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The field of statistics can broadly be broken into two branches: frequentist and Bayesian. The 
frequentist approach is more common in general use, academia, and Department of Defense 
(DOD) Test & Evaluation (T&E); however, Bayesian methods can provide many benefits, to 
include: (1) potential for better estimation, (2) more natural interpretability, and (3) flexibility. This 
Best Practice provides a high-level summary of how Bayesian methods can help DOD decision 
makers make more effective and efficient decisions about whether a system under test would 
provide the needed capabilities to the warfighter, or other similar questions of interest. The goal 
of this Best Practice is to offer T&E leadership with a concise treatment of Bayesian methods 
that can be referred to if questions or concerns arise. 
 
In addition to discussing key benefits to a Bayesian approach, a few starting questions are 
offered here for leadership to explore whether a Bayesian approach has been appropriately 
applied. 
 
More detailed references concerning this topic can be found in the Appendix. 
 

Overview of Bayesian Methods and Key Terms 
 
Fundamentally, Bayesian methods combine previously-known information with new information 
to update beliefs about the event or characteristic in question. From a non-statistical viewpoint, 
Bayesian methods are a statistical manifestation of the observe-orient-decide-act Loop (OODA 
Loop). From a T&E perspective, Bayesian methods allow testers to quantify their a priori 
understanding of the system under test; this understanding is then combined with information 
gained from actual testing, resulting in an updated understanding of system performance. 
 
While frequentist approaches to testing are constrained to only formally including data into an 
analysis (that is to say, only including information that can be directly observed), Bayesian 
methods readily consider additional sources of information in a formal, mathematical way. This 
incorporation of available information can be accomplished through the development and use of 
priors (D. Berry 1993; S. Berry, et al. 2011; R. Christensen, et al. 2011). It is worth noting that 
the term “information” refers to a variety of different sources. For example, information can 
consist of: 

- Previous data (raw data or summary statistics) that comes from the same distribution as 
the current data (e.g., data that would be considered appropriate for direct pooling in the 
current test) 

- Previous data that comes from a related, but different, distribution as the current data (e.g., 
developmental testing [DT] data compared to operational testing [OT] data) 

- Data from different (perhaps legacy) systems that have already been fielded 

- Subject matter expert (SME) opinion / institutional knowledge 

- An understanding of the natural bounds the model parameters can take on (e.g., if we 
want to estimate the heights of fighter pilots prior to removing the height restriction, we 
know the mean height must be between 64” and 74”) 

- Believing we know nothing about the system under test (perhaps because it is a novel 
system that has only just been developed) 

 

Key terms in a Bayesian approach to testing include data model, prior distributions (also 
referred to as priors), posterior distributions, posterior probability, and credible intervals (also 
referred to as posterior intervals). These terms are briefly introduced here; more information 
about these terms can be found in the resources provided in the References and Appendix. 
 



The structure and form of the population from which the data are sampled during testing is 
described through the data model, which is conditioned on model parameters. For example, 

normally distributed data is conditioned on the model parameters 𝜇 (the mean) and 𝜎2 (the 
variance). The data model is how data enters a Bayesian analysis, which is used to construct a 
likelihood function (which also could be represented as a joint density of the data). Within 
frequentist analysis, this is the same likelihood function that is used for inference. Within the 
Bayesian framework, every parameter in a data model is unknown and has a prior distribution 
associated with it that is developed independently of the data to be collected. This prior 
distribution is used to quantify the uncertainty surrounding a given model parameter and 
represents an individual’s beliefs about the model parameter before seeing the data. Therefore, 
priors are a means of incorporating key information about the model parameter into a statistical 
analysis. More concretely, priors are a formal statistical method to incorporate past knowledge 
from similar tests (either data or expert understanding) into an analysis. 
 

