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Abstract

A mathematical description of fusion is presented using category theory. A category of fusion rules is developed. The category def-
inition is derived for a model of a classification system beginning with an event set and leading to the final labeling of the event. Func-
tionals on receiver operating characteristic (ROC) curves are developed to form a partial ordering of families of classification systems.
The arguments of these functionals point to specific ROCs and, under various choices of input data, correspond to the Bayes optimal
threshold (BOT) and the Neyman–Pearson threshold of the families of classification systems. The functionals are extended for use over
ROC curves and ROC manifolds where the number of classes of interest in the fusion system exceeds two and the parameters used are
multi-dimensional. Choosing a particular functional, therefore, provides the qualitative requirements to define a fusor and choose the
best competing classification system.
� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Information fusion is a rapidly advancing science.
Researchers are daily adding to the known repertoire of
fusion techniques (that is, fusion rules). An organization
that is building a fusion system to detect or identify objects
will want to get the best possible result for the money
expended. It is this goal which motivates the need to con-
struct a way to compete various fusion rules for acquisition
purposes. There are many different methods and strategies
involved with developing classification systems. Some rely
on likelihood ratios, some on randomized techniques,
and still others on a myriad of schemes. To add to this,
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there exists the fusion of all these technologies which create
even more classification systems. Since the receiver operat-
ing characteristics (ROCs) can be developed for such sys-
tems under test conditions, we propose a functional
defined on ROC curves as a method of quantifying the per-
formance of a classification system. A ROC curve is a set of
ROCs which define a continuous, non-decreasing (or
depending upon the axes chosen, non-increasing) function
in ROC space (the concept of ROC curves is developed
in Section 3).

This functional then allows for the development of a
cogent definition of what is fusion (i.e., the difference
between fusion rules, which do not have a reliance upon
any qualitative difference between the �new� fused result
and the �old� non-fused result) and what we term fusors
(a subcategory of fusion rules, see Section 2), which do rely
upon the qualitative differences. In other words, how does
one know the new fused result is ‘‘better’’ than what previ-
ously existed? (see Wald [2]). While the development of
some classification systems require knowledge of class con-
ditional probability density functions, others do not. A
testing organization would not reveal the exact test
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scenario to those proposing different classification systems
a priori. Therefore, even those systems relying upon class
conditional density knowledge a priori can, at best, esti-
mate the test scenario (and by extension can only estimate
the operational conditions the system will be used in later!).

The functional we propose allows a researcher (or tester)
who is competing classification systems to evaluate their
performance. Each system generates a ROC, or a ROC
curve in the case of a family of classification systems, based
on the test scenario. The desired scenario of the test orga-
nization may be examined with a perturbation in the
assumptions (without actually retesting), and functional
averages compared as well, so performance can be com-
pared over a range of assumed cost functions and prior
probabilities. The result is a sound mathematical approach
to comparing classification systems. The functional is scal-
able to a finite number of classes (the classical detection
problem being two classes), with the development of
ROC manifolds of dimension m P 3 (making a ROC
(m � 1)-manifold, see Section 5.1). The functional will
operate on discrete ROC points in the m-dimensional
ROC space as well as over a continuum of ROCs. Ulti-
mately, under certain assumptions and constraints, we will
be able to compete classification systems, fusion rules,
fusors (fusion rules with a constraint), and fusion systems
in order to choose the best from among finitely many
competitors.

The relationships between ROCs, ROC curves, and per-
formance has been studied for some time, and some prop-
erties are well-known. The foundations for two-class label
sets can be reviewed in [3–10]. The method of discovery
of these properties are different from our own. Previously,
the conditional class density functions were assumed to be
known, and differential calculus was applied to demon-
strate certain properties. For example, for likelihood-based
classifiers, the fact that the slope of a ROC curve at a point
is the likelihood ratio which produces this point, was dis-
covered in this manner [3]. Using cost functions in relation
to ROC curves to analyze best performance seems to have
recently (2001) been recognized by Provost and Foster [11],
based on work previously published by [4,10,12]. The main
assumption in most of the cited work, with regard to ROC
curve properties, is that the distribution functions of the
conditional class densities are known and differentiable
with respect to the likelihood ratio (as a parameter). We
take the approach that, as a beginning for the theory, the
ROC curve is continuous and differentiable, and we apply
variational calculus to a functional which has the effect of
identifying the point on the curve which minimizes Bayes
Cost. Under any particular assumption, such a point exists
for every family of classification systems. This is not to say
the classification system is Bayes Optimal with respect to
all possible classification schemes, but rather it is Bayes
optimal with respect to the classification systems within
the family producing the ROC curve. The solution to the
optimization of the functional allows us to extend this
property to n-class classification systems, so that we can
define and measure performance of ROC manifolds (and
the families of classification systems producing them).

We believe this functional (which is really a family of
functionals) eliminates the need to discuss classification
system performance in terms of area under the curve
(AUC), which is so prevalently used in the medical commu-
nity, or volume under the ROC surface (VUS) [13,14], since
these performance �metrics� do nothing to describe a classi-
fication system�s value under a specific cost–prior assump-
tion. Any family of classification systems will be set to one
particular threshold (at any one time), and so its perfor-
mance will be measured at only one point on the ROC
curve. The question is ‘‘What threshold will the user
choose?’’ We submit that this performance can be calcu-
lated very quickly under the test conditions desired (using
ROC manifolds) by applying vector space methods to the
information revealed by the calculus of variations
approach.

Additionally, the novelty of this approach also relies on
the fact that no class conditional densities are assumed (by
the tester), so that the parameters of the functional can be
chosen to reflect the desired operational assumptions of
interest to the tester. For example, the tester could establish
that Neyman–Pearson criteria will form the data of the
functional, or that he wants to minimize Bayes cost. The
tester may wish to examine performance under a range of
hypotheses. Once the data are established, the functional
will induce a partial ordering on the set of competing
systems.

We have found category theory useful for the descrip-
tion of fusion and fusion systems [1,15–17]. We are not
alone in this, since there has already been some ground-
work published [18,19] applying category theory to the sci-
ence of information fusion. Category theory has also been
used to prove certain properties of learning and memory
using neural nets [20–23]. Category theory is a branch of
mathematics useful for demonstrating mathematical rela-
tionships and properties of mathematical constructs, such
as groups, rings, modules, etc., as well as properties which
are universal among like constructs. It is a very useful tool
to describe the relationships involved in the systems of clas-
sification families. We are using the language of category
theory in order to discover universal properties among
fusors and to provide mathematical rigor to the definitions.
It has been our goal to engage the data fusion community
to think in terms of generalities when studying fusion pro-
cesses in order to abstract the processes and perhaps gain
some knowledge and insight to properties that may go
undetected otherwise. We have drawn upon the work of
various authors in category theory literature [24–27] to
present the definitions, which can be found in Appendix
A, of this paper.

2. Modelling fusion within the event to label model

Let X be a set of states (or outcomes) for a universal (or
sure) event, and T � R be a bounded interval of time.



Fig. 1. Simple model of a two classification systems.
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Interval T sorts X such that we call E � X · T an event-

state. An event-state is then comprised of event-state ele-
ments, e = (x, t) 2 E, where x 2 X and t 2 T. Thus, e

denotes a state x at an instant of time t. Let X · T, be
the set of all event-states for an event over time interval
T. A sigma algebra (or r-field) E, over X · T is a collection
of subsets of X · T, such that X� T 2 E, and for any
A 2 E, then its complement, Ac, is also in E. Finally, count-
able unions of elements of E are also elements of E. A
commonly known r-field for a set X · T is its power set,
for example. Let E be a r-field on X · T, and Pr be a prob-
ability measure defined on the measurable space
ðX� T ;EÞ, then the triple ðX� T ;E; PrÞ forms a probabil-
ity space [28].

The design of a classification system involves the ability
to detect (or sense) an event in X, and process the detection
into a label within a given label set L. For example, design a
system that detects airborne objects and classifies them as
�friendly� or �unfriendly�. To do this, we rely on several map-
pings, which are composed, to provide the user a classifica-
tion system (from the event, to the label). Let E 2 E be any
member of E, then a sensor is defined as a mapping from E
into a (raw) data set D. We denote this with the diagram

E!s D;

so s(e) = d 2 D for all e 2 E. The sensor is defined to pro-
duce a specific data type, so the codomain of s, cod(s) = D,
where D is the set describing the data output of mapping s.
A processor p of this data must have domain, dom(p) = D,
and maps to a codomain of features F (a refined data set),
cod(p) = F. This is denoted by the diagram

D!p F .

