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Executive Summary 
A method is proposed to calculate confidence intervals for operational availability. The method is based 
on Monte Carlo simulation and utilizes bootstrap sampling of failure and repair times. The mean time to 
repair (MTTR) is estimated using a biased predictor to account for the typical right skew of repair time 
distributions. The mean logistics delay time (MLDT) is assumed to be normally distributed where the 
mean and standard deviation of the mean are estimated from logistics studies. The method was 
designed to be robust to a variety of scenarios, meaning the user does not have to identify or assume 
any underlying population distributions. An example is used to demonstrate application of the method. 

Keywords: availability, reliability, bootstrap 

Introduction 

Role in the STAT Process 
Scientific Test and Analysis Techniques (STAT) are “deliberate, methodical processes and procedures 
that seek to relate requirements to analysis in order to inform better decision-making” (Guide to 
Developing an Effective STAT Test Strategy V7.0). The STAT Center of Excellence (STAT COE) utilizes a 
construct called the STAT Process to provide a structure for applying STAT to test and evaluation 
programs. The STAT Process is an iterative process that begins with requirements and ends at program 
decisions. In between there are four phases: Plan, Design, Execute, and Analyze. 

The method introduced in this paper will be most relevant to the Analyze phase. An availability 
requirement would have driven appropriate test planning, design, and execution to obtain sufficient 
reliability data for analysis. This method is then applied to the test data to inform decisions. This method 
could potentially be used to aid in the Design phase, perhaps through the use of simulation; however, 
that application is outside the scope of this document. 

Definitions 
Operational availability is a metric that can be useful when applied along with a suitable reliability 
metric. Some definitions are provided to lay the groundwork for the rest of the paper. First, from the 
DOD Reliability, Availability, Maintainability, and Cost Rationale Report Manual (DOD RAM-C): 

Reliability: “Reliability measures the probability that the system will perform without 
failure over a specified interval under specified conditions…Considerations of reliability 
must support both availability metrics [i.e., materiel and operational as described 
below]. Reliability may be expressed initially as a desired failure-free interval that can be 
converted to a failure frequency for use as a requirement.” 

Reliability can be stated in terms of a probability (of functioning without failure for a given length of 
time) or as a time (the average failure-free interval). Both perspectives are equivalent and can be 
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calculated from each other. Many acquisition programs and this Best Practice use the failure-free 
interval formulation where the metric is mean time between failures (MTBF). 

Reliability testing is necessary to provide the data for calculation of availability because availability is a 
derived metric for which there is no direct test. There are two types of availability: materiel (𝐴𝐴𝑚𝑚) and 
operational (𝐴𝐴𝑜𝑜). This paper will focus entirely on operational availability, but for completeness both are 
defined below from the DOD RAM-C Manual (2009). A key distinction is that operational availability uses 
“active” time. In other words, the 𝐴𝐴𝑜𝑜 metric counts only for the time a unit is actively in service, not 
when it’s in storage, used as a spare, in transport, or the like. 

- Materiel Availability. “Materiel Availability is a measure of the percentage of the total inventory 
of a system operationally capable (ready for tasking) of performing an assigned mission at a 
given time, based on materiel condition. This measure can be expressed mathematically as 
number of operational end items [divided by the] total population.” 
 

- Operational Availability. “Operational Availability indicates the percentage of time that a 
system or group of systems within a unit are operationally capable of performing an assigned 
mission and can be expressed as (uptime/(uptime + downtime)).” 

While uptime is represented by MTBF, the downtime is typically broken into two components: mean 
time to repair (MTTR) and mean logistics delay time (MLDT). The metrics MTBF, MTTR, and MLDT are 
the average times over the useful lifetime of the system. When a system takes a long time to repair, its 
availability will suffer. Times to repair are random according to some distribution over the system’s 
lifetime, but the availability depends on the average time to repair the system which is called MTTR. 