Given the likelihood function, prior distribution(s), and newly-obtained data, Bayes’ Theorem can 
be used to obtain the posterior distribution. The posterior distribution represents updated belief 
about all of the model parameters or corresponding system performance. Essentially, the 
posterior distribution is the combination of previous information through the prior with data 
through the likelihood function. Bayes’ theorem when stated as a formula is actually quite 
simple; however, in practice, computational tools must commonly be used to numerically 
approximate the posterior distribution. This context is where the term “Markov chain Monte 
Carlo” (MCMC) will likely be encountered—a term that refers to a class of methods that could be 
used to obtain the posterior distribution. 
 

Once the posterior distribution is obtained, various estimates of interests can be calculated. For 
example, point estimates or interval estimates for model parameters can be obtained to facilitate 
factor level analysis; the uncertainty (probability) in those point estimates can be captured in a 
credible interval. Alternatively, when the posterior distribution is a function of model parameters 
that defines performance metrics, posterior probability can be used to obtain the probability that 
a system will obtain the required threshold value for a measure or requirement, and similar 
questions of interest. For example, if the range of a mortar was modeled using a normal 
distribution, the posterior distribution could lead to inference about parameter values (“there is a 
90% chance the standard deviation is between 45 and 64”) or performance metrics (“there is a 
92% chance the range exceeds the threshold of 250”). 
 

Benefits of a Bayesian Approach 

 
While there are many benefits to a Bayesian approach to T&E, this Best Practice focuses on 
three main benefits: potential for better estimation, interpretability, and flexibility. 
 
Benefit 1: Bayesian methods can obtain more precise estimates of system 
performance than classical methods. 
 
When all relevant information is not included in an analysis, it can leave testers spending limited 
and expensive resources to capture data that might be unnecessary, ultimately resulting in 
allocating resources in a sub-optimal manner or in having insufficient data at the end of the test. 
Bayesian methods are ideal for scenarios in which there is insufficient information available in a 
test, as all information thought to be relevant can be incorporated into the analysis. By 
incorporating additional information into the analysis, the standard deviation for model 
parameter estimates can be improved, making it possible for conclusions to be made with 



greater certainty compared to the current approach. This can especially be true when testing 
has a limited sample size—a scenario that is common in DOD testing, due to cost and time 
constraints. 
 
Frequentist methods only utilize observed data in accordance with the selected data model 
(through the likelihood function) to make inferences. This omission of any additional information, 
even that which may be obvious like “the gas mileage of my car must be greater than zero but 
less than 100 mpg,” may not have much impact when the sample is very large. In contrast, 
when the sample size is not large, improbable (but possible due to random chance!) samples 
can potentially lead to inaccurate and even physically impossible conclusions. Furthermore, for 
a given test design, the precision of the final inference using frequentist methods can only be 
improved by using larger samples. These effects are amplified when samples are very small, a 
scenario often encountered when each test point is costly. In contrast, Bayesian methods can 
mitigate these problems with well-constructed priors. 
 
Benefit 2: Bayesian methods result in easier interpretation for decision makers. 
 
Because Bayesian analysis naturally leads to intuitive interpretations, results are easier to 
understand and communicate to non-statistician audiences. Specifically, the Bayesian approach 
enables testers to explicitly report the probability of a system obtaining the desired outcome 
(e.g., exceeding a requirement) by using posterior probability. This interpretability is in direct 
contrast to the frequentist view which results in indirect measures of system performance with 
more esoteric definitions, such as p-values or confidence intervals. 
 
Consider testing a system where the interest is in determining if the time to send an email is 
less than 15 seconds. Let 𝜃 represent the time to send an email. From a frequentist approach, 

an analyst may consider the following hypothesis test: 𝐻0: 𝜃 ≥ 15 versus 𝐻𝑎: 𝜃 < 15, where the 
intent is to reject 𝐻0 if the p-value is small enough (typically below 0.05). The interpretation of 
the p-value is the probability of obtaining a result as extreme or more extreme than the results 
obtained, assuming 𝜃 ≥ 15  is true—which is not only an indirect probability statement about the 
system’s performance, but is also a non-intuitive statement for decision makers. Instead, 
decision makers are interested in whether that the system can send an email in under 15 
seconds (a direct probability). Under a Bayesian framework, testers evaluate the direct 

probability that 𝜃 < 15, a statement that decision makers can intuitively understand and is more 
information than a p-value. The probability can be evaluated in terms of risk that the decision 
maker is willing to take on, rather than evaluating how extreme a test result is. 
 
