sample size 

Introduction 

Statistical Inference 
Often one is interested in drawing conclusions about a population, but examining the entire population 

is usually impractical or impossible. Statistical inference involves using information obtained from a 

sample to draw conclusions about a larger population. Statistical inference is key to having rigorous and 

adequate DoD tests because we are often interested in future performance of a system under similar (or 

different) conditions. Since we do not know what the future holds, we are dependent on statistical 

inference to make statements about future performance. Therefore, the sample must be representative 

of the population; this objective is usually achieved by obtaining a randomly selected sample. Figure 1 

illustrates that a sample is a subset of the population. In hypothesis testing, one form of statistical 

inference, a claim about a population is evaluated using data observed from a sample of the population. 

The data one observes will be different depending on which individuals of the population the sample 

captures. Hypothesis testing addresses this random sampling “error” (i.e. variation) and allows one to 

evaluate claims regarding the values of a single parameter, several parameters, or the form of an entire 

probability distribution of a population. 
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Figure 1: Sampling from a population 

An Illustrative Example 
Consider the target location error for a rocket. The Air Force wants to determine if the mean target 

location error for the Roka rocket is less than 10 feet. In this case, the population includes all Roka 

rockets and the mean target location error for the entire population is denoted by 𝜇 (read “mew”). On 

the other hand, the observed mean target location error of the sample is denoted by 𝑦̅ (read “y-bar”). 

The mean target location error for the sample will be used to conclude whether the mean population 

target location error is less than 10 feet.  

DoD Testing 
Throughout the acquisition lifecycle many questions must be answered regarding the performance and 

suitability of a system. Does a missile hit its target at least 80% of the time? Is the mean miles between 

system failure at least 3,000? Statistical hypothesis testing is a vehicle for answering these questions. 

Care must be taken in setting up the hypothesis test to ensure that the analysis performed addresses 

the test objective. Too often DoD testing includes “implied” hypothesis tests in which the actual 

hypotheses are never explicitly stated! This ambiguity means that the statistical analysis may be 

answering a different question than the tester intended.  

Foundations of Hypothesis Testing 

The Null and Alternative Hypotheses 
In statistical hypothesis testing, there are two mutually exclusive hypotheses: the null hypothesis, 

denoted 𝐻0 (read “H-naught”) and the alternative hypothesis, denoted 𝐻𝐴 (read “H-a”). The null 

hypothesis is the default position; it represents the status quo, conventional thinking, or historical 

performance. The alternative hypothesis is the claim to be tested; it reflects what the tester is trying to 

show.  

To illustrate the concept of null and alternative hypotheses, consider a criminal trial. In the criminal 

justice system, the defendant is presumed innocent until proven guilty. In the language of hypothesis 
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testing the null hypothesis is 𝐻0: 𝐷𝑒𝑓𝑒𝑛𝑑𝑎𝑛𝑡 𝑖𝑠 𝐼𝑛𝑛𝑜𝑐𝑒𝑛𝑡 and the alternative hypothesis is 

𝐻𝐴: 𝐷𝑒𝑓𝑒𝑛𝑑𝑎𝑛𝑡 𝑖𝑠 𝐺𝑢𝑖𝑙𝑡𝑦. Since the defendant is considered innocent until proven guilty, the burden of 

proof is on the prosecution who must show guilt beyond reasonable doubt in order to obtain a 

conviction. Likewise, in hypothesis testing the burden of proof is on the alternative hypothesis. The null 

hypothesis is not rejected unless there is strong evidence to support the alternative hypothesis. Thus, it 

is important to clearly state the hypotheses. A null hypothesis of 𝐻0: 𝐷𝑒𝑓𝑒𝑛𝑑𝑎𝑛𝑡 𝑖𝑠 𝐼𝑛𝑛𝑜𝑐𝑒𝑛𝑡 has quite 

different implications for a trial than a null hypothesis of 𝐻0: 𝐷𝑒𝑓𝑒𝑛𝑑𝑎𝑛𝑡 𝑖𝑠 𝐺𝑢𝑖𝑙𝑡𝑦!  