Further, a classifier, c, of this system is a mapping such that
dom(c) = F and cod(c) = L, where L is a set of labels the
user of the system finds useful. This is denoted by the
diagram

F !c L.

Therefore, we can denote the entire system, which is
diagrammed

E!s D!p F !c L;

as A, the classification system over an event E, where A is
the composition of mappings

A ¼ c � p � s.

For brevity, we will refer to this as a classification system.
Thus, the system A is a (discrete) random variable which
maps elements in E 2 E into the labels in L and is dia-
grammed by

E!A L.

The following discussion can be expanded to a finite
number of sensors, but for now consider the simple model
of a multi-sensor system using two sensors in Fig. 1. The
sets Ei, for i 2 {1,2}, are sets of event-states. It is useful
to think of Ei as the set of possible states of an event (such
as an aircraft flying) occurring within a sensor�s (or several
sensors�) field(s) of view. Given Ei thus defined, now define
a sensor si as a mapping from an event-state set to a data
set, Di. A data set could be a radar signature return of
an object, multiple radar signature returns, a two-dimen-
sional image, or even a video stream over the time period
of the event-state set. In any case we would like to extract
features from the data set. Hence, mapping pi represents a
processor which does just that. Processors are mappings
from data sets into feature sets, Fi. One may also think
of them as feature extractors. Finally, from the feature sets
we want to determine a label or decision based upon the
sensed event-state. This is achieved through use of the clas-
sifiers ci which map the feature set into a label set. The label
set Li can be as simple as the two-class set {target, non-tar-
get} or could have a more complex nature to it, such as the
types of targets and non-targets in order to define the bat-
tlefield more clearly for the warfighter [29]. Now the dia-
gram in Fig. 1 represents a pair of classification systems
having two sensors, two processors, and two classifiers,
but can easily be extended to any finite number. Now con-
sider two sensors not necessarily co-located. Hence they
may sense different event-state sets. Fig. 1 models two sen-
sors with differing fields of view. Performing fusion along
any node or edge in this graph will result in an elevated
level of fusion [30]—that of situation refinement or threat
refinement, since we are not fusing common information
about a particular event or events.

There are two other possible scenarios that Fig. 1 could
depict. The sensors can overlap in their field of view, either
partially or fully, in which case fusing the information
regarding event-states within the intersection may be use-
ful. Thus, a fusion process may be used to increase the reli-
ability and accuracy of the system, above that which is
possessed by either of the sensors on its own. Let E repre-
sent that event-state set that is common to both sensors,
that is, E = E1 \ E2. Hence, there are two basic challenges
regarding fusion. The first is how to fuse information from
multiple sources regarding common event-states (or target-
states, if preferred) for the purpose of knowing the event-
state (presumably for the purposes of tracking, identifying,
and estimating future event-states). The second and much
more challenging problem is to fuse information from mul-
tiple sources regarding event-states not common to all sen-
sors, for the purpose of knowing the state of a situation
(the situation-state), such as an enemy situation or threat
assessment. We distinguish between the two types of fusion
scenarios discussed by calling them event-state fusion and



Fig. 2. Two classification systems with overlapping field of view.

Fig. 3. Fusion rule applied to data sets.

Fig. 4. Fusion rule applied within a dual sensor process.
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situation-state fusion, respectively. Therefore, Fig. 2 repre-
sents the Event-State-to-Label model of two classification
systems. The only restriction necessary for the usefulness
of this model is that a common field of view be used. Con-
sequently, D1 and D2 can actually be the same data set
under the model, while s1 and s2 could be different sensors.

At this point we begin to consider categories generated
by these data sets. Let D ¼ ðD; IdD; IdD; �Þ be the discrete
category generated by data set D. We use these categories
to define fusion rules of classification systems.

Definition 1 (Fusion rule of n classification systems). Sup-
pose we have n classification systems to be fused. For each
i = 1, . . .,n, let Oi be a category of data generated (if
necessary) from the ith source of data (this could be raw
data, features, or labels). Then the product

pðnÞ ¼
Yn

i¼1

Oi

is a product category. For a category of data, O0, the expo-
nential, O

pðnÞ
0 , is a category of fusion rules, each rule of

which maps the products of data objects Ob(p(n)) to a data
object in ObðO0Þ, and maps data arrows in Ar(p(n)) to ar-
rows in ArðO0Þ. These fusion rules are functors, which
make up the objects of the category. The arrows of the cat-
egory are natural transformations between them.

If the Oi are categories generated from sensor sources
(i.e., outputs), then we call OpðnÞ

0 a category of data-fusion
rules and use the symbols D

pðnÞ
0 . If they are generated by

processor sources, then call O
pðnÞ
0 a category of feature-

fusion rules and use the symbols FpðnÞ
0 . Finally, if they have

classifiers as sources, then call them label-fusion rules (or,
alternatively, decision-fusion rules) and use the symbols
L

pðnÞ
0 . If we let O be the category which has as objects

the n + 1 data categories, Oi for i = 0,1, . . .,n, and with
arrows the functors between them, and include the prod-
ucts within this category, then we see that, in particular,
the fusion rules are a category of functors (with arrows
the natural transformations that may exist between the
fusion rules).

A fusion rule could be a Boolean rule, a filter, an estima-
tor, or an algorithm. There is no restriction on the output,
with regard to being a ‘‘better’’ output than a system
designed without a fusion rule, since that requires a new
definition. We now desire to show how defining a fusor
(see Definition 5) as a fusion rule with a constraint changes
the classification system model into an event-state fusion
model. Continuing to consider the two classification fami-
lies in Fig. 2, a fusion rule can be applied to either the data
sets or the feature sets. Given a fusion rule R for the two
data sets as in Fig. 3, our model becomes that of Fig. 4.
Notice we use a different arrow to denote a fusion rule.
A new data set, processor, feature set, and classifier may
become necessary as a result of the fusion rule having a dif-
ferent codomain than the previous systems. The label set
may change also, but for now, consider a two-class label
set, that of

L ¼ L1 ¼ L2 ¼ fTarget; Non-targetg.
In a within-fusion scenario (see [31]), the data sets are

identical, D1 = D2 = D3. This is easily seen in the case
where two sensors are the same type (that is, they collect
the same measurements, but from possibly different loca-
tions relative to the overlapping field of view). In the case
where the data sets are truly different, a composite data
set which is different from the first two (possibly even the
product of the first two) is created as the codomain of
the fusion rule.

At this point we may consider, in what way is the system
in Fig. 4 superior to the original systems shown in Fig. 2
with L = L1 = L2? One way of comparing performance in
such systems is to compare the systems� receiver operating
characteristics (ROC) curves.

3. Developing a ROC curve

Setting aside the fusion of classification systems for a
moment, we focus on a generic classification of an event-
state itself. Let ðE;E; PrÞ be a probability space. Let the
label set L = {T,N}, where T = target and N = non-target.
Let E = ET [ EN, where ET \ EN = ;, so that fET;ENg is a
partition of E into the two classes. Let c be a classifier such
that

E!c L

is a classification system. Recall that the mapping c induces
a ‘‘natural’’ mapping, which we denote c\, the pre-image of
c (\ is the natural symbol in music, a becuadro in Spanish,



Fig. 6. A typical ROC curve.
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and we use it to distinguish from the inverse symbol �1. It is
possible that the inverse exists, but not guaranteed). Hence,
if L is the power set of L, then

c\ : L! E.

