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Introduction 
 
Uncertainty Quantification (UQ) is the science of the characterization and reduction of 
uncertainties (Saouma & Hariri-Ardebili, 2021). UQ is not a standalone field of study, but it is 
incorporated within related fields such as, but not limited to, mathematics, statistics, and 
computer science and engineering. Thus, definitions and terms used in UQ tend to vary 
depending on the discipline employing its use. The Scientific Test and Analysis Techniques 
Center of Excellence (STAT COE) is uniquely positioned to offer UQ as a cross-disciplinary 
approach to help test teams understand different principles of uncertainty to better inform 
decisions. As a result, this paper presents the STAT COE’s stance on UQ in relation to two 
pertinent technical disciplines: 1. Modeling & Simulation (M&S) and 2. Machine Learning (ML). 
Two techniques are also offered to assist in the implementation of UQ: 1. Design of 
Experiments (DOE) and 2. Monte Carlo (MC) methods. This paper concludes by summarizing 
concepts and limitations of UQ. 

Background 
 
UQ in the context of predictive science involves the quantification of uncertainty and errors in 
models, simulations, and experiments. UQ is a crucial field that helps to identify and address the 
sources of uncertainty that affect predictions and improve their accuracy (Smith, 2014). The 
sources of uncertainty within UQ are categorized into two types: aleatoric and epistemic. 
Understanding the differences between these two types is critical to improving the quality of UQ. 

Aleatoric uncertainty is uncertainty arising from inherently random effects, which is prevalent in 
modeling a stochastic process in M&S. In experiments or physical data, aleatoric uncertainty 
can arise from the process or sensor used to capture the data (Amini et al., 2019). It is inherent 
random noise associated with that process or sensor that cannot be reduced. However, different 
processes may have different aleatoric uncertainty. For example, data collected by humans in 
the cockpit using stopwatches and pens may have greater noise compared to using onboard 
computer sensors, which would eliminate the potential for human error and, thus, the aleatoric 
uncertainty.  

Epistemic uncertainty, on the other hand, arises from a lack of knowledge and can be reduced 
by obtaining additional information. This type of uncertainty can be prevalent in experiments or 
physical data where there is a lack of knowledge of the system or uncertainty in a 
measurement, such as a limited number of reportable significant figures. In M&S and ML 
models, epistemic uncertainty can be due to a lack of data supporting the model, numerical 
approximations, and uncertainty in the model itself. All models introduce uncertainty since they 
approximate real-world properties or behaviors, which can lead to high-epistemic uncertainty in 
ML models, indicating that the model is not confident in its prediction. 

See a comparison between aleatoric and epistemic uncertainty in Table 1.  

  



Table 1 
Summary of Aleatoric and Epistemic Uncertainty for Different Fields of Study 

Field Aleatoric Uncertainty Epistemic Uncertainty 

Overall Irreducible uncertainty due to 
inherently random effects 

Reducible uncertainty due to lack of 
knowledge 

Physical 
Data 

Random noise associated with a 
process 

Unknown behavior or measurement 
error 

M&S Inherent variation in a quantity, 
characterized by a probability 
density function 

Unknown input values, numerical 
approximation, and model form 

ML 
Noise in the input or training data Lack of training data; confidence in 

model prediction 
 
In M&S, UQ frameworks commonly quantify input uncertainty and propagate that uncertainty 
through the model to allow output uncertainty to be quantified and understood. UQ supports 
model validation, which establishes trust in the model to represent the real world. In ML, 
Bayesian UQ methods are used to quantify uncertainty and confidence in model predictions. 
Many tools support UQ and vary depending on the discipline to which they are applied. The 
following sections will cover UQ in M&S, ML, and two statistical techniques for calculating UQ. 
 
UQ in Modeling & Simulation 
 
Uncertainty in M&S is typically classified as aleatoric, epistemic, a mixture of both aleatoric and 
epistemic, and can also be labeled by the source of the uncertainty. The source of the 
uncertainty can be in model inputs, numerical approximations, or the model form. Model input 
uncertainties can be aleatoric, epistemic, or both, and commonly appear in system conditions, 
environmental conditions, model parameters, or other inputs. Numerical approximation 
uncertainty is introduced when discretization or iterative convergence is required to obtain a 
solution. Finally, a model will always introduce uncertainty since a model assumes a form which 
does not perfectly replicate reality—also known as epistemic uncertainty. This epistemic 
uncertainty can be reduced through a more representative model form; however, bias can only 
be quantified by comparing to an authoritative referent in validation. Uncertainty should be 
quantified at the source and propagated through the model (Figure 1) to allow uncertainty in the 
output to be quantified (Roy & Oberkampf, 2011). 