MLDT is the measure of how long it takes the maintainers to acquire the resources needed to perform 
the repair. A common example is when something breaks and the maintainers are ready to perform the 
repair, but the parts, tools, people, or other necessary resources are not on hand. The time spent 
waiting to begin repairs is represented by MLDT. Since MLDT is dependent on logistics organizations and 
supply processes which might not be considered part of the system under test (SUT), different programs 
may choose to include it or not in the availability calculations. The STAT COE recommends 𝐴𝐴𝑜𝑜 be 
reported with several possible values for MLDT to inform decision makers about the intrinsic system 
behavior and the less-than-ideal availability in the deployed environment. 

Assuming the MTBF, MTTR, and MLDT estimates accurately predict the respective mean times over the 
entire life of the system, the point prediction for operational availability is 

 𝐴𝐴𝑜𝑜 =
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 +𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 + 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
 (1) 

 

An important concept is that the availability metric may be misleading when used in isolation. For 
example, consider two systems with 𝐴𝐴𝑜𝑜 = 90%. Over its lifetime the first system can be expected to go 
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about 9 days before breaking and it takes one day on average to fix it – the reliability is 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 9 days 
and the 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 1 day. The second system has 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 9 months and 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 1 month. Those two 
profiles are drastically different from the user’s point of view, even though the operationally 
availabilities are identical. The operationally availability metric by itself provides no information about 
the probability of completing a mission of a certain time duration. Therefore, it is generally 
recommended when drafting requirements that if operational availability is stipulated, it should be 
accompanied by a reliability requirement such as MTBF and a logistics requirement such as MLDT as 
appropriate. 

Uncertainty 
The test team should strive to report not only the 𝐴𝐴𝑜𝑜 point estimate, but also the associated 
uncertainty. A confidence interval about 𝐴𝐴𝑜𝑜 is one way to do this. Recall the proper interpretation of a 
confidence interval: given a method to compute a confidence interval that claims the confidence to be 
90%, if the test were re-accomplished many times and the method were used to calculate the new 
confidence interval each time, the true availability value would lie within approximately 90% of the 
confidence intervals. This statement is the basis for evaluating the proposed method later in this paper. 

To capture uncertainty in availability, the uncertainties for the constituent terms MTBF, MTTR, and 
MLDT must be estimated. Notable methods in the literature for calculating the confidence interval for 
𝐴𝐴𝑜𝑜 assume certain distributions as shown in Table 1. The distributions are independent – times between 
failure are not affected by times to repair and vice versa. None of these methods include MLDT. 

Table 1: Existing methods in the literature and their assumed population distributions 

Method Times between Failure Times to Repair 
Keesee (1965) Exponential Exponential 
Masters and Lewis (1987) Gamma Lognormal 
Masters et al (1991) Weibull Lognormal 
Ananda (2003) Exponential Lognormal 
Ananda and Gamage (2004) Weibull, Gamma, Lognormal Lognormal 

 

Numerical evaluation has shown that these methods generally perform well when their distributional 
assumptions are met. However, when the distributional assumptions are not met, the results suffer to 
some degree – the intervals are too wide or not wide enough on average, causing the actual confidence 
of a method (also called its coverage) to deviate significantly from its stated confidence. Unfortunately, 
in a real-world test program without extensive prior information, it’s unlikely there will be sufficient 
reliability data to distinguish the population’s true distribution. If it’s not feasible to confirm the 
assumptions were met, the test team may apply an unsuitable method and report misleading results. 

Motivating Scenario 
Consider the acquisition of a system for which little to no reliability information exists. The users have an 
urgent need for the system’s promised capabilities, so they have coordinated a compressed acquisition 
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timeline with the program and decision makers. The test and evaluation (T&E) portion of the timeline is 
based on verifying performance requirements rather than reliability test planning (i.e., system 
effectiveness rather than suitability). Despite the short test duration, the decision makers want 
predictions of reliability and availability – times to failure and times to repair will be recorded. Logistic 
delay times will be predicted by logisticians in a study because the logistical system has not been stood 
up yet. The logisticians can only provide a point estimate, but the test team is able to ascertain through 
communication with the logisticians how certain they are of their prediction. Ultimately the decision 
makers are willing to accept a high degree of risk of accepting a system that does not meet RAM 
requirements; however, they do want some idea of how much risk they would be accepting. 