Thus, we can calculate the probability of true positive,

P tp ¼
Prðc\ðT Þ \ ETÞ

PrðETÞ
¼ 1� Prðc\ðNÞ \ ETÞ

PrðETÞ
ð1Þ

which is estimated by the true positive rate (TPR), and the
probability of false positive,

P fp ¼
Prðc\ðT Þ \ ENÞ

PrðENÞ
ð2Þ

which is estimated by the false positive rate (FPR), or false
alarm rate. The ordered pair (Pfp,Ptp) 2 [0, 1] · [0, 1] is the
ROC for the system. Now it is desirable for a classification
system to have a parameter associated with the classifier,
such that changing the parameter (which is possibly mul-
ti-dimensional) changes the ROC. In such a case, a param-
eter set H would be chosen such that the family of
classification systems, C ¼ fchjh 2 Hg, maps the event set
into the label set, and such that the curve
f ¼ fðP fpðchÞ; P tpðchÞÞ : h 2 Hg is the projection of the tra-
jectory s ¼ fðh; P fpðchÞ; P tpðchÞÞ : h 2 Hg into the Pfp–Ptp

plane. In this case, we have that

P tpðchÞ ¼
Prðc\hðT Þ \ ETÞ

PrðETÞ
; ð3Þ

and

P fpðchÞ ¼
Prðc\hðT Þ \ ENÞ

PrðENÞ
. ð4Þ

We call such a parameter set an admissible parameter set if
the image of Pfp(ch) is onto [0,1]. Note the parameter need
not necessarily be associated with the classifier of the sys-
tem, but could be associated instead with the sensor(s),
processor(s), or any combination of the three. Consider,
for example, the three classification systems in Fig. 5. Each
system will generate a ROC curve when H is an admissible
parameter set. What is key is that the final parameter set
must produce a corresponding ROC curve as a continuous
curve from (0,0) through (1,1) in the Pfp � Ptp plane as the
example in Fig. 6 shows. The parameter h is the threshold
of the ROC. We can, at this point, advocate that the ROC
Fig. 5. Three classification systems with admissible parameters each
produce a ROC curve.
curve be designated by the classification system that gener-
ates it, and not just the classifier. Therefore, the systems in
Fig. 5 will be designated as in Fig. 7, a shorthand method
for describing the composition of sensor(s), processor(s),
and classifier(s), that is, A1,h = c � p � sh, A2,h = c � ph � s,
and A3,h = ch � p � s.

Assume that ðE;E; PrÞ is a probability space, and
E = ET [ EN, with ET \ EN = ;, so that fET;ENg � E is
a partition of E into the two classes of events. Let
A ¼ fAhjh 2 Hg, where E!Ah L. Is there a threshold,
h* 2 H, such that Ah� performs best in the family of classi-
fication systems, A? It is well-known and accepted that the
threshold for which the probability of a misclassification
(or Bayes error) is minimized is considered best and
denoted the Bayes optimal threshold (BOT). That is, does
there exist h* 2 H which minimizes the quantity

PrðA\
hðETÞ \ ENÞ [ ðA\

hðENÞ \ ETÞ

¼ PrðA\
hðETÞ \ ENÞ þ PrðA\

hðENÞ \ ETÞ
¼ P fpðAhÞPrðENÞ þ ð1� P tpðAhÞÞPrðETÞ; ð5Þ

where Pr(ET) and Pr(EN) are the prior probabilities of the
target class and non-target class, respectively? If yes, then
h* is the BOT for the family of classification systems A.
Fig. 7. Three classification systems.
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An obvious question at this point is, given two families
of classification systems, A ¼ fAhjh 2 Hg and
B ¼ fB/j/ 2 Ug, which family is best? This is not an easy
question to answer, as demonstrated in [32]. It is tempting
to use some measure of the BOT, but notice that the BOT
is dependent upon the selection of prior probabilities. The
priors are generally not known, so selection of a better clas-
sification system based on ROC curves may not be possi-
ble, since ROC curves for different families can overlap.
Rather, we should ask the question, given an operating
assumption of our prior probabilities, such as PrðETÞ ¼ 1

4
,

can we choose among competing families of classification
systems one that is superior to the others? One way to
answer the question is derived in an unexpected way.

4. A variational calculus solution to determining the Bayes

optimal threshold of a family of classification systems

Suppose the ROC curves are smooth (differentiable)
over the entire range, i.e., we consider the set X ¼
ff : ½0; 1� ! Rj f is differentiable at each x 2 ð0; 1Þ and its
derivative f 0 is continuous at each x 2 ð0; 1Þg. This is con-
sistent with Alsing�s proof [32] in that, given enough data all
ROC curve estimates converge to the ROC curve. Given a
diagram describing the family of classification systems
A ¼ fAh : h 2 Hg, with H an admissible parameter set
(assumed to be one-dimensional), and ðE;E; PrÞ a probabil-
ity space of features, there is a set sA ¼ fðh; P fpðAhÞ;
P tpðAhÞÞ : h 2 Hg which is called the ROC trajectory for
the classification system family A. The projection of the
ROC trajectory onto the (Pfp,Ptp)-plane is the set
fA ¼ fðP fpðAhÞ; P tpðAhÞÞ : h 2 Hg which is the ROC curve
of the classification system family A. Hence, for h 2 [0, 1]
such that h = Pfp(Ah) for some h 2 H, we have that

½P fp�\ðfhgÞ ¼ fAhg () h;

that is, the pre-image of h under Pfp( Æ ) is the classification
system Ah, which we assume has a one-to-one and onto
correspondence to h. Therefore, the BOT of the family of
classification systems A, denoted by h*, corresponds to
some h� ¼ P fpðAh� Þ 2 ½0; 1�, which may not be unique, un-
less the function Pfp( Æ ) is one-to-one. So, there is at least
one such h*, now what can we learn about it? Consider
the problem stated as follows:

Let a,b P 0. Among all smooth curves which originate
on the point (0,1) and terminate on the ROC curve f,
find the curve, defined by the function Y, which mini-
mizes the functionalZ

J ½Y � ¼

h

0

½aþ bj _Y ðxÞj�dx. ð6Þ

The value of h 2 [0, 1] depends on the function Y which
satisfies the constraints

Y ð0Þ ¼ 1;

Y ðhÞ ¼ f ðhÞ.
ð7Þ
Observe that h = Pfp(Ah), f(h) = Ptp(Ah) for some h 2 H,
and b = 1 � a with a = Pr(N), the prior probability of a
non-target.

The functional J identifies the curve with the smallest
arclength (measured with respect to the weighted 1-norm)
from the point (0, 1) to the ROC curve. The constraints
of Eq. (7) imply that the curve must begin at (0,1) and ter-
minate on the ROC curve. Any differentiable function Y

that minimizes J, subject to the constraints (7), necessarily
must be a solution to Euler�s equation [33]

o

oy
Gðx; Y ðxÞ; _Y ðxÞÞ � d

dx
o

oz
Gðx; Y ðxÞ; _Y ðxÞÞ ¼ 0

for all x 2 ð0; hÞ. ð8Þ

From Eq. (6) we define G(x,y,z) = a + bjzj, so that o
oy G ¼ 0

and o
oz G ¼ bsgn ðzÞ. Hence, we have that Y solves the Euler

equation

� d

dt
sgn ð _Y ðxÞÞ ¼ 0 for all x 2 ð0; hÞ. ð9Þ

Integrating this equation yields sgnð _Y ðxÞÞ is constant for all
x 2 [0, h]. Since Y(x) 6 1 for all x 2 (0,h), and Y(0) = 1,
from constraints (7), then sgn ð _Y ðxÞÞ must be 0 or �1.
Now, if sgnð _Y ðxÞÞ ¼ 0 for all x, then 1 = Y(0) =
Y(h) = Y(1) due to the smoothness of the ROC curve.
Substituting this solution into the functional J in Eq. (6)
yields

J ½Y � ¼ ah ¼ PrðNÞP fpðAhÞ ð10Þ
with Pfp(Ah) = 1. Thus, J[Y] = Pr(N) and the weighted
(1-norm) arclength of curve Y is therefore Pr(N). On the
other hand, if sgn ð _Y ðxÞÞ ¼ �1 for all x 2 (0,h), then
j _Y ðxÞj ¼ � _Y ðxÞ and substituting this into J directly in Eq.
(6) yields

J ½Y � ¼
Z h

0

½a� b _Y ðxÞ�dx ð11Þ

¼ ahþ bsgn ð _Y ðhÞÞY ðhÞ � bsgn ð _Y ð0ÞÞY ð0Þ
¼ ah� b½Y ðhÞ � Y ð0Þ�
¼ ahþ ½1� Y ðhÞ�b
¼ P fpðAhÞPrðNÞ þ ð1� P tpðAhÞÞPrðT Þ. ð12Þ