 

Figure 1 
Propagation of Uncertainties Through a Model (Roy & Oberkampf, 2011) 



UQ is considered a key part of the model Verification and Validation (V&V) process. Model 
uncertainties should be quantified as discussed in sections above. Similarly, uncertainties in 
referent or physical data should be quantified and classified as being aleatoric, epistemic, or as 
a mixture of both. The model and referent are independently assessed through UQ, and then 
followed by the process of validation which assesses the degree to which M&S is an accurate 
representation of the real world from the perspective of the intended use (DODI 5000.61). In 
other words, validation assesses bias, as opposed to uncertainty in the model outputs or data 
itself. Additionally, rigorous V&V should consider all uncertainties that can contribute to the risk 
in using model results (e.g., uncertainty that referent data is representative of the operational 
environment); however, this exceeds what is traditionally within the scope of UQ. 
 
The STAT COE is currently developing Model Validation Levels (MVLs) which yield an objective 
metric quantifying how much trust can be placed in the results of a model to represent the real 
world. MVLs incorporate UQ as part of the input into the validation process by using measures 
of aleatoric and epistemic uncertainties for both the model and the referent. Model-referent 
fidelity is graded on the closeness of model and referent responses relative to the amount of 
uncertainty present. Fidelity is additionally graded by how well the model uncertainty represents 
the uncertainty present in the referent. MVLs consider fidelity in addition to other factors which 
affect trust in the results of a model (Provost et al., 2022). 

UQ in Machine Learning 
 
UQ in ML pertains to identifying when the predictions of a ML model can be trusted. One of the 
reasons for UQ in ML is the gap between how models are trained and their operational 
environment. Laboratory conditions tend to differ from the real-world environment which can 
propagate biases from training. It is difficult to present the model with every condition it will 
encounter. The model might see too many edge cases in the real world. It is a near impossible 
task to mimic the operational space in such a way to eliminate all potential biases. 
 
Models are also susceptible to failure when presented with out-of-distribution data. For instance, 
a classifier trained to identify bacteria based on genomic sequences tends to fail on real-world 
data. This is because bacteria are ever evolving. Thus, when a classifier encounters genomes 
from unseen classes, it will inevitably fail (Ren & Lakshminarayanan, 2019). 
  
Critical to understanding UQ in ML is that obtained probabilities should never be mistaken as 
confidence. Neural Networks (NNs) use activation functions to transfer the weights and biases 
of networks (Rumelhart et al., 1986). In the final layer of an image classification, NN activation 
functions convert the outputs of the NN to probability scores used for prediction. To get a 
probabilty score a special type of activation function is used and places constraints on the 
output. Each output must be greater than zero and the sum of the probability must sum to 1. To 
demonstrate these concepts consider Google’s™ Bird or Bicycle image classification challenge 
(Brown & Olsson, 2018). 
 
The core of this challenge is to train a model that correctly labels images of either a bird or 
bicycle. Figure 2 is a representation NN classifier that might be used in Google’s™ Bird or 
Bicycle challenge. This figure depicts a picture which needs to be classified as either a bird or a 
bicycle. The output is a probability that belongs to each category and those outputs, probability 
bird and probability bicycle, must sum to 1.  



 

Figure 2 
Image Classification Using a Neural Network (Brown & Olsson, 2018) 

Training the NN in this manner captures probabilties. However, probabilities are not the same 
as confidence. Even if a model recieves an input unlike anything it has seen before, say an 
airplane, the model must give an output. Infact the model must output two things: the probability 
that this image is a bird and the probability that this image is a bicycle. Since these probabilities 
must sum to 1, the output likelihood will be unreliable. When the input is unlike anything seen 
during training, it is called being out of distribution. 
 
Training the model to give an indication of how certain it is about a prediction is the goal of UQ 
in ML. When a model recieves a valid input it must output a prediction, even if the input is out-
of-distribtuion. The key to UQ is to accompany an out-of-distribution prediction with lower 
confidence or uncertainty. 
 
Bayesian neural networks (BNNs) and evidential deep learning are two UQ techniques that 
attempt to capture the uncertainty in ML model predictions. ML frameworks without UQ priors 
are placed over the data and assume that the underlying properties of the distribution that the 
model predicts from can be learned from the data. Bayesian techniques place priors over the 
weights in the neural network. In this approach, data is not assumed to come from a single 
distribution. Evidential neural networks place priors over the likelihood function and attempt to 
learn the underlying properties of the distribution. 

Bayesian Neural Networks 
One approach to estimating epistemic uncertainty is using BNNs. In a typical neural network, 
the weights associated with the nodes are a fixed number. In this standard approach the neural 
network is deterministic. Given the same input passed into the model several times will yield the 
same result. This deterministic approach does not allow for a chance to understand uncertainty.  
Instead of a deterministic neural network with fixed weights, BNNs instantiates a model where 
the weights are represented as different probability distributions. Instead of modeling a single 
number for every weight, BNNs attempt to capture a full distribution over every weight and use 
this to measure the epistemic uncertainty in the model (Amini, 2019).  

Evidential Deep Learning  
Instead of sampling to determine the variance and mean of the epistemic uncertainty, evidential 
learning tries to learn the underlying parameters of the higher-order evidential distribution. 
Evidential deep learning techniques seek to probabilistically estimate those parameters (Figure 
3) (Amini, 2019). 



