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Abstract. We study the motion of an interface between two irrotational, incompressible fluids, with elastic bending forces
present; this is the hydroelastic wave problem. We prove a global bifurcation theorem for the existence of families of spatially
periodic traveling waves on infinite depth. Our traveling wave formulation uses a parameterized curve, in which the waves
are able to have multivalued height. This formulation and the presence of the elastic bending terms allow for the application
of an abstract global bifurcation theorem of “identity plus compact” type. We furthermore perform numerical computations
of these families of traveling waves, finding that, depending on the choice of parameters, the curves of traveling waves can
either be unbounded, reconnect to trivial solutions, or end with a wave which has a self-intersection. Our analytical and
computational methods are able to treat in a unified way the cases of positive or zero mass density along the sheet, the
cases of single-valued or multivalued height, and the cases of single-fluid or interfacial waves.
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1. Introduction

We study the motion of an elastic, frictionless membrane of nonnegative mass between two irrotational,
incompressible fluids. This is known as a hydroelastic wave problem. Each fluid has its own nonnegative
density, and if one of these densities is equal to zero, this is the hydroelastic water wave case. Hydroelastic
waves can occur in several scenarios, such as a layer of ice above the ocean [26] (for which the water wave
case would be relevant), or a flapping flag in a fluid [8] (for which the interfacial case would be relevant).

To model the elastic effects at the free surface, we use the Cosserat theory of elastic shells as developed
and described by Plotnikov and Toland [22]. This system is more suitable for large surface deformations
than simpler models such as linear or Kirchhoff–Love models. The second author, Siegel, and Liu have
shown that the initial value problems for these Cosserat-type hydroelastic waves are well-posed in Sobolev
spaces [9,18]. Toland and Baldi and Toland have proved existence of periodic traveling hydroelastic water
waves with and without mass including studying secondary bifurcations [27,28], [11,12]. A number of
authors have also computed traveling hydroelastic water waves, finding results in 2D and 3D, computa-
tions of periodic and solitary waves, comparison with weakly nonlinear models, and comparison across
different modeling assumptions for the bending force [14,15,19–21,30,31]. While we believe these com-
putations of hydroelastic water waves are the most relevant such studies to the present work, this is not
an exhaustive list, and the interested reader is encouraged to consult these papers for further references.

We use the formulation for traveling waves introduced by two of the authors and Wright [2]. This
version of the traveling wave ansatz is valid for a traveling parameterized curve, and thus, extreme
behavior of the waves, such as overturning, may be studied. Furthermore, while the present study concerns
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waves in two-dimensional fluids, the formulation based on a traveling parameterized curve extends to the
case of a traveling parameterized surface in three space dimensions. Thus, this method of allowing for
overturning waves generalizes to the higher-dimensional case, unlike methods based on complex analysis;
this has been carried out in one case already [7].

In [2], the density-matched vortex sheet with surface tension was studied. The particular results in
[2] are that the formulation for a traveling parameterized curve was introduced and was used to prove a
local bifurcation theorem, and families of waves were computed, showing that curves of traveling waves
typically ended when a self-intersecting wave was reached. Subsequently, Akers, Ambrose, and Wright
showed that Crapper waves, a family of exact pure capillary traveling water waves, could be perturbed
by including the effect of gravity, and the formulation was again used to compute these waves [6]. Further
numerical results were demonstrated in [4], where the non-density-matched vortex sheet was considered.
The formulation was also used to prove a global bifurcation theorem for vortex sheets with surface tension
for arbitrary constant densities and thus including the water wave case [10].

We give details of this formulation in Sect. 2, after first stating the evolution equations for the hydroe-
lastic wave problem. While the evolution equations and thus the traveling wave equations are different
in the cases with and without mass (i.e., the case of zero mass density or positive mass density along
the elastic sheet), this difference goes away when applying the abstract global bifurcation theorem. This
is because the terms involving the mass parameter are nonlinear, and vanish when linearizing about
equilibrium. We are therefore able to treat the two cases simultaneously in the analysis.

The abstract bifurcation theorem we apply requires a one-dimensional kernel in our linearized operator.
For certain values of the parameters, there may instead be a two-dimensional kernel. The authors will
treat the cases of two-dimensional kernels in a subsequent paper. This will involve studying secondary
bifurcations as in [11] and also studying Wilton ripples [3,16,24,25,29,32].

In Sect. 3, we state and prove our main theorem, which is a global bifurcation theorem for periodic
traveling hydroelastic waves, giving several conditions for how a curve of such waves might end. In Sect. 4,
we describe our numerical method for computing curves of traveling waves, and we give numerical results.