Notice that Eq. (12) is identical to the unminimized Eq. (5).
Therefore, h = h* which minimizes Eq. (12) corresponds to
the BOT, h*, of the classification system family A. The
transversality condition [33] of this problem is

aþ bj _Y ðxÞjjx¼h� þ bðf 0ðxÞ � _Y ðxÞÞsgn ð _Y ðxÞÞjx¼h� ¼ 0; ð13Þ
so that

f 0ðh�Þ ¼ a
b

ð14Þ

which is

f 0ðh�Þ ¼ PrðNÞ
PrðT Þ . ð15Þ
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This is a global minimum, since, it is clear the J is a convex
functional. So the transversality condition tells us that the
BOT of the family of classification systems corresponds to
a point on the ROC curve which has a derivative equal to
the ratio of prior probabilities, PrðNÞ

PrðT Þ. Therefore, if one pre-
sumes a ratio of prior probabilities equal to 1, then the
point on the curve corresponding to the BOT will have a
tangent to the ROC curve with slope 1. We could substitute
a = CfpP(N) and b = CfnP(T) where Cfp and Cfn are the
costs of making each error, or we could specify a cost–prior
ratio

CfpPðNÞ
CfnPðT Þ, if we wish to consider costs in addition to the

prior probabilities. This gives us an idea of what would
make a good functional for determining which families of
classification systems are more desirable than others. An
immediate approach would be to choose a preferred prior
ratio and construct a linear variety through the optimal
ROC point (0, 1). Then take the 2-norm of the vector which
minimizes the distance from the ROC curve to the linear
variety. However, it is still possible that many ROC curves
could be constructed so that the BOT for each one has the
same distance to the linear variety. This would set up an
equivalence class of families of classification system, so that
this distance induces a partial order of these families. This
is similar to the problem faced when using area under the
curve (AUC) of a ROC curve as a functional. In both cases
the underlying posterior conditional probabilities are un-
known and there are just too many possible combinations
of posterior distributions that can produce ROC curves
with the same AUC (or equal BOT functional values).
The point, however, is that under a functional based on
the BOT, we would have a ‘‘leveled playing field’’ since
we are debating which ROC (and therefore the classifica-
tion system it represents) is better based on the same prior
probabilities. Families of classification systems with equal
AUC are considered equal over the entire range of possible
priors and therefore, AUC is of less value. Furthermore,
the AUC functional does not relate its values to the un-
known priors at all. Rather, it is related to the value of
the class conditional probabilities associated with a family
of classification systems over all possible false positive val-
ues. It is therefore essentially useless as a functional in try-
ing to discover an appropriate operating threshold for a
classification system.

5. ROC manifolds

5.1. Constructing the three-dimensional ROC manifold

So far we have considered the fusion of only those clas-
sification systems which produce a two-class output. What
if there were a choice of three classes with the correspond-
ing label set L ¼ f‘1; ‘2; ‘3g?

Let ðE;E; PrÞ be the probability space over which we will
apply a classification system. Let H = H1 · H2 be an
admissible parameter set for a family of classification sys-
tems. We will use the generalized approach and build a
ROC manifold from the family of classification systems
E!AH L, where L ¼ f‘1; ‘2; ‘3g is a three-class label set. Let
fE1E2;E3g be a partition of E, so that Ei corresponds to
class ‘i. We say Pijj(Ah) is the conditional probability of
the classification system Ah labeling an elementary event
e 2 E as class i when event Ej has occurred, that is

P ijjðAhÞ ¼
PrðA\

hð‘iÞ \ EjÞ
PrðEjÞ

;

where Pr(Ej) is the prior probability of class ‘j.
Consider now the Bayes error of the classification sys-

tem. First, we define the Bayes error function as

BEðAhÞ¼ Pr½ðA\
hð‘1Þ\E3Þ[ðA\

hð‘2Þ\E3Þ[ðA\
hð‘1Þ\E2Þ

[ðA\
hð‘3Þ\E2Þ[ðA\

hð‘2Þ\E1Þ[ðA\
hð‘3Þ\E1Þ�

¼ PrðA\
hð‘1Þ\E3ÞþPrðA\

hð‘2Þ\E3Þ
þPrðA\

hð‘1Þ\E2ÞþPrðA\
hð‘3Þ\E2Þ

þPrðA\
hð‘2Þ\E1ÞþPrðA\

hð‘3Þ\E1Þ

¼ 1�P 3j3ðA\
hð‘3ÞÞ

h i
PrðE3Þþ 1�P 2j2ðA\

hð‘3ÞÞ
h i

PrðE2Þ

þ 1�P 1j1ðAhð‘3ÞÞ
� �

PrðE1Þ. ð16Þ

We wish to minimize the Bayes error function over the
admissible set of parameters. If h* 2 H minimizes BE(Ah),
then h* is called the BOT for the family of classification
systems {Ahjh 2 H}. If the errors within class have the
same cost (as is the case with this construction) then we
can have three error axes, 1 � P3j3(Ah), 1 � P2j2(Ah), and
1 � P1j1(Ah). Assume the first parameter h1 corresponds
to axis 1 � P1j1(Ah), and the second parameter h2 corre-
sponds to the axis 1 � P2j2(Ah). If error costs are not equal,
then we need 32 � 3 = 6 axes for our ROC space and five
free parameters to create a ROC 5-manifold. This leads
us to extend the calculus of variations approach identifying
the corresponding BOT for a given set of prior
probabilities.

5.2. Extending the calculus of variations approach

to ROC manifolds

For n classes, we specify m = n2 � n dimensions assum-
ing differing costs for each error. Each axis then is a type of
false positive for a given class, so that the optimal ROC
point is the origin, (0,0, . . ., 0). The method used in this
section follows and extends that of [34]. Let xm =
f(x1,x2, . . .,xm � 1) be the equation of the ROC manifold
residing in m-dimensional space. Define the function

Wðx1; x2; . . . ; xmÞ ¼
: f ðx1; x2; . . . ; xm�1Þ � xm;

then M ¼ fðx1; . . . ; xmÞjWðx1; . . . ; xmÞ ¼ 0g is the ROC
manifold. We assume all first-order partial derivatives exist
and are continuous for W. For each t 2 [0, 1] let
R(t) = (X1(t), . . .,Xm(t)) be the position vector which points
to a point on a smooth trajectory, beginning at the initial
point (0, . . ., 0) and terminating on the manifold M. Thus,
R(0) = (0, . . ., 0) and there is some tf 2 (0, 1] such that
RðtfÞ 2M, with tf dependent upon the particular R.
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Choose weights ai > 0 for i = 1, . . .,m such that
Pm

i¼1ai 6 1,
and let k Æk1 denote the weighted 1-norm defined on a vec-
tor v = (v1, . . .,vm) by

kvk1 ¼
Xm

i¼1

aijvij. ð17Þ

Define the functional J1

J 1½R� ¼
Z tf

0

k _RðtÞk1 dt. ð18Þ

For ease of notation, define

Gðt; x; yÞ ¼ kyk1.

Hence, we write Eq. (18) as

J 1½R� ¼
Z tf

0

Gdt; ð19Þ

and suppress the integrand variables as is customary in the
calculus of variables. We wish to minimize J1, and seek to
find the optimal function R* with initial and terminal
points as discussed subject to the constraints. The mathe-
matics describing this process are shown in Appendix B.
Once the Euler equations with transversality conditions
are solved, we have the result that

rWðR�ðt�f ÞÞ ¼
�1

am
ða1; . . . ; amÞ ¼ n ð20Þ

is the normal to the ROC manifold M at the terminal point
of R�ðt�f Þ on the smooth trajectory minimizing J1. The
weights, ai, are the product of a prior probability of a par-
ticular class and a cost of the particular error.