In response to this type of scenario, the confidence interval method proposed in this paper was 
developed to provide a robust procedure for quantifying uncertainty that is suitable at very small 
sample sizes. Robust in this context means the method must be suitable across common combinations 
of distributions without the analysts having to decide or determine which one is truly the case. 

Proposed Method 

Inputs 
The method requires information about failures, repairs, and logistics in order to provide confidence 
limits on 𝐴𝐴𝑜𝑜. The data required by this method are shown in Table 2. The failure and repair times may be 
observed from any number of units in operation. As mentioned in the motivating scenario, it is expected 
that the test team will only receive a point prediction for MLDT which we will label as �̅�𝑑. One way to 
incorporate uncertainty is to communicate with the logisticians to translate their certainty into a 
standard deviation of the mean, defined here as  𝜎𝜎𝑑𝑑�. For example, if the logisticians were to agree 
there’s a 95% chance the true MLDT is in the range ��̅�𝑑𝑙𝑙𝑜𝑜𝑙𝑙, �̅�𝑑ℎ𝑖𝑖𝑖𝑖ℎ�, assuming a normal distribution where 
about 95% of the population is within two standard deviations results in an estimate of 𝜎𝜎𝑑𝑑� ≅
��̅�𝑑ℎ𝑖𝑖𝑖𝑖ℎ − �̅�𝑑𝑙𝑙𝑜𝑜𝑙𝑙�/4. 

Table 2: Data required 

Constituent Source Data 
Times between failure Test data 𝑛𝑛 failure times, 𝑥𝑥𝑖𝑖  
Times to Repair Test data and/or 

Maintenance Study 
𝑚𝑚 repair times, 𝑦𝑦𝑗𝑗  

Logistics Delay Times Logistics Analysis Mean and standard deviation of 
MLDT, �̅�𝑑 and  𝜎𝜎𝑑𝑑� respectively 

 

The analyst must also decide on the type of confidence interval to report (upper 1-sided, lower 1-sided, 
or 2-sided; typically the upper 1-sided is of highest concern for accepting a system) and the desired level 
of confidence, typically 80%, 90%, or 95%. This decision should be agreed upon by the stakeholders 
based on the risk profile and information needed to make decisions. 
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Monte Carlo Simulation Procedure 
The method proposed here is based on Monte Carlo simulation. One simulation consists of a large 
number of runs, 𝑁𝑁. For each run, the algorithm generates a random value for MTBF, MTTR, and MLDT 
based on the information provided by the user (described below). From these values, the availability for 
that run is calculated according to Equation 1. At the conclusion of the simulation, there will be a set 
containing 𝑁𝑁 values of availability which can be used to make inferences, including the expected value 
(the arithmetic mean) and confidence intervals. 

The following paragraphs describe the procedures for generating MTBF, MTTR, and MLDT that are used 
to calculate availability in a given run. 

MTBF 
The method uses one of two procedures for calculating MTBF, the choice of which depends on how 
many failures were observed during testing.  

If there are five or more times between failure, MTBF is generated using the bootstrap sampling 
procedure with replacement (Efron 1979). The reason bootstrap is selected is to avoid assuming a 
distribution for the failure time population. Bootstrap sampling, in summary, is described as follows: 
Given a sample of times between failure from the test, 𝑥𝑥 = {𝑥𝑥1,𝑥𝑥2, … , 𝑥𝑥𝑛𝑛}, one of the values 𝑥𝑥𝑖𝑖 is 
randomly selected and called 𝑥𝑥1∗. This random selection is performed 𝑛𝑛 times until a bootstrap sample 
has been created: 𝑥𝑥∗ = {𝑥𝑥1∗,𝑥𝑥2∗, … , 𝑥𝑥𝑛𝑛∗}. The bootstrap sample 𝑥𝑥∗ consists entirely of times between 
failure that are present in the original test data 𝑥𝑥. Some values of 𝑥𝑥 may have been selected numerous 
times; others may have not been selected at all. After the bootstrap sample has been created, the MTBF 
for the simulation run is calculated to be the average of the bootstrap sample. 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = �̅�𝑥∗ =
1
𝑛𝑛
�𝑥𝑥𝑖𝑖∗ 