Furthermore, Bayesian credible intervals (also known as posterior intervals) are the 
interpretation that decision makers are more intuitively able to understand. A 95% credible 
interval is interpreted as: the probability is 0.95 (i.e., 95%) that the parameter of interest exists 
within the interval. This is in contrast to the convoluted interpretation of a confidence interval: 
when we construct a confidence interval using the same procedures and methods, there is a 
95% chance the true value of the parameter of interest will be contained in the interval. This has 
been interpreted as: if we were to run the test thousands of times and calculate a confidence 
interval for each time, approximately 95% of the confidence intervals would contain the true 
value (Meeker, 2007). However, once a confidence interval is calculated from a data set, the 
true value is either in the interval or it is not in the interval—which is unknown to the analyst. 
Moreover, since a confidence interval is not a based on a probability distribution, there is no way 
to know which values in the interval are most probable. In contrast, a credible interval will 
provide a wealth of information about the parameter of interest, including which values are 
probable, improbable, or most likely to be observed or even most likely.  



 
Providing both posterior probability and a credible interval answers two critical questions 
decision makers want answered, in a more intuitive and understandable way than current 
methods allow for: “how likely is it that the system can perform?” and “what is the variability 
(risk) in this assessment?” In addition to the intuitive interpretations, Bayesian methods are also 
more geared to decision-making problems than traditional methods. Traditional hypothesis 
testing revolves around “proving” a hypothesis (e.g., making the statement “the system meets 
requirements” or not), while Bayesian methods focus on making decisions (e.g., making 
statements about how well the system performing and how likely is it to obtain specifications).  

 
Benefit 3: Flexibility in the Bayesian approach allows for the potential to terminate 
testing early, as understanding of a system is continually updated. 
 
Under the Bayesian framework, every data point collected is an update to a prior belief. 
Therefore, at any point in test, interim results can become final results if enough information has 
been collected to adequately understand the system under test. This not only facilitates cost 
savings (terminating early and saving costly test resources), but also demonstrates the built-in 
sequential testing approach of Bayesian methods. 
 
A test that is conducted under a Bayesian approach starts with a prior. The prior is then updated 
with incoming data (either a complete test or updated at some point during test), which results in 
a posterior distribution that reflects the updated understanding of system performance. This 
posterior distribution then can become a prior for the next set of data to be obtained (or 
modified, if appropriate), which will be updated by the data and result in a new posterior 
distribution. This approach to testing leverages not only current data but also past relevant data 
to provide the testers with continually updated information about the system under test. 
Furthermore, as alluded to, Bayesian methods provide the flexibility to change the type of prior 
being used across the continuum of testing. This provides testers with a flexible approach to 
testing that allows for the potential to end testing early, while also making the most use of 
previous relevant data in a flexible and appropriate way. 
 