6. A functional for comparing classifier families

Having shown using calculus of variations that the opti-
mal points of the ROC manifold can be found correspond-
ing to a simple normal vector, based on the initial data of
prior probabilities and costs, we turn to developing a func-
tional, which will calculate a value in R corresponding to
the optimal value of the cost. The functional requires input
of prior probabilities, costs, and constraints. The ROC
manifold point which yields a minimum norm is the point
on the ROC manifold which is optimal under the assumed
data. Thus, families of classification systems can be com-
pared using this functional, and the best classification sys-
tem (and perhaps the best operating parameter) can be
chosen. When the best classification system is chosen from
competing families of classification systems which use
fusion rules, these rules are in essence competed against
each other and against the original systems without fusion.
This enables a definition of fusors which is given in Section
7. Recall that the main point of this paper is to generalize a
method to compete families of classification systems with
the specific intent to define and compete fusion rules. The
functional we propose will do this, however, other func-
tionals can be developed as well. Ultimately, once the func-
tional, along with its associated data is chosen, one has a
way of defining fusion (and what we call fusors) for the
given problem.

Let n 2 N be the number of classes of interest, and
m = n2 � n. We construct the functional over the space
X ¼ Cð½0; 1�m�1

;RÞ [ C1ðð0; 1Þm�1
;RÞ, recognizing that we

are competing ROC curves, which are by definition a sub-
set of X. The functional

F 2 : X ! R;

where n = 2 is the number of classes, is denoted F2( Æ ; c1,c2,a,b)
for the ROC curves corresponding to a two-class family of
classification systems, where c1 = C2j1Pr(‘1) is the cost of
the error of declaring class E2 when the class is truthfully
E1 times the prior probability of class E1, c2 = C1j2Pr(‘2)
is the cost of the error of declaring class E1 when the class
is truthfully E2 times the prior probability of class E2, while
a = P1j2 and b = P1j1 are the acceptable limits of false po-
sitive and true positive rates. Without loss of generality,
we assume c1 to be the dependent constraint. The quadru-
ple (c1,c2,a,b) comprises the data of the functional F2.

Definition 2 (ROC curve functional). Let (c1,c2,a,b) be
given data. Let

y0 ¼
0

1

� �
; C ¼

c1

c2

� �
;

and

V C ¼ fvjv ¼ kC 8k 2 Rg.

Then VC + y0 is a linear variety through the supremum
ROC point, (0, 1), over all possible ROC curves, under
the data. Let f 2 X and let f be non-decreasing. Let Rðf Þ
be the range of f, and let

T ¼ ð½0; a� � ½b; 1�Þ \Rðf Þ.

Let zC ¼ minv2V C
y2T

jjvþ y0 � yjj2. Then define

F 2ð	; c1; c2; a; bÞ : X ! R

by

F 2ðf ; c1; c2; a; bÞ ¼
ffiffiffi
2
p
� zC 8f 2 X . ð21Þ

It should be clear that the constant
ffiffiffi
2
p

is the largest theo-
retical distance from all linear varieties to a curve in ROC
space.

So far, it is shown that Fn is minimal at the Bayes opti-
mal point of the ROC curve under no constraints restrict-
ing the values possible for it to take on in ROC space (i.e.,
a = 1 and b = 0 in the two-class case, and a = (1, . . ., 1) in
the n-class case). We can now relate this functional to the
Neyman–Pearson (N–P) criteria. Recall that the N–P crite-
ria is also known as the most powerful test of size a0, when
a0 is the a priori assigned maximum false positive rate [5].
Given a family of classification systems A ¼ fAH : h 2 Hg,
the N–P criteria could be written as

max
h2H

P 1j1ðAhÞ subject to P 1j2ðAhÞ 6 a0.



Fig. 8. Geometry of calculating the ROC functional, F2 for a point (with
vector q) on ROC curve fC.

354 S.N. Thorsen, M.E. Oxley / Information Fusion 7 (2006) 346–360
Theorem 3 (ROC functional-Neyman–Pearson equiva-
lence). Let c1 be the dependent constraint, and

P2
i¼1ci 6 1.

The ROC functional F2( Æ ; c1,c2,a,b) under data (1,0,a0,0)

yields the same point on a ROC curve as the Neyman–

Pearson criteria with a 6 a0.

Proof. Suppose (c1,c2,a,b) = (1,0,a0,0). Then C = (1,0)
and

V C ¼ vjv ¼
k

0

� �
8k 2 R

� �
;

and let

y0 ¼
0

1

� �
.

Thus, VC + y0 is the appropriate linear variety. Let

T ¼ ð½0; a0� � ½0; 1�Þ \Rðf Þ;
where f is a ROC curve and consider bN 2 f([0,a0]) as the
optimal point in the image of f under the N–P criteria.
Then zN = 1 � bN is the distance to VC + y0. Now,

F 2ðf Þ ¼
ffiffiffi
2
p
� zC;

where

zC ¼ min
v2V C
y2T

kvþ y0 � yk2.

Thus, we have that bN P b, "b = f(a) "a 6 a0. Hence,
1 � bN 6 1 � b, "b = f(a), "a 6 a0. Then for

yN ¼
aN

bN

� �
;

we have that

½ð1� bNÞ
2�1=2 ¼

aN

1

� �
�

aN

bN

� �				
				

¼
aN

1

� �
� yN

				
				 6 aN

1

� �
�

a

b

� �				
				

"b = f(a), "a 6 a0. Thus, letting y ¼ a
b

� �
we have that

min
a6a0

a

1

� �
�yN

				
				6 min

a6a0
y2½0;a0��f ð½0;a0�Þ

a

1

� �
�y

				
				 ð22Þ

¼ min
a6a0

y2½0;a0��f ð½0;a0�Þ

a

0

� �
þ

0

1

� �
�y

				
				 ð23Þ

¼ min
v2V C

y2½0;a0��f ð½0;a0�Þ

kvþy0�yk. ð24Þ

On the other hand,

min
v2V C

y2½0;a0��f ð½0;a0�Þ

kvþ y0 � yk 6 min
v2V C

kvþ y0 � yNk ð25Þ

6
aN

1

� �
� yN

				
				 ð26Þ

¼
0

1� bN

� �				
				 ð27Þ

¼ 1� bN. ð28Þ
Therefore, we have that

zC ¼ min
v2V C

y2½0;a0��f ð½0;a0�Þ

kvþ y0 � yk ¼ 1� bN.

But zC = 1 � bR, so that bR = bN. So, we have that the
ROC functional, under data (1,0,a0,0), acting on a ROC
curve corresponds to the power of the most powerful test
of size a0. h

The calculation and scalability of the functional is
straightforward. Suppose we have n classes. In the two-
class case, one axis may be chosen as P1j1, but in the n-class
case, each axis is an error axis. This is absolutely necessary
in the case where costs of errors differ within a class. If we
apply this methodology to the two-class case, the two axes
would be P1j2 and P2j1 with the ROC curve starting at
point (0, 1) and terminating at point (1,0). A ROC at the
origin would represent the perfect classification system
under this scheme. For the n-class case, we have
m = n2 � n error axes. Without loss of generality, we
choose the conditional class probability of class n given
n � 1 to be the dependent variable, so that cm is the cost–
prior product associated with pnjn � 1. Let m = k2 � k. Let
d = (c1, . . .,cm,a1, . . .,am) be the data, and let each
r = 1,2, . . .,m be associated with one of the m pairs, (i, j),
where for each i = 1,2, . . .,k with i 5 j, we have a
j = 1,2, . . .,k. Let am be associated with pkjk�1. Then let
q = (q1, . . .,qm), so that

Q ¼ qjqr ¼ pijj; r ¼ 1; . . . ;m; pijj 6 ar; r 6¼ m;
n

i; j ¼ 1; . . . ; k; i 6¼ j
o

be the set of points comprising the ROC curve within the
constraints. Then we have that y0 = (0,0, . . ., 0) and



Fig. 9. ROC curves of two competing classification systems.
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n ¼ �1
cm
ðc1; . . . ; cmÞ, so that if we are given the ROC curve

represented by Q, denoted by fQ, we have that

F nðfQ; dÞ ¼
ffiffiffi
2
p
�min

q2Q

hq� y;�ni
k � nk

� �

¼
ffiffiffi
2
p
�min

q2Q

hq;�ni
k � nk

� �
ð29Þ

if Q is not empty, and

F nðfQ; dÞ ¼ 0;

otherwise. Fig. 8 shows the geometry of the ROC func-
tional calculation where the number of classes is n = 2,
and the given data is (c,a). In this case, m = 22 � 2 = 2.