2. Governing equations

2.1. Equations of motion

The setup of our problem closely mirrors that of [10] and [18]. We consider two two-dimensional fluids,
each of which may possess a different mass density. A one-dimensional interface I (a free surface) comprises
the boundary between these two fluid regions; one fluid (with density ρ1 ≥ 0) lies below I, while the other
(with density ρ2 ≥ 0) lies above I. The fluid regions are infinite in the vertical direction and are periodic
in the horizontal direction. In our model, we allow the interface itself to possess nonnegative mass density
ρ. Our model also includes the effects of hydroelasticity and surface tension on the interface; these will
be presented later in this section as we introduce the full equations of motion.

Within the interior of each fluid region, the fluid’s velocity u is governed by the irrotational, incom-
pressible Euler equations:

ut + u · ∇u = −∇p,

div (u) = 0,
u = ∇φ;

however, since u may jump across I, there is may still be measure-valued vorticity whose support is
I. We can write this vorticity in the form γ δI , where γ ∈ R (which may vary along I) is called the
“unnormalized vortex sheet strength,” and δI is the Dirac mass of I [10].
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Identifying our overall region with C, we parametrize I as a curve z (α, t) = x (α, t) + iy (α, t) with
periodicity conditions

x (α + 2π, t) = x (α, t) + M, (1a)
y (α + 2π, t) = y (α, t) , (1b)

for some M > 0 (throughout, α will be our spatial parameter along the interface, and t will represent
time). Let U and V denote the normal and tangential velocities, respectively; i.e.,

zt = UN + V T, (2)

where

T =
zα

sα
,

N = i
zα

sα
,

s2α = |zα|2 = x2
α + y2

α. (3)

(Notice that T and N are the complex versions of the unit tangent and upward normal vectors to the
curve.) We choose a normalized arclength parametrization; i.e., we enforce

sα = σ (t) :=
L (t)
2π

(4)

at all times t, where L (t) is the length of one period of the interface. Thus, in our parametrization, sα

is constant with respect to α. Furthermore, we define the tangent angle

θ = arctan
(

yα

xα

)
;

it is clear that the curve z can be constructed (up to one point) from information about θ and σ, and
that curvature of the interface κ can be given as

κ =
θα

sα
.

The normal velocity U (a geometric invariant) is determined entirely by the Birkhoff–Rott integral:

U = Re (W ∗N) , (5)

where

W ∗ (α, t) =
1

2πi
PV

∫
R

γ (α′, t)
z (α, t) − z (α′, t)

dα′. (6)

We are free to choose the tangential velocity V in order to enforce our parametrization (4). Explicitly,
we choose periodic V such that

Vα = θαU − 1
2π

2π∫
0

θαU dα. (7)

We can differentiate both sides of (3) by t and obtain

sαt = Vα − θαU ;

using this and (7), we can then write

sαt = − 1
2π

2π∫
0

θαU dα =
1
2π

2π∫
0

(sαt − Vα) dα =
1
2π

2π∫
0

sαt dα. (8)
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Note that the last step is justified since V is periodic. But, we also have

L =

2π∫
0

sα dα,

so (8) reduces to

sαt =
Lt

2π
,

which yields (4) for all times t as long as (4) holds at t = 0.
The evolution of the interface is also determined by the behavior of the vortex sheet strength γ (α, t),

which can be written in terms of the jump in tangential velocity across the surface. Using a model which
combines those used in [9] and [18], we assume the jump in pressure across the interface to be

[[p]] = ρ (Re (W ∗
t N) + VW θt) +

1
2
Eb

(
κss +

κ3

2
− τ1κ

)
+ gρ Im N,

where ρ ≥ 0 is the mass density of the interface, VW := V − Re (W ∗T ), Eb ≥ 0 is the bending modulus,
τ1 > 0 is a surface tension parameter, and g is acceleration due to gravity. Then, we can write an equation
for γt [18]:

γt = − S̃

σ3

(
∂4

αθ +
3θ2αθαα

2
− τ1σ

2θαα

)
+

(VW γ)α

σ
− 2Ã (Re (W ∗

αtN)) (9)

−
(

2A − 2Ãθα

σ

)
(Re (W ∗

t T )) sα − 2Ã
(
(VW )α θt + VW θtα +

gxαα

σ

)

−2A
(γγα

4σ2
− VW Re (W ∗

αT ) + gyα

)
.

In addition to those defined above, Eq. (9) includes the following constant quantities; some are listed
with their physical meanings:

ρ1 : density of the lower fluid (≥ 0),
ρ2 : density of the upper fluid (≥ 0),

S̃ :=
Eb

ρ1 + ρ2
(≥ 0),

A :=
ρ1 − ρ2
ρ1 + ρ2

(the “Atwood number,” ∈ [−1, 1]) ,

Ã :=
ρ

ρ1 + ρ2
(≥ 0).