Discussion: The Importance of Careful Prior Construction 

 
The posterior distribution depends on both the prior(s) and the data model through the likelihood 
function. Conceptually, the results of a Bayesian analysis may be thought of as a weighted 
combination of the prior information and the data information. This is a benefit of Bayesian 
analysis, as small sample sizes may be augmented by additional information, to ultimately make 
more precise conclusions about system performance. However, when the prior is too strong 
relative to the amount of data being collected (i.e., a narrow distribution indicating a strong 
understanding of the parameters), the choice of prior may have a large influence on the test 
conclusions. It is important to note that as the sample size increases, the data will overwhelm 
the prior, leading to results that are less sensitive to the choice of the prior. Practically, however, 
the cost of increasing the sample size must be weighed against the risk of making decisions that 
depend too heavily on prior information (S Berry, et al. 2011). Therefore, it is important that 
priors are carefully constructed to benefit the analysis by capturing the appropriate amount of 
information for the test at hand, not detract from it. Not only does this highlight the importance of 
sample sizes and understanding how informative the selected priors are, but it also highlights 
the importance of sensitivity analysis—evaluating the effect that changing priors has on 
conclusions. How priors are developed, a critical component of a Bayesian analysis, is a driver 
of many of the questions in the next section. 



 

Key Questions to Ask Testers 
 
In order for Bayesian methods to be effective, efficient, and appropriate (e.g., avoid 
inadvertently biasing results), it is imperative that priors are developed by a team that includes 
both an expert in Bayesian prior development and an expert in/on the system. To this end, a few 
starting questions are offered here for leadership to explore whether a Bayesian approach has 
been appropriately applied. These questions largely focus on prior development, because the 
prior is unique to Bayesian analysis while the data model and likelihood function is common to 
both frequentist and Bayesian methods. 

 
Question 1: Did you select a team member, or seek outside consultation from someone, who is 
an expert in Bayesian analysis during the development of priors and the execution of analysis? 
 
The answer to this question is the first line of defense for test leadership in ensuring appropriate 
statistical methods were applied. If the answer is “yes,” it is recommended that the remaining 
questions be asked. If “no”, it is recommended that no more questions are asked, and external 
consultation is brought in with expertise in the area—as would be the case for any analytical 
technique proposed, traditional or Bayesian. 
 
Question 2: When were the priors developed? 
 
As discussed previously, priors are an a priori representation of beliefs. Therefore, they must be 
created by experts before collecting (or at least seeing) the data from the experiment. It is 
recommended that test teams have documentation that all stakeholders represented on the test 
team agreed to the priors before exposure to the test data. If priors are developed after seeing 
the data, serious issues may arise ranging from inadvertent introduction of bias to the more 
damaging perception of “data snooping” (changing the prior to get the desired results).  

 
Question 3: What information was used to build the prior, and how does the prior account for 
any (possible) differences between the information in the prior and the data (to be) collected? 
 
Recall that there are different types of information that can be built into a prior. It is important to 
understand what data is being used in a prior. For instance, if it was SME opinion, was enough 
variability incorporated into the prior to account for any potential biases? Were multiple SMEs 
consulted, and information appropriately combined? If data was used, did it come from the 
same population (i.e., was it data that would have been used to directly answer a question of 
interest)? If the data did not come from the same population (e.g., perhaps the system under 
test has changed since the last time test was conducted), were differences appropriately 
accounted for? Of note, if the data comes from a different population (e.g., system changes 
occurred), there are priors that can be used to appropriately account for this, but a SME in 
Bayesian methods should be consulted to ensure the previous (potentially dissimilar) data is 
being appropriately accounted for. 

 
Question 4: How informative is the prior relative to the data? 
 
It is important to understand how informative priors are, relative to the amount of information to 
be obtained from the test. If the prior is too informative, it will be difficult for the data to 
overwhelm the prior, and inferences will be made mainly based on the prior. Therefore, a 
balance should be struck between a prior that is not too informative (i.e., can still be updated by 
the data), while still being informative enough to provide the benefit of Bayesian analysis. The 



relative influence of the prior and the data is particularly important in tests with small sample 
sizes, where it should be investigated during the test planning/sizing phase 
 
Question 5: What priors were used in sensitivity analysis, and how did that affect conclusions 
and recommendations? 
 