 

Figure 3 
Inverse-Gamma Distribution  

Sampling from any point in the higher-order evidential distribution (the normal-inverse-gamma 
distribution) corresponds to its own Gaussian distribution that is defined by their own mu (μ) and 
sigma (σ). The network is going to try and predict what this distribution is for any given input. 
These are called evidential distributions since they have greater density in areas where there 
are more evidence in support of a given likelihood. The distributions can change, and 
categorical likelihood functions will change as well. Thus, sampling from a point in the normal-
inverse-gamma distribution with greater density corresponds to sampling from a Gaussian 
distribution that has less uncertainty (Amini, 2019).  

UQ Implementation Techniques 
 
Overall, statistical techniques play a critical role in UQ by providing a foundation for making 
quantitative predictions and characterizing uncertainty in complex systems. These techniques, 
along with computational simulations, experiments and domain knowledge, and statistics 
provide an approach to understand and mitigate uncertainty in a wide range of applications. In 
the following sections, this paper will explore two statistical UQ implementations techniques: 
Design of Experiments (DOE) and Monte Carlo (MC) methods. 
 
Design of Experiments 
DOE is used to explain how to sample over an operational region. It is generally desired to 
achieve the most information with the lowest computational and experimental costs. 
Characterizing a response across an operational area increases knowledge about the correct 
model form and decreases epistemic uncertainty in models derived from an experiment. In 
instances where unexpected results are observed, sequential testing can capture the necessary 
data to characterize the response. The DOE methodology provides a means of conducting UQ 
by creating interval estimates in the operational space. According to the test objectives, DOE 
concepts allow you to reduce and quantify the sources of uncertainty. 

Due to the deterministic nature of computer experiments, more traditional DOE methods such 
as factorial or fractional factorial designs are not as useful. Factorial designs may not provide 
sufficient resolution to allow complex relationships between inputs and outputs to be discovered. 
Additionally, the hidden replication of these designs is wasted on a deterministic response 
where there will never be variability in a response for the same input conditions. Instead, more 
advanced designs such as Latin Hypercubes (LHCs) are used. LHCs divide each input axis into 
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several sections and ensure that there is at least one design point in each section to maximize 
information across the space.  

Additional research has been conducted that shows how DOE can be used to characterize 
measurement uncertainty (a form of epistemic uncertainty) by constructing a test to quantify the 
effect of various measurement techniques on the resulting measured value. This is typically 
executed using a technique called Analysis of Variance (ANOVA) to calculate measurable 
variability but could be extended to other analysis techniques depending on the types of designs 
used (Adatrao, 2022). 

Monte Carlo Methods 
MC methods are frequently used in UQ as tools to estimate uncertainty through the artificial 
generation of random data samples. A common application in UQ is to apply MC methods when 
the uncertainty of the response is unknown, but uncertainties around related factors are known 
or more easily investigated. By expressing the factor of interest as a function of dependent 
factors, these methods aim to propagate the uncertainties of the dependent factors forward into 
the independent factor. Forward propagation of uncertainties is done through random sampling 
from the input factors. Each input factor is given a value randomly selected according to the 
uncertainty associated with it. The factor of interest is then calculated using those input values 
and stored as one sample observation. The input values are then randomized, and the factor 
calculation repeated many times over, until a sufficiently large sample is generated. The 
distribution of this simulated data is then taken to be reflective of the true distribution of our 
factor of interest. 

MC methods are a powerful tool, but they are only one step in larger UQ processes. To apply 
MC methods, all relevant sources of uncertainty need to first be identified as input conditions 
and then quantified. Furthermore, MC methods need follow-on verification to ensure that all 
sources of uncertainty are accounted for and to ensure that the methods used to propagate 
uncertainties forward correctly captured the relationship between the inputs and the factor of 
interest. 

Conclusion 
 
UQ characterizes and quantifies the uncertainties present in a model. It is used to separate the 
sources of uncertainty and, where possible, reduce uncertainty. In instances where uncertainty 
cannot be reduced, understanding the source uncertainty provides is valuable. Once the 
uncertainty in a model is characterized, deciding what to do with that information requires a wide 
range of supporting topics. These topics include aspects of statistics, analysis, and human-
machine interfacing. As the reliance on models continues to grow, the desire for UQ will grow 
with it. Effective implementation of UQ will continue to require cross-discipline teams to deliver 
the full benefit of UQ.  
 
It is important to note that UQ does not tell if a model is “right” or “wrong.” It simply quantifies the 
variability in a model due to different sources. The “correctness” of a model can only be 
assessed relative to some source of truth: an activity known as validation. Furthermore, any 
referent used for validation will itself have some uncertainty due to its inherent variability and the 
ability to measure it. UQ provides the means to quantify the uncertainty present in a model or a 
referent, but it doesn’t directly compare them, or decide if they are true or valid. UQ supports 
model validation by providing an understanding of the reasonable level of disagreement that a 
model and referent might have, based on their uncertainties, while still supporting a conclusion 
that the model is valid or “correct.” 
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