We can non-dimensionalize and write (9) in the form

γt = − S

σ3

(
∂4

αθ +
3θ2αθαα

2
− τ1σ

2θαα

)
+

(VW γ)α

σ
(10)

−2Ã (Re (W ∗
αtN)) −

(
2A − 2Ãθα

σ

)
(Re (W ∗

t T )) sα

−2Ã
(
(VW )α θt + VW θtα +

xαα

σ

)
− 2A

(γγα

4σ2
− VW Re (W ∗

αT ) + yα

)
,

where S = S̃/ |g|. In the two-dimensional hydroelastic vortex sheet problem with mass, the interface’s
motion is thus governed by (2), (5), (6), (7), and (10).
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2.2. Traveling wave ansatz

We wish to consider traveling wave solutions to the two-dimensional hydroelastic vortex sheet problem
with mass.

Definition 1. Suppose (z, γ) is a solution to (2), (5), (6), (7), and (10) that additionally satisfies (z, γ)t =
(c, 0) for some real parameter c. We then say (z, γ) is a traveling wave solution to (2), (5), (6), (7), and
(10) with speed c.

Remark 2. In our application of global bifurcation theory to show existence of traveling wave solutions,
the value c will serve as our bifurcation parameter.

Note that under the traveling wave assumption, we clearly have

U = −c sin θ,

V = c cos θ.

By carefully differentiating under the integral (in the principal value sense), it can be shown that under
the traveling wave assumption, both W ∗

t = 0 and W ∗
αt = 0. Thus, both terms 2Ã (Re (W ∗

αtN)) and(
2A − 2Ãθα

σ

)
(Re (W ∗

t T )) sα vanish in the traveling wave case, and (10) reduces to

0 = − S

σ3

(
∂4

αθ +
3θ2αθαα

2
− τ1σ

2θαα

)
+

(VW γ)α

σ

−2Ã
(
(VW )α θt + VW θtα +

xαα

σ

)
− 2A

(γγα

4σ2
− VW Re (W ∗

αT ) + yα

)
,

or

0 = − S

σ3

(
∂4

αθ +
3θ2αθαα

2
− τ1σ

2θαα

)
+

(VW γ)α

σ
(11)

−2Ã∂α

(
VW θt +

xα

σ

)
− 2A

(γγα

4σ2
− VW Re (W ∗

αT ) + yα

)
.

Note that

VW = V − Re (W ∗T ) = c cos θ − Re (W ∗T ) ,

and

yα = σ sin θ,

xα = σ cos θ;

also, θt clearly vanishes in the traveling wave case. We also have

(c cos θ − Re (W ∗T )) (Re (W ∗
αT )) = −1

2
∂α

{
(c cos θ − Re (W ∗T ))2

}
,

which is shown in [10] or could be computed from the above. Thus, we can substitute the above and write
(11) as

0 = − S

σ3

(
∂4

αθ +
3θ2αθαα

2
− τ1σ

2θαα

)
− 2Ã (cos θ)α

+
((c cos θ − Re (W ∗T )) γ)α

σ
− A

(
∂α

(
γ2
)

4σ2
+ 2σ sin θ + ∂α

{
(c cos θ − Re (W ∗T ))2

})
. (12)
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We multiply both sides by σ/τ1:

0 = − S

τ1σ2

(
∂4

αθ +
3θ2αθαα

2
− τ1σ

2θαα

)
− 2Ãσ

τ1
(cos θ)α (13)

+
1
τ1

((c cos θ − Re (W ∗T )) γ)α

− A

τ1

(
∂α

(
γ2
)

4σ
+ 2σ2 sin θ + σ∂α

{
(c cos θ − Re (W ∗T ))2

})
.

For concision, we define

Φ (θ, γ; c, σ) :=
1
τ1

((c cos θ − Re (W ∗T )) γ)α

− A

τ1

[(
γ2
)
α

4σ
+ 2σ2 sin θ + σ∂α

{
(c cos θ − Re (W ∗T ))2

}]
. (14)

(We define Φ in this manner so that it corresponds with the mapping Φ defined in [10]; there, this mapping
comprises all of the lower-order terms.) Then, (13) can be written as

0 = − S

τ1σ2

(
∂4

αθ +
3θ2αθαα

2
− τ1σ

2θαα

)
− 2Ãσ

τ1
(cos θ)α + Φ(θ, γ; c, σ) ,

or

0 = ∂4
αθ +

3θ2αθαα

2
− τ1σ

2θαα +
2Ãσ3

S
(cos θ)α − τ1σ

2

S
Φ(θ, γ; c, σ) . (15)