7. Fusors

We are now in a position to define a way in which we
can compete fusion rules. Suppose we have a system such
as that in Fig. 2. Each branch has a ROC curve that can
be associated with the family of classification systems,
and we now have a viable means of competing each
branch. If we can only choose among the two classification
systems, choose the one whose associated ROC functional
is greater. Therefore, we can also compete these two classi-
fication systems with a new system that fuses the two data
sets (or the feature sets for that matter) by fixing a third
family of classification systems, which is based on the
fusion rule, and finding the ROC functional of the event-
to-label system corresponding to the fused data (features).
If the fused system�s ROC functional is greater than either
of the original two, then the fusion rule is a fusor. Repeat-
ing this process on a finite number of fusion rules, we dis-
cover a finite collection of fusors with associated ROC
functional values. The fusor that is the best choice is the
fusor corresponding to the largest ROC functional value.

Do you want to change your a priori probabilities? Sim-
ply adjust c in the ROC functional�s data and recalculate
the ROC functional for each corresponding ROC and
choose the largest value. The corresponding fusor is then
the best fusor to select under your criteria. Therefore, given
a finite collection of fusion rules, we have for fixed ROC
functional data a partial ordering of fusors.

Definition 4 (Similar families of classification systems).
Two families of classification systems A and B are called
similar if and only if they operate on the same r-field and
their output is the same label set, where each set element is
defined the same way for each classification system.

Definition 5 (Fusor). Let I � N be a finite subset of the
natural numbers, with sup I ¼ n. Given fAigi2I a finite col-
lection of similar families of classification systems, let OpðnÞ

0

be the category of fusion rules associated with the product
of n data sets. Assume a functional, q, on the associated
ROC curves of the classification systems, both original
and fused. Then given that fAi is the ROC curve of the
ith family of classification systems, and fR the ROC curve
of the classification family, AR, associated with fusion rule
R 2 ObðOpðnÞ

0 Þ, we say that

Ai 
 Aj () qðfAiÞP qðfAjÞ; ð30Þ

so that if AR 
 Ai for all i 2 I, then R is called a fusor.

There is then a category of fusors, which is a subcate-
gory of O

pðnÞ
0 , and whose arrows are such that given R;S

objects of this subcategory, then there exists an arrow,
R!q S, if and only if, AR 
 AS.

By way of example, suppose we start with the system

with L an n-class label set. Let Ah = ah � p1 � s1 and
B/ = b/ � p2 � s2, and consider a functional Fn on the
ROC curves fA and fB where A and B are defined as fam-
ilies of the respective classification systems shown (Fn being
created under the assumptions and data of the researcher�s
choice). Then, given fusion rules S, such as that in Fig. 10,
and T and a second fusion branch



Fig. 10. Data fusion of two classification systems.
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let fS and fT refer to the corresponding ROC curves to
each of the fusion rule�s systems (as a possible example of
ROC curves of competing fusion rules see Fig. 9). Then
we have that if F nðfSÞP F nðfAÞ and F nðfSÞP F nðfBÞ
and similarly, if F nðfTÞP F ðfAÞ and F nðfTÞP F nðfBÞ then
we say that S;T are fusors. Furthermore, suppose
F nðfSÞP F nðfTÞ. Then we have that S 
 T. Thus, S is
the fusor a researcher would select under the given assump-
tions and data. Fig. 10 is a diagram showing all branches
and products (along with the associated projectors q1,q2)
in category theory notation.

8. Changing assumptions, robustness, and an illustrative

example

While we have suggested a collection of functionals
ðfF n : n 2 NgÞ to use as a way of competing classification
systems, this collection is not the only choice a researcher
has. There may be many others. Furthermore, one may
desire to average functionals or transform them into new
functionals. In many ways, the functional we have pre-
sented is general. We have shown its relationship to the
Bayes optimal and Neyman–Pearson points on a ROC
curve. It can also be shown to be related to Adam�s and
Hand�s development of a loss comparison functional. In
[35], the loss comparison of a classification system (LC) is
denoted by

LC ¼
Z

Iðc1ÞLðc1Þdc1; ð31Þ

where, although a slight abuse of notation, we have I as an
indicator function of whether or not the classification sys-
tem is still minimal under cost c1, and c1 is the cost of
one type of error while c0 is the cost of the other. L(c1) is
a belief function which linearly weights how far c1 is from
the believed true cost of the error (or ratio c0

c1
). This func-

tional, LC, can be reformulated as follows:
Given competing classification systems R ¼ fAigk
i¼1 for

k 2 N fixed, fix a = (a1,a2) and c = (c1,c2). Let C be
the set of all possible c. Define a set Hc by

Hc ¼ Aj 2 R j F 2ðfAj ; c; aÞP F 2ðfAi ; c; aÞ 8i 6¼ j;



i ¼ 1; 2; . . . ; kg.

Then, for Ai we have that

LCðAiÞ ¼
Z

C
IHc
ðAiÞW ðcÞdc; ð32Þ

where W(c) is the weight given to supposition c (a belief
function in this case). Thus LC scores the classification
families, and induces an ordering on R.

One more suggested use of Fn would be to apply the
belief function in a simpler way, and average Fn over the
believed true c and the believed extreme values of the set
C, so that

SnðfAÞ ¼
1

2n þ 1

X2n

i¼1

F nðfA; ci; aÞ þ F nðfA; c0; aÞ
 !

; ð33Þ

where ci are the believed extreme values of the set C, and c0

is the most believable (or probable under some instances)
cost–prior product. In [35], the prior probabilities are as-
sumed to be fixed, but they can be varied according to be-
lief as well (although developing the belief functions will
prove challenging).

As an example, consider the plot of two competing fam-
ilies of classification system in Fig. 11. Since we collected
only finite data, the ROC �curves� are actually a finite col-
lection of ROC points. While our theory develops out of
smooth manifolds, nevertheless, we can still calculate the
functionals we require, since they operate on individual
points on the ROC manifolds. The two curves in question
cross more than once, and this is typical of many ROC
curves, so deciding which family of classification system
is best really boils down to which classification system
within the family is best. Suppose our belief of the situation
we are trying to classify is that the ratio of prior probabil-
ities PrðE1Þ

PrðE2Þ
is 1

2
, with a range of ratios from 1

3
to 1. Further-

more, our experts believe the most likely cost ratio is
C2j1
C1j2
¼ 1, with a range from 1

2
to 2. Therefore, our prior–cost

ratio is most likely 1
2
, with a range from 1

6
to 2. We will refer

to the two ROC curves as fC1
and fC2

. Hence, the two clas-
sification systems shown in the figure yield scores of
F 2ðfC1

Þ ¼ F 2ðfC2
Þ ¼ 1:137, indicating that the best classifi-

cation systems in each family are equivalent with regard
to the most believable prior–cost ratio. However,
S2ðfC1

Þ ¼ 0:336 P 0:330 ¼ S2ðfC2
Þ, indicating a preference

of the best choice from fC1
, once belief regarding the range

of the prior–cost ratio is taken into account. If our beliefs
are actual probabilities from recorded data, the results are
even stronger for selecting the best classification system
represented in fC1

.
There are, of course, other suggestions for performance

functionals regarding competing fusion rules. Consider



Fig. 11. ROC curves of two competing classifier systems.