Type I and Type II Errors 
In the criminal trial analogy, there are two possible ways that a mistake can be made. The jury can find 

an innocent person guilty, or they can find a guilty person not guilty. Notice that the jury never finds the 

defendant innocent, but instead can declare the defendant not guilty. Similarly in hypothesis testing, we 

do not accept the null hypothesis, but instead fail to reject the null hypothesis. Just because there is not 

enough evidence to reject the null hypothesis does not mean that the null hypothesis is true! Table 1 

summarizes the possible outcomes from a hypothesis test.  

Table 1: Outcomes of a hypothesis test 

 

Decision 
(Verdict) 

Fail to Reject 𝑯𝟎 
(Not Guilty) 

Reject 𝑯𝟎 
(Guilty) 

Tr
u

th
 𝑯𝟎 is True 

(Defendant is Innocent) 
Correct Type I Error 

𝑯𝑨 is True 
(Defendant is Guilty) 

Type II Error Correct 

 

In hypothesis testing, a type I error means rejecting the null hypothesis when the null hypothesis is true. 

The probability of a type I error is called 𝛼 (alpha). A type II error means failing to reject the null 

hypothesis when the alternative hypothesis is true. The probability of a type II error is called 𝛽 (beta). 

Type I and type II errors represent two ways an incorrect conclusion can be made, thus both 𝛼 and 𝛽 

should be minimized. Unfortunately, 𝛼 and 𝛽 work in opposition to one another. If one is concerned 

with falsely convicting an innocent person, the standard required for conviction can be raised, leading to 

a lower type I error rate 𝛼. However, making it harder to obtain a conviction has also made it harder to 

convict a guilty person. Thus, lowering the type I error rate has increased the type II error rate! Likewise, 

lowering the type II error rate (making it easier to convict a guilty person) will increase the type I error 

rate (more innocent people will be found guilty).  

Testers must carefully consider the relative consequences of making type I and type II errors in setting 

up their hypothesis test, so that the risk of making type I and type II errors reflects the severity of the 

consequences of these errors. One might ask how can both 𝛼 and 𝛽 be decreased? The (usually 
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impractical) answer is to collect more information! In the criminal trial, the risk of type I and type II 

errors can be reduced by continuing the investigation and finding previously missed witnesses and 

clues—in other words collecting more data.  

Working with limited resources is a major challenge in DoD testing. The amount of data collected will 

almost certainly be driven by resource constraints and be less than ideal. In any case, it is vitally 

important that everyone enters the test aware of the risks. The risk of making type I and type II errors 

must be fully understood and acceptable in light of the potential consequences.  

Performing a Hypothesis Test 

Setting Up the Hypothesis Test  
For the sake of simplicity, this best practice examines the case of a hypothesis test about a population 

mean. Table 2 shows the three forms of the null and alternative hypotheses where 𝜇0 is the value of the 

population mean under the null hypothesis. These three forms of the hypothesis are general and apply 

to tests about other parameters.  

Table 2: Forms of hypotheses 

Two-Tailed Left-Tailed Right-Tailed 

𝐻0: 𝜇 = 𝜇0 𝐻0: 𝜇 = 𝜇0 𝐻0: 𝜇 = 𝜇0 
𝐻𝐴: 𝜇 ≠ 𝜇0 𝐻𝐴: 𝜇 < 𝜇0 𝐻𝐴: 𝜇 > 𝜇0 

 

Recall the target location error example where we are interested in testing whether the population 

mean target location error for the Roka rocket is less than 10 feet. A hypothesis test can answer the 

question of whether, based on a sample, there is evidence that the entire population of rockets has a 

mean target location error less than 10 feet. In this case, a one sample t-test can be used to answer this 

question. The mathematical formulas are included in the Appendix; here the example motivates the 

logic behind the t-test. The hypotheses are 𝐻0: 𝜇 = 10 vs. 𝐻𝐴: 𝜇 < 10. 

A perfect decision rule would always reject the null hypothesis when the population mean target 

location error is less than 10 feet and always fail to reject the null hypothesis when it is not. A 

complication arises because we do not see the entire population but only a sample. Figure 2 illustrates 

that a single population could lead to different samples and hence different conclusions. The correct 

decision would be to reject the null hypothesis that the population mean is equal to 10 feet in favor of 

the alternative hypothesis that the population mean is less than 10 feet. The decision based on Sample B 

would be to incorrectly fail to reject the claim that the population mean is equal to 10 feet. Although a 

perfect decision rule does not exist, statistics quantifies the risk of drawing incorrect conclusions. 