We label the remaining lower-order terms as

Ψ1 (θ;σ) :=
3
2
θ2αθαα,

Ψ2 (θ;σ) := −τ1σ
2θαα,

Ψ3 (θ;σ) :=
2Ãσ3

S
(cos θ)α ;

note that Ψ3 is the only remaining term that includes the effect of interface mass. Combining these
together as Ψ := Ψ1 + Ψ2 + Ψ3, we write (15) as

0 = ∂4
αθ + Ψ (θ;σ) − τ1σ

2

S
Φ(θ, γ; c, σ) . (16)

Recall that (5) also determines the behavior of the interface. Since U = −c sin θ, (5) becomes (as in
[10])

0 = Re (W ∗N) + c cos θ. (17)
Note that (16) and (17) feature z and θ interchangeably. From this point onward, we would like to

look for traveling wave solutions in the form (θ, γ) alone; thus, it becomes important to explicitly state
how to construct z from θ (in a unique manner, up to rigid translation) in the traveling wave case. We
can clearly do this via

z (α, 0) = z (α, t) − ct = σ

α∫
0

exp (iθ (α′)) dα′. (18)

Then, given the work completed throughout this section thus far, it is clear that if (θ, γ; c) satisfy (16) and
(17) (with z appearing in Re (W ∗N) constructed from θ via 18), then (z, γ) is a traveling wave solution
to (2), (5) and (10 ) with speed c (again, with z constructed via (18)).

It is as this point, however, that we arrive at a technical issue. Even if (θ, γ; c) yield a traveling wave
solution (z, γ), we cannot expect that 2π-periodic θ to yield periodic z via (18). We would like for any 2π
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-periodic (θ, γ) that solve some equations analogous to (16) and (17) to correspond directly to a periodic
traveling wave solution (z, γ) of (2), (5), and (10). Hence, in a manner closely analogous to [10], we
modify the mappings in (16) and (17) to ensure this.

2.3. Periodicity considerations

Throughout this section, assume that θ is a sufficiently smooth, 2π-periodic function. Define the following
mean quantities:

cos θ :=
1
2π

2π∫
0

cos (θ (α′)) dα′, sin θ :=
1
2π

2π∫
0

sin (θ (α′)) dα′.

Given M > 0 and θ with cos θ �= 0, define the “renormalized curve”

Z̃ [θ] (α) :=
M

2πcos θ

⎡
⎣

α∫
0

exp (iθ (α′)) dα′ − iαsin θ

⎤
⎦ .

Note that Z̃ [θ] is one derivative smoother than θ, and a direct calculation shows that such a curve in
fact satisfies our original spacial periodicity requirement (1a), (1b):

Z̃ [θ] (α + 2π) = Z̃ [θ] (α) + M.

Also, we clearly have normal and tangent vectors to Z̃ [θ] given by

T̃ [θ] =
∂αZ̃ [θ]∣∣∣∂αZ̃ [θ]

∣∣∣ ,

Ñ [θ] = i
∂αZ̃ [θ]∣∣∣∂αZ̃ [θ]

∣∣∣ .

Next, we use a specific form of the Birkhoff–Rott integral (for real-valued γ and complex-valued ω
that satisfy ω (α + 2π) = ω (α) + M):

B [ω] γ (α) :=
1

2iM
PV

∫
R

γ (α′) cot
( π

M
(ω (α) − ω (α′))

)
dα′.

As discussed in [10], setting ω = z yields W ∗ = B [z] γ, where W ∗ is as defined in (6); this follows from
the well-known cotangent series expansion due to Mittag–Leffler (which can, for example, be found in
[1]). We are now ready to define a mapping Φ̃, analogous to the mapping in [10]:

Φ̃ (θ, γ; c) :=
1
τ1

∂α

{
c cos θ − Re

((
B
[
Z̃ [θ]

]
γ
)

T̃ [θ]
)

γ
}

− A

τ1

(
πcos θ

2M
∂α

(
γ2
)

+
M2

2π2
(
cos θ

)2 (sin θ − sin θ
))

− A

τ1

(
M

2πcos θ
∂α

{(
c cos θ − Re

((
B
[
Z̃ [θ]

]
γ
)

T̃ [θ]
))2

})
.