For 1 ≤ 𝑛𝑛 ≤ 4, the population of times between failure is assumed to be exponential because the 
bootstrap procedure doesn’t have enough possible values from which to choose in order to emulate the 
population. Given an exponential population of times between failure, the following ratio follows a Chi-
Square distribution. The value 𝑀𝑀 is the total test time, which is the sum of the observed times between 
failure. 

2𝑀𝑀
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

~𝜒𝜒2(2𝑛𝑛) 

Therefore, after sampling a random number 𝑎𝑎 from the distribution 𝜒𝜒2(2𝑛𝑛), the value of MTBF used for 
this run is 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =
2𝑀𝑀
𝑎𝑎

 



STAT COE-Report-01-2020 

 

 Page 7  
  

MTTR 
An MTTR value is generated for each Monte Carlo run using bootstrap with replacement as described 
for MTBF. To estimate the MTTR from a sample of 𝑚𝑚 times to repair, 𝑦𝑦∗ = {𝑦𝑦1∗,𝑦𝑦2∗, … ,𝑦𝑦𝑚𝑚∗ }, it is simple to 
use the average as was done earlier for MTBF, 

𝑦𝑦�∗ =
1
𝑚𝑚
�𝑦𝑦𝑖𝑖∗ 

Unfortunately the arithmetic average tends to underestimate the mean of populations that are skewed 
to the right, as times to repair often are. The right tail of the times to repair distribution has a significant 
impact on the lower confidence limit of availability. Therefore, for this method a biased estimator for 
the mean was chosen that is based on the lognormal distribution (O’Hagan, 2003). A biased estimate 
was not employed for times between failure because the primary concern for accepting a system lies 
with the lower confidence bounds (Ananda 2003). To estimate the population MTTR from the sample of 
𝑚𝑚 times to repair 𝑦𝑦∗, first transform the times to repair using the natural logarithm,  

𝑌𝑌𝑖𝑖 = ln(𝑦𝑦𝑖𝑖∗) 

Then the mean and standard deviations of the logarithmic times to repair respectively are 

𝑌𝑌� =
1
𝑚𝑚
�𝑌𝑌𝑖𝑖 

𝑠𝑠2 =
1

𝑚𝑚 − 1
�(𝑌𝑌𝑖𝑖 − 𝑌𝑌�)2 

The variables 𝑌𝑌� and 𝑠𝑠 are the estimates of the location and shape parameters of the population’s 
lognormal distribution, 𝜇𝜇 and 𝜎𝜎. Finally, MTTR is estimated using the formula 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ≡ 𝑦𝑦� = exp�𝑌𝑌� +
𝑠𝑠2

2𝑚𝑚��
1 −

𝑠𝑠2

𝑚𝑚 − 1�
−(𝑚𝑚−1)/2

 

Note that imaginary numbers result if 𝑠𝑠2 > 𝑚𝑚− 1 and 𝑚𝑚 is even. As desired, the biased estimate 𝑦𝑦� 
tends to be higher than the average, 𝑦𝑦�. This behavior is more pronounced with small sample sizes and 
higher standard deviations as indicated by higher values for 𝜎𝜎. The two estimators tend to provide 
nearly equal estimates of the mean for data sets with low standard deviations (𝑠𝑠 ≤ 0.2), where the data 
indicate the population is nearly normal. 