S.N. Thorsen, M.E. Oxley / Information Fusion 7 (2006) 346–360 357
fusion rules as algorithms, divorcing them from the entire
classification system. Mahler [36] recommends using math-
ematical information MoEs (measures of effectiveness)
with respect to comparing performance of fusion algo-
rithms (fusion rules). In particular, he refers to level 1
fusion MoEs as being traditionally �localized� in their com-
petence. His preferred approach is to use an information
�metric�, the Kullback–Leibler discrimination functional,

KðfG; f Þ ¼
Z

X
fGðxÞlog2

fGðxÞ
f ðxÞ

� �
dx;

where fG is a probability distribution of perfect or near
perfect ground truth, f is a probability distribution associ-
ated with the fused output of the algorithm and X is the
set of all possible measurements of the observation. This
works fine, if such distributions are at hand. One draw-
back is that it measures the expected value of uncertainty
and therefore its relationship to costs and prior probabil-
ities is obscure (as was the case with the Neyman–Pearson
criteria). The previous functionals we have forwarded for
consideration operate on families of classification systems
(in particular, ROC manifolds), not just systems which en-
joy well-developed and tested probability distribution
functions.
9. Conclusion

A fusion researcher should have a viable method of
competing fusion rules. This is required to correctly define
fusion, and to demonstrate improvements over existing
methods. Every fusion system can generate a correspond-
ing ROC curve, and under a mild assumption of smooth-
ness of the ROC curve, a Bayes optimal threshold (BOT)
can be found for each family of classification systems.
Given additional assumptions on the a priori probabilities
of the classes of interest, along with given thresholds for the
conditional probabilities of errors, a functional can be gen-
erated over the ROC manifolds. Every such functional will
generate a partial ordering on families of classification sys-
tems, categories of fusion rules, and ultimately categories
of fusors, which can then be used to select the best fusor
from among a finite collection of fusors. We demonstrate
one such functional, the ROC functional, which is scalable
to ROC manifolds in dimensions higher than 2, as well as
to families of classification systems which do not generate
ROC curves at all. The ROC functional, when populated
with the appropriate data choices, will yield a value corre-
sponding the Bayes optimal threshold with respect to the
classification system family being examined. The Ney-
man–Pearson threshold of a classification system is shown
to correspond to the output of the ROC functional with
one such data choice (so that it corresponds with the Bayes
optimal threshold under one set of assumptions). Ulti-
mately, a researcher could choose a cost–prior ratio which
seems most reasonable, then perturbate it, calculate the
mean ROC functional value, and choose the classification
system with the greatest average ROC functional value.
This value would be a relative comparison of how robust
that classification system is to changes compared with
other classification systems (e.g., it would answer the ques-
tion of how much change is endured before another classi-
fication system is optimal?). The relationship of the ROC
functional to other functionals, including the loss compar-
ison functional, is demonstrated. Finally, there are other
functionals to choose from, one which we mentioned, the
Kullback–Leibler discrimination functional, may be unre-
lated to the ROC functional, yet may be suitable in partic-
ular circumstances where prior probabilities and costs are
not fathomable, but probability distributions for fusion
system algorithms and ground truth are available.
Appendix A

This appendix contains definitions for the understanding
of category theory. We have drawn upon the work of var-
ious authors in category theory literature [24–27] to present
the definitions.

Definition 6 (Category). A category C is denoted as a 4-
tuple, ðObðCÞ;ArðCÞ; IdðCÞ; �Þ, and consists of the
following:

(A1) A collection of objects denoted ObðCÞ.
(A2) A collection of arrows denoted ArðCÞ.
(A3) Two mappings, called domain (dom) and codomain

(cod), which assign to an arrow f 2 ArðCÞ a domain
and codomain from the objects of ObðCÞ. Thus, for
arrow f, given by O1!

f
O2, dom(f) = O1 and cod(f) =

O2.



358 S.N. Thorsen, M.E. Oxley / Information Fusion 7 (2006) 346–360
(A4) A mapping assigning each object O 2 ObðCÞ an
unique arrow 1O 2 IdðCÞ called the identity arrow,
such that
O!1O O;
and such that for any existing element, x, of O, we
have that
x 7!1O x.
(A5) A mapping, �, called composition, ArðCÞ� ArðCÞ!�

ArðCÞ. Thus, given f ; g 2 ArðCÞ with cod(f) =
dom(g) there exists an unique h 2 ArðCÞ such that
h = g � f.

Axioms A3–A5 lead to the associative and identity rules:

• Associative rule. Given appropriately defined arrows f, g,
and h 2 ArðCÞ we have that

ðf � gÞ � h ¼ f � ðg � hÞ.
• Identity rule. Given arrows A!f B and B!g A, then there

exists identity arrow 1A such that 1A � g = g and
f � 1A = f.

Definition 7 (Subcategory). A subcategory B of A is a
category whose objects are some of the objects of A and
whose arrows are some of the arrows of A, such that for
each arrow f in B, dom(f) and cod(f) are in ObðBÞ, along
with each composition of arrows, and an identity arrow for
each element of ObðBÞ.

Definition 8 (Discrete category). A discrete category is a
category whose only arrows are identity arrows.

A category of interest is the category Set, which has as
its objects sets, that is Ob(Set) is a collection of sets, and
its arrows, Ar(Set), the collection of all total functions
defined on these sets, with its composition being the typical
composition of functions. Clearly this construct has iden-
tity arrows and the associative rule applies, so it is indeed
a category. The subcategories of interest to us are first, sub-
categories of particular types of data sets, denoted D,
whose objects are similar types of data and whose arrows
consist of only the identity arrows, and second, subcatego-
ries of particular types of feature sets, denoted F, whose
objects are similar types of features, and whose arrows
are only the identity arrows. The objects and arrows of
these categories shall correspond to a particular sensor sys-
tem, so they will represent all of the possible data (or fea-
tures) that can be generated by the sensor or processor.
For example, the data generated by a particular sensor sys-
tem may be represented in an N · N real-valued matrix. In
this case, D ¼ ðRN�N ; idD; idD; �Þ represents a discrete cate-
gory, whose objects are N · N matrices over the field of real
numbers, and whose arrows are only identity arrows, with
composition, �, being the usual composition of functions.
A further categorical concept which will be useful is a
functor.

Definition 9 (Functor). A functor F between two catego-
ries A and B is a pair of maps ðFOb;FArÞ

ObðAÞ !
FOb

ObðBÞ;

ArðAÞ!
FAr

ArðBÞ;

such that F maps ObðAÞ to ObðBÞ and ArðAÞ to ArðBÞ
while preserving the associative property of the composi-
tion map and preserving identity maps.

Thus, given categories A;B and functor F : A! B, if
A 2 ObðAÞ and f ; g; h; 1A 2 ArðAÞ such that f � g = h is
defined, then there exists B 2 ObðBÞ and
f 0; g0; h0; 1B 2 ArðBÞ such that

(i) FObðAÞ ¼ B.
(ii) FArðf Þ ¼ f 0, FArðgÞ ¼ g0.

(iii) h0 ¼ FArðhÞ ¼ FArðf � gÞ ¼ FArðf Þ � FArðgÞ ¼ f 0 � g0.
(iv) FArð1AÞ ¼ 1FObðAÞ ¼ 1B.
Definition 10 (Natural transformation). Given categories
A and B and functors F and G with A!

F
B and

A!G B, then a natural transformation is a family of arrows
m ¼ fmA j A 2 ObðAÞg such that for each f 2 ArðAÞ,
A!f A0, A0 2 ObðAÞ, the square

commutes. We then say the arrows mA are the components
of m : F! G, and call m the natural transformation of F to
G.

Definition 11 (Functor category AB). Given categories A
and B, the notation AB represents the category of all func-
tors F such that B!F A. This category has all such func-
tors as objects and the natural transformations between
them as arrows.