As mentioned at the beginning of this section, sensitivity analysis is an important part of the 
Bayesian analysis. By using different priors to determine the impact of the prior on the 
conclusions made, decision makers can obtain an understanding of the risk in an assessment. 
To conduct sensitivity analysis, it is recommended that an informative prior and a non-
informative prior are used at a minimum (note: the terms informative and non-informative are 
often discussed in Bayesian statistics, which is beyond the scope of this paper). Should using 
these two priors result in the same inference, decision makers can be assured in their decision 
to use an informative prior to obtain better estimates of system performance. However, if using 
different priors results in different decisions, decision makers can conclude that not enough data 
has been collected (i.e., the decision is being overly influenced by the prior). The decision 
maker can then decide if the question is important enough that more data is needed; or, if 
restricted by cost or time, the decision maker will gain an understanding in the risk associated 
with the decision. 
 

Conclusion 

 
This Best Practice has provided a high-level summary for leadership discussing how Bayesian 
methods can be used to support their testing strategies. Benefits include the potential for better 
estimation, interpretability, and flexibility in testing. In addition to the benefits it has also been 
acknowledged that there are areas that require careful considerations, such as prior 
development. To mitigate potential risks associated with incorrectly applying a Bayesian 
approach, it is recommended that a SME be identified, either within the test team or an external 
consultant such as one from the STAT COE—just as would be recommended for any statistical 
approach, whether traditional or Bayesian. When understood and properly applied, Bayesian 
methods add a powerful tool to the T&E professional’s toolbox. 

 
  



References 

 
Berry, Donald A. “A Case for Bayesianism in Clinical Trials”. In: Statistics in Medicine 12.15-16 

(1993), pp. 1377-1393. ISSN: 10970258. doi: 10.1002/sim.4780121504. 
 
Berry, Scott M., Bradley P. Carlin, J. Jack Lee, and Peter Muller. Bayesian adaptive methods 

for clinical trials. Boca Raton, FL: CRC Press, 2011, p. 305. ISBN: 9781439825488. 

 
Christensen, Ronald, Wesley Johnson, Adam Branscum, and Timothy Hanson. Bayesian Ideas 

and Data Analysis. Boca Raton, FL: CRC Press, 2011. ISBN: 978-1-4398-0354-7. 

 
Meeker, William Q., Gerald J. Hahn, and Luis A. Escobar. Statistical Intervals: a Guide for 

Practitioners and Researchers (2nd ed). Wiley, 2007. 



Appendix 
Additional Resources for Bayesian Methods in DoD Testing 

 
 
Dewald, Lee, Robert Holcomb, Sam Parry, and Alyson G. Wilson. “A Bayesian Approach 

to Evaluation of Operational Testing of Land Warfare Systems”. In: Military 
Operations Research 21.4 (2016), pp. 23-32. doi: 10.5711/1082598321423. 

 
Dickinson, Rebecca M., Laura J. Freeman, Bruce A. Simpson, and Alyson G. Wilson. 

“Statistical Methods for Combining Information: Stryker Family of Vehicles Reliability 
Case Study”. In: Journal of Quality Technology 47.4 (2015), pp. 400-415. 

 
National Research Council. Improved Operational Test and Evaluation Methods of Combining 

Test Information for the Stryker Family of Vehicles and Related Army Systems: Phase II 
Report. Washington, D.C.: National Academy Press, 2004. 

 
National Research Council. Statistical Issues in Defense Analysis and Testing : Summary of a 

Workshop. Ed. by John E Rolph and Duane L Ste ey. Washington, D.C.: National 
Academy Press, 1994. doi: 10.17226/9686. 

 
National Research Council. Statistics, Testing, and Defense Acquisition. : New Approaches 

and Methodological Improvements. Ed. by Michael L Cohen, John E Rolph, and Duane 
L Steffey. Washington, D.C.: National Academy Press, 1998. 

 
Sieck, Victoria R.C. and Fletcher G.W. Christensen. “A framework for improving the efficiency 

of operational testing through Bayesian adaptive design”. In: Quality and Reliability 
Engineering International (2021). ISSN: 10991638. doi: 10.1002/qre.2802. 

 