Typically, the hypotheses are set up such that rejecting the null hypothesis when the null hypothesis is 

true reflects the worst possible outcome.  
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Figure 2: Samples from a population 

Part of setting up the hypothesis test includes characterizing the type I and type II error rates. The 

significance level, 𝛼, which is the probability of a type I error, must be set prior to the collection of data. 

Common values for 𝛼 include 0.01, 0.05, 0.1 and 0.2 and should be chosen based on the consequences 

of rejecting the null hypothesis when it is true. In our example, a type I error means concluding that the 

target location error is less than 10 feet when it really is 10 feet.  

The type II error depends on 𝛿 (delta), the operationally significant difference to be detected. What 

difference in mean target location error from 10 feet does the tester want to be able to detect? Does a 

mean target location error of 9.999998 represent a meaningful improvement from 10? No. What about 

9.9? How about 9.5? What difference represents an operationally significant improvement in mean 

target location error? Consultation with stakeholders reveals that a difference of 0.75 feet is of practical 

importance.  

Based on previous tests, the team estimates that the standard deviation (a measure of spread or 

variation in data) of the target location error is around 1.5 feet. The team uses statistical software to 

scope the trade space for different values of 𝛼, 𝛽, and sample size with 𝛿 = 0.75 and a standard 

deviation of 1.5. After considering the consequences of type I and type II errors, the team decides to set 

𝛼 = 0.1 and 𝛽 = 0.2 and to use a sample size of 19.  

A value of 𝛼 = 0.1 means that if the population mean target location error is truly 10 feet, there is 10% 

probability of observing test results that would lead the tester to conclude that the mean target location 

error is less than 10 feet. On the other hand, power is the complement of the type II error rate; it is the 

probability of rejecting the null hypothesis when it is false, 1 − 𝛽. Having 1 – 0.20 = 0.80 power to detect 

a difference of 0.75 feet means that if the population mean target location error is really 9.25 (10 – 
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0.75), there is an 80% chance of observing data that will lead the tester to conclude that the mean 

target location error is less than 10 feet. Note that the probability of type I and type II errors are used 

for planning purposes and are determined prior to the collection of data.  

Analyzing the Data 
Suppose 19 rockets are launched, and we obtain a sample mean target location error of 8.6 feet. Figure 

3 shows a histogram of the data.  

 

Figure 3: Histogram of target location error 

Before performing the t-test, the assumptions of the t-test must be checked. The t-test assumes that the 

observations are independent, that they come from a simple random sample, and that either the 

observations follow the normal distribution or the sample size is sufficiently large1. These assumptions 

are reasonable for the target location error experiment. Caution: failing to check these assumptions can 

lead to incorrect conclusions! The violation of these assumptions may necessitate the use of other 

statistical techniques to appropriately analyze the data. 

In order to decide whether these data are evidence that the population mean target location error is 

less than 10 feet, the p-value is compared to the significance level 𝛼 = 0.10. A p-value is the probability 

under the null hypothesis of obtaining results as extreme or more extreme than what was actually 

observed. In this example, it is the probability, assuming the population mean target location error is 10 

feet, of obtaining a sample mean of 8.6 feet or less. It is important to understand that the p-value is not 

                                                           
 

1 The sufficiently large option requires the sample size to be large enough to invoke the central limit theorem. The 
sample size needed to invoke the central limit theorem depends on the underlying distribution of the population. 
Although a common rule of thumb is 30, in many cases a sample size as small as 10 may be adequate to invoke the 
central limit theorem.  
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the probability that the null hypothesis is true! A small p-value means that under the null hypothesis 

results as extreme as those observed are unlikely. If the p-value is less than the significance level 𝛼 then 

reject the null hypothesis; otherwise fail to reject the null hypothesis.  

Statistical software shows that the p-value from the hypothesis test is 0.0002. Meaning that if the mean 

target location error really was 10 feet there is only a 0.02% chance of obtaining a sample mean as small 

as or smaller than 8.6 feet. Since 0.0002 is less than 𝛼 = 0.10, reject the null hypothesis and conclude 

that there is evidence at the 𝛼 = 0.10 significance level that the mean target location error of the 

population of rockets is less than 10 feet.  