The difference between the two estimators 𝑦𝑦� and 𝑦𝑦� can be unrealistically large for some samples, such 
as those with one extremely high observation. This kind of sample occurs more often with smaller 
sample sizes and more highly skewed populations. Therefore, for the code used in this paper, a limiter 
was put in place that limited 𝑠𝑠2 to a maximum value of 2.25. This limit corresponds to an estimated 
shape parameter of 𝑠𝑠 = 1.5, which avoids the numerical difficulties, but is sufficiently large for the 
range of distributions to cover most plausible situations. 
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MLDT 
The MLDT is treated differently than MTBF and MTTR. Logistics information is likely to be provided from 
a study rather than through test observations. It is also likely that only a point estimate of MLDT will be 
provided and the test team will have to estimate the spread of the data if uncertainty is to be accounted 
for. In this case, the user of this method can provide the current state of knowledge of MLDT by entering 
the expected value, �̅�𝑑, and the standard deviation of the expected value, 𝜎𝜎𝑑𝑑�. Given this information, for 
each simulation run, a value for MLDT may be sampled from a selected distribution. If MLDT were 
assumed to be normally distributed, the values would be randomly sampled from a normal distribution 
with mean �̅�𝑑 and standard deviation 𝜎𝜎𝑑𝑑�. 

Availability Distribution 
Finally, the availability for each run is calculated using the randomly generated constituent values, 

𝐴𝐴𝑜𝑜 =
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 + 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 + 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
 

The resulting set of 𝑁𝑁 values for 𝐴𝐴𝑜𝑜 may be used to make inferences about the system’s availability. 
Statistics such as the mean, median, percentiles, and so forth may be used as with any other sample. In 
this method, the percentiles are used directly to determine the confidence interval. For example, the 
80% upper confidence interval is defined by the lower confidence limit, which is the 20th percentile of 
the set of 𝐴𝐴𝑜𝑜 values. 

Example 
Application of the proposed method is demonstrated using an example from a journal article. This 
method was coded in the programming language R to receive the necessary input data and produce 
plots with accompanying numerical results. This code was written to report only the lower confidence 
limit for a one-sided upper confidence interval. For access to the web-hosted tool based on this code, 
navigate to the tool section of the STAT COE web site www.afit.edu/STAT or contact the STAT COE for 
assistance. 

The example comes from the journal article “Confidence Intervals for Steady State Availability of a 
System with Exponential Operating Time and Lognormal Repair Time” in which the author proposed a 
method for determining the lower confidence limit for availability assuming exponential times between 
failure and lognormal times to repair (Ananda, 2003). The times between failure were randomly 
generated from an exponential distribution with 𝜃𝜃 = 100 where the parameter 𝜃𝜃 is the mean failure 
time, or MTBF. The times to repair were randomly generated from a lognormal distribution with 
parameters 𝜇𝜇 = 1.0 and 𝜎𝜎 = 1.0 (the mean and standard deviation of the natural logarithms of the 
times to repair, respectively). From these distributions the true 𝐴𝐴𝑜𝑜 of the system can be calculated as 
95.7%. The sample size was 𝑛𝑛 = 𝑚𝑚 = 10 with the data shown below: 

- Times between failure: 75.69, 46.50, 393.30, 476.17, 15.76, 340.92, 21.20, 14.06, 33.24, 2.83 
- Times to repair: 3.69, 1.22, 0.43, 3.14, 4.59, 2.96, 12.11, 3.06, 1.45, 2.20 

http://www.afit.edu/STAT
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From this data, the journal article’s method produced an LCL of 93.39%. To demonstrate the method in 
this Best Practice, the same data set was entered into the R code-based tool as shown in Figure 1. 

 

Figure 1: Tool input section. 

Since the journal article’s method does not include MLDT, the value for MLDT was set to zero. After 
clicking the “Save data” button, the tool echoed the data back to the user for quality verification as 
shown in Figure 2. 