This construction is enough for us to ensure M -periodicity in a traveling wave solution to (16)
and (17):
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Proposition 3. Suppose c �= 0 and 2π-periodic functions θ, γ satisfy cos θ �= 0 and

Re
((

B
[
Z̃ [θ]

]
γ
)

Ñ [θ]
)

+ c sin θ = 0, (19)

∂4
αθ + Ψ (θ;σ) − τ1σ

2

S
Φ̃ (θ, γ; c) = 0, (20)

with σ = M/
(
2πcos θ

)
. Then,

(
Z̃ [θ] (α) + ct, γ (α)

)
is a traveling wave solution to (16) and (17) with

speed c, and Z̃ [θ] (α) + ct is spatially periodic with period M .

A proof of a proposition almost identical to Proposition 3 can be found in [10]. Under the assumptions
of this proposition, we can see how (19) corresponds to (17) given our construction above; then, [10] shows
that (under these assumptions) Φ̃ (θ, γ; c) = Φ (θ, γ; c, σ) with σ = M/

(
2πcos θ

)
.

We thus will henceforth work with Eqs. (19), (20), though a few more steps are needed in order to
bring these equations into a form conducive to applying the global bifurcation theory.

2.4. Final reformulation

We wish to “solve” (20) for θ. To do so, we introduce an inverse derivative operator ∂−4
α , which we define

in Fourier space. For a general 2π -periodic map μ with convergent Fourier series, let μ̂ (k) denote the
kth Fourier coefficient in the usual sense, i.e., μ (α) =

∑∞
k=−∞ μ̂ (k) exp (ikα). Then, define for μ with

mean zero (i.e., μ̂(0) = 0) ⎧⎨
⎩

̂∂−4
α μ (k) := k−4μ̂ (k) , k �= 0

̂∂−4
α μ (0) := 0.

(21)

By this construction, ∂−4
α clearly preserves periodicity, and for sufficiently regular, periodic μ with mean

zero,
∂−4

α ∂4
αμ = μ = ∂4

α∂−4
α μ.

Also, define the projection P (here, μ may not necessarily have mean zero):

Pμ(α) := μ (α) − 1
2π

2π∫
0

μ (α′) dα′; (22)

it is clear that Pμ has mean zero. We apply ∂−4
α P to both sides of (20) and obtain the equation

0 = θ + ∂−4
α PΨ (θ;σ) − τ1σ

2

S
∂−4

α P Φ̃ (θ, γ; c) (23)

(throughout, note σ = M/
(
2πcos θ

)
).

Next, we approach (19). First, we subtract the mean γ := (2π)−1
2π∫
0

γ (α) dα from γ and write

γ1 := γ − γ,

As in [10], the Birkhoff–Rott integral can be decomposed as

B [ω] γ (α) =
1

2i ωα(α)
Hγ(α) + K [ω] γ(α), (24)

where the most singular portion

Hγ(α) :=
1
2π

PV

2π∫
0

γ (α′) cot
(

1
2

(α − α′)
)

dα′ (25)
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is the Hilbert transform, and the remainder

K [ω] γ (α) :=
1

4πi
PV

2π∫
0

γ (α′)
[
cot

(
1
2

(ω (α) − ω (a′))
)

− 1
∂α′ω (α′)

cot
(

1
2

(α − α′)
)]

dα′

is smooth on the domain we later define in Sect. 3.2.2. Then, as is also done in [10], we write (19) in the
form

γ1 − H
{

2
∣∣∣∂αZ̃ [θ]

∣∣∣Re
((

K
[
Z̃ [θ]

]
(γ + γ1)

)
Ñ [θ]

)
+ 2c

∣∣∣∂αZ̃ [θ]
∣∣∣ sin θ

}
= 0. (26)

Define

Θ (θ, γ1; c) :=
τ1σ

2

S
∂−4

α P Φ̃ (θ, γ1 + γ; c) − ∂−4
α PΨ (θ;σ) ,

so (23) becomes
θ − Θ (θ, γ1; c) = 0. (27)

We then substitute θ = Θ (θ, γ1; c) into (26) to obtain

γ1 − Γ (θ, γ1; c) = 0, (28)

where

Γ (θ, γ1; c) := H{2
∣∣∣∂αZ̃ [Θ (θ, γ1; c)]

∣∣∣Re
((

K
[
Z̃ [Θ (θ, γ1; c)]

]
(γ + γ1)

)
Ñ [Θ (θ, γ1; c)]

)
(29)

+ 2c
∣∣∣∂αZ̃ [Θ (θ, γ1; c)]

∣∣∣ sin (Θ (θ, γ1; c))}.

In Sect. 3.2.2, we will show compactness of (Θ,Γ) given appropriate choice of domain, as the bifurcation
theorem we shall apply to ( 27), (28) requires an “identity plus compact” formulation.

3. Global bifurcation theorem

3.1. Main theorem