Types of Hypothesis Tests 
The example in this tutorial uses a one sample t-test to compare a population mean to a requirement. In 

practice, the situation is rarely this simple, but there are many types of hypothesis tests appropriate for 

more complex situations. The t-test can be extended to the case of multiple samples. For example, the 

two-sample t-test examines whether the population means of two groups are the same and the one-

way Analysis of Variance (ANOVA) compares the population means of three or more groups. Extending 

this comparison further, the general k factor ANOVA determines whether each factor or factor 

interaction affects the population mean by performing multiple hypothesis tests simultaneously! 

In addition to the mean, hypothesis tests are often performed on other parameters including 

proportions and variances. While there are countless types of hypothesis tests, Table 3 lists some 

common hypothesis test about means, proportions and variances. Regardless of the kind of hypothesis 

test being performed the fundamental process is the same as that illustrated with the one sample t-test 

example.  

Table 3: Common hypothesis tests 

Mean Proportion Variance 

One Sample t-test One Sample z-test for 
Proportions 

One sample 𝜒2 test 

Two Sample t-test Two Sample z-test for 
Proportions 

Two Sample F-test 

Paired t-test 𝜒2 Homogeneity of Proportions  
ANOVA   

 

Hypothesis Testing and Confidence Intervals 
Although the scope of this best practice does not include confidence intervals, it acknowledges that 

there is a relationship between hypothesis testing and confidence intervals. Namely, it is possible (and 

statistically valid) to perform a hypothesis test at the 𝛼 significance level using a confidence interval with 
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a 100(1 − 𝛼)% confidence level. Although it is common in DoD to frame hypothesis tests in terms of 

confidence intervals (i.e. discussing a 90% confidence interval as opposed to testing a hypothesis at the 

10% significance level), this best practice does not include this approach for several reasons: 1) An 

explicit statement of the hypotheses is necessary regardless of whether a traditional hypothesis test is 

being performed or a confidence interval is being used to perform the test. However, in the confidence 

interval approach, this explicit statement is almost always overlooked. 2) In the confidence interval 

approach, the critical upfront planning for power is often omitted. 3) “Confidence” has a very specific 

statistical meaning, but is often misconstrued in a more general colloquial sense and used incorrectly. 4) 

The confidence interval approach to hypothesis testing confounds confidence intervals and hypothesis 

testing, which while related, have different objectives. Confidence intervals are used to estimate a 

parameter, while hypothesis tests are used to test a claim about a parameter. 

Conclusions 
Hypothesis tests use information from a sample to evaluate a claim about the larger population. Upfront 

planning is vitally important to ensure the hypothesis test adequately addresses the tester’s objectives. 

Hypotheses must be clearly stated and assumptions understood. The trade space for the probabilities of 

type I and type II errors must be examined and the values chosen must reflect the severity of these 

errors. Finally, the results of the hypothesis test must be thoroughly understood and correctly 

interpreted.  
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Appendix  

The One Sample T-Test 
The test statistic for the one sample t-test is 

𝑡𝑜𝑏𝑠 =
𝑦̅ − 𝜇0
𝑠

√𝑛⁄
 

where 𝑦̅ is the sample mean, 𝜇0 is the population mean under the null hypothesis, 𝑛 is the number of 

observations, and the sample standard deviation is:  

𝑠 = √
∑ (𝑦𝑖 − 𝑦̅)2𝑛

𝑖=1

𝑛 − 1
 

For the Roka rocket target location error example the observed test statistic is:  

𝑡𝑜𝑏𝑠 =
8.6 − 10

1.4
√19

⁄
=  −4.4 

The calculation of the p-value depends on the form of the alternative hypothesis and is given by: 

p-value = {

2𝑃(𝑇 > |𝑡𝑜𝑏𝑠|) if 𝐻𝐴: 𝜇 ≠ 𝜇0

𝑃(𝑇 < 𝑡𝑜𝑏𝑠) if 𝐻𝐴: 𝜇 < 𝜇0

𝑃(𝑇 > 𝑡𝑜𝑏𝑠) if 𝐻𝐴: 𝜇 > 𝜇0

 

where 𝑇 follows the t-distribution with 𝑛 − 1 degrees of freedom. For the Roka rocket target location 

error example the p-value is 𝑃(𝑇 < −4.4) = 0.0002. 