 

Figure 2: Tool data input confirmation section. 
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After clicking the “Run” button and waiting a few seconds for the tool to perform the large number of 
simulation runs (10,000), the results appear on the “Analysis” tab as shown in Figures 3 through 8. 
Figure 3 depicts how the tool documents the input data and the algorithm’s settings. It also displays the 
availability point prediction of 96.8%, which is 1.1% higher than the true value. In contrast, consider 
calculating availability from the raw data only. According to the tool, the mean times predicted from the 
samples are simply the sample averages, 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 141.967 and 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 3.485. Plugging these values 
into Equation 1 results in an availability estimate of 97.6%, which is 1.9% higher than the true value. For 
this particular example, the proposed method provides an estimate for availability which is closer to the 
true value. 

 

 

Figure 3: Tool analysis tab – simulation statistics and numerical results. 

 

Figure 4 depicts the confidence level results. A table shows the LCL for a variety of confidence levels. 
Each LCL is simply the appropriate percentile of the 10,000 availability values generated by the method’s 
simulation. For example, the 95% LCL is the 5th percentile value of the 10,000 availability values. From 
this table the 95% LCL was 93.0%, which is within 0.4% of the journal article method’s LCL of 93.39%. 
This comparison demonstrates the method proposed here provided a valid result for this example’s 
data. Note that because of the random process used in the simulation, the tool may produce a slightly 
different result from run to run. If desired, the analyst can run the tool multiple times to obtain a mean 
and standard deviation for the LCL. Numerical evaluations performed by the STAT COE indicate this 
method remains valid for a variety of underlying distributions, and is therefore robust without the user 
having to make assumptions about them. The evaluation results are outside the scope of this Best 
Practice – for more information please contact the STAT COE. 
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Below the table of LCLs there is a slider that permits the user to select any confidence level from 80% to 
99%. The slider value is used in the statements and in the availability plots of Figure 5 and 6. The 
statements were designed to provide the numerical results in technically accurate terms that could be 
copied and pasted into a report.  

 

Figure 4: Tool analysis tab –Lower Confidence Limit table and statements. 

Figures 5 through 8 show the plots generated by the tool to enhance the user’s understanding of the 
results. The cumulative distribution function (CDF) in Figure 5 enables the analyst to graphically 
determine any percentile value of interest. Figure 6 depicts the probability distribution function (PDF) of 
availability. The vertical red line in Figures 5 and 6 is the LCL as set by user using the slider.  

 

 

Figure 5: Tool analysis tab –Availability cumulative distribution function (CDF). 
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Figure 6: Tool analysis tab –Availability histogram. 

Finally, Figures 7 and 8 show the histograms of the 10,000 simulation MTBFs and MTTRs to provide 
additional insight. The multiple peaks in the histograms are an artifact of the bootstrap sampling 
procedure as there is a finite combination of observations that can appear in any given sample. It should 
be emphasized that the plotted distributions are of the mean values, not the times between failure and 
times to repair themselves. Therefore as the sample sizes become very large, the Central Limit Theorem 
says the MTBF and MTTR distributions will each approach a normal distribution, even in this example 
where the failure and times to repair come from exponential and lognormal populations. 

 

Figure 7: Tool analysis tab –MTBF histogram. 

 

Figure 8: Tool analysis tab –MTTR histogram. 
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Conclusion 
This Best Practice proposed a method for calculating confidence intervals for operational availability. An 
example using a STAT COE-developed tool demonstrated the validity of the results by comparison to a 
method in the literature. The method is robust to a variety of underlying population distributions of 
interest, meaning it produces suitable results without the user having to declare which distributions to 
assume. Other known methods for calculating availability confidence intervals can provide inaccurate 
results if the underlying distributional assumptions are violated. With small sample sizes it is difficult to 
validate the distributional assumptions, so the analyst may not know the risks involved in applying a 
certain method. 

After a test is concluded, this method produces an empirical distribution of availability results from the 
simulations. The distribution can be used to answer questions like “What is the probability that the 
availability is less than the threshold?” for a decision maker who is balancing the risks. 
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