Definition 12 (Product category). Let fCign
i¼1 represent a

finite collection of small categories (i.e., those which can
be described using sets). Then

Yn

i¼1

Ci ¼ C1 � C2 � 	 	 	 � Cn

is the corresponding product category.
Appendix B

Here we prove the extension of the calculus of variations
approach to ROC manifolds. From Eq. (19) we generate
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the first variation of J1. Let b > 0 be fixed, and let
a 2 [�b,b] be a family of real parameters. Let

fRðt; aÞ ¼ ðX 1ðt; aÞ; . . . ;X mðt; aÞÞja 2 ½�b; b�g ð34Þ
be a family of one-parameter trajectories which contains
the optimal curve defined by the function R*. Furthermore,
we assume R(t, 0) = R*(t). Let Rðtf ; aÞ 2M for all
a 2 [�b,b]. By the implicit function theorem there exists
a function Tf(a) such that RðT fðaÞ; aÞ 2M for all a. Thus,
Rðt�f ; 0Þ ¼ R�ðt�f Þ so that T fð0Þ ¼ t�f . Since R* minimizes J1,
then a necessary optimality condition is that the first vari-
ation of

J 1½Rð	; aÞ� ¼
Z T f ðaÞ

0

Gdt ð35Þ

is zero at a = 0 (see [33]), that is,

d

da
J ½Rð	; aÞ�ja¼0 ¼ 0. ð36Þ

We use the operator notation

d ¼ d

da
ja¼0

for brevity. Applying Leibniz�s rule to J1[R( Æ ,a)] in Eq.
(35) we get the derivative to be

dJ ½R�� ¼ G�jt¼t�
f
dT f þ

Z t�
f

0

ðrxG� 	 dRþryG� 	 d _RÞdt;

ð37Þ
where G* is a suppressed notation for Gðt;R�ðtÞ; _R

�ðtÞÞ.
Now integrating by parts yields

dJ ½R�� ¼ G�jt¼t�
f
dT f þ ½ryG� 	 dR�t

�
f

0

þ
Z t�

f

0

ðrxG� 	 dR� d

dt
ryG� 	 dRÞdt. ð38Þ

At a = 0 the necessary optimality condition implies

dJ ½R�� ¼ G�jt¼t�
f
dT f þ ½ryG� 	 dR�t¼t�

f

þ
Z t�

f

0

rxG� 	 dR� d

dt
ryG� 	 dR

� �
dt ¼ 0. ð39Þ

Since this must be true over all admissible variations
(dR,dTf), we have the Euler equations

rxG� � d

dt
ryG� ¼ 0 ð40Þ

for all t 2 ½0; t�f � and a transversality condition

G�jt¼t�
f
dT f þ ½ryG� 	 dR�t¼t�

f
¼ 0. ð41Þ

Since G is independent of x then $xG* = 0. Using this in
solving the Euler Eq. (40), yields

d

dt
ryG� ¼ 0; ð42Þ

hence, for i = 1, . . ., m

d

dt
sgn ½ _X �i ðtÞ� ¼ 0 for all t 2 ð0; tfÞ. ð43Þ
Thus, integrating for each i = 1, . . .,m, we have

sgn ½ _X �i ðtÞ� ¼ Ki. ð44Þ
Hence, sgn ð _X

�
i ðtÞÞ ¼ Ki for some constant Ki 2 R. For

i = 1, . . .,m, we have that DX �i ðtÞP 0 and Dt > 0 for all t,
so that Ki = 0 or 1. We make the assumption that
X �i ðtfÞ 6¼ 0 for some i, since to say otherwise would indicate
we have the perfect classification system. Thus, we have
that Ki = 1 for at least one i. Hence, we have that
{1,2, . . ., m} = N1 [ N0 is a partition such that

sgn ð _X
�
i ðtÞÞ ¼ 1

for all i 2 N1, and

sgn ð _X
�
i ðtÞÞ ¼ 0

for all i 2 N0. Since, R(Tf(a),a) terminates on M for
all a, then W(R(Tf(a),a)) = 0 for all a. Let R�ðt�f Þ ¼
ðx�1; . . . ; x�mÞ 2M. Hence,

X mðT fðaÞ; aÞ ¼ f ðX 1ðT fðaÞ; aÞ; . . . ;X m�1ðT fðaÞ; aÞÞ ð45Þ

for all a. Taking the variation of each side of Eq. (45), we
have

_X
�
mðt�f ÞdT f þ dX mðt�f Þ ¼

Xm�1

i¼1

of ðx�1; . . . ; x�m�1Þ
oxi

½dT f þ dX iðt�f Þ�.

ð46Þ

Expanding Eq. (46) and defining Hi(t) = dXi(t), we have

_X mðt�f ÞdT f þ Hmðt�f Þ ¼
Xm�1

i¼1

of ðx�1; . . . ; x�m�1Þ
oxi

_X iðt�f ÞdT f

þ
Xm�1

i¼1

of ðx�1; . . . ; x�m�1Þ
oxi

H iðt�f Þ. ð47Þ

Rearranging terms, rewriting in vector notation, and let-
ting f � ¼ f ðx�1; . . . ; x�m�1Þ we have

of �

ox1

; . . . ;
of �

oxm�1

;�1

� �
	 H 1ðt�f Þ; . . . ;H m�1ðt�f Þ;H mðt�f Þ
� �

þ of �

ox1

; . . . ;
of �

oxm�1

;�1

� �
	 _R
�ðt�f ÞdT f ¼ 0 ð48Þ

which can be rewritten as

rW� 	Hðt�f Þ þ rW� 	 _R
�ðt�f ÞdT f ¼ 0. ð49Þ

From Eq. (41) we write

ryG�jt�
f
	Hðt�f Þ þ G�jt�

f
dT f ¼ 0. ð50Þ

Since both Eqs. (49) and (50) must be true over all varia-
tions and all possible one-parameter families, we have

rW�jt�
f
¼ kryG�jt�

f
ð51Þ

for some k 2 R. Hence, for i = 1, . . .,m we have

oW
oxi






t¼t�

f

¼ kaisgn ð _X
�
i ðt�f ÞÞ. ð52Þ
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In the case of i = m we have that

�1 ¼ oW�

ox3

jt¼t�
f
¼ ka3. ð53Þ

Thus, we have that k ¼ �1
am

. Hence, for i = 1, . . .,m we have
that

oW�

oxi






t¼t�

f

¼ �ai

am
. ð54Þ

This is a global minimum since we are optimizing a convex
functional [34]. This solution agrees with the limited ap-
proach, based on observation, made by Haspert [37].
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[26] J. Adámek, H. Herrlich, G. Strecker, Abstract and Concrete
Categories, John Wiley and Sons, New York, 1990.

[27] F.W. Lawvere, S.H. Schanuel, Conceptual Mathematics, A First
Introduction to Categories, Cambridge University Press, Cambridge
UK, 1991.

[28] P. Billingsley, Probability and Measure, third ed., John Wiley and
Sons, New York, 1995.

[29] L. Xu, A. Krzyák, Y.C. Suen, Methods of combining multiple
classifiers and their applications to handwriting recognition, in: IEEE
Transactions on Systems, Man, and Cybernetics, vol. XXII, 1992, pp.
418–435.

[30] D.L. Hall, J. Llinas, Handbook of Multisensor Data Fusion, CRC
Press, Florida, 2001.

[31] C. Schubert, M.E. Oxley, K.W. Bauer, A comparison of ROC curves
for label-fused within and across classifier systems, in: Proceedings of
the Ninth International Conference on Information Fusion, Interna-
tional Society of Information Fusion, 2005.

[32] S.G. Alsing, The evaluation of competing classifiers, Ph.D. disserta-
tion, Air Force Institute of Technology, Wright-Patterson AFB OH,
March 2000.

[33] I.M. Gelfand, S.V. Fomin, Calculus of Variations, Dover, New York,
2000.

[34] D.G. Luenberger, Optimization by Vector Space MethodsWiley
Professional Paperback Series, John Wiley and Sons, New York,
1969.

[35] N. Adams, D. Hand, Improving the practice of classifier performance
assessment, Neural Computation XII (2000) 305–311.

[36] R.P. Mahler, An Introduction to Multisource–Multitarget Statistics
and its Applications, Lockheed Martin, MN, 2000.

[37] J.K. Haspert, Optimum ID sensor fusion for multiple target types,
Technical Report IDA Document D-2451, Institute for Defense
Analyses, March 2000.

http://citeseer.ist.psu.edu/provost98robust.html
http://citeseer.ist.psu.edu/provost01robust.html
http://citeseer.ist.psu.edu/ferri03volume.html
http://citeseer.ist.psu.edu/ferri03volume.html
http://www.fusion2004.foi.se/papers/IF04-0429.pdf
http://citeseer.ist.psu.edu/healy00category.html

	l
	l
	A description of competing fusion systems
	Introduction
	Modelling fusion within the event to label model
	Developing a ROC curve
	A variational calculus solution to determining the Bayes�optimal threshold of a family of classification systems
	ROC manifolds
	Constructing the three-dimensional ROC manifold
	Extending the calculus of variations approach�to ROC manifolds

	A functional for comparing classifier families
	Fusors
	Changing assumptions, robustness, and an illustrative example
	Conclusion
	Appendix A
	Appendix B
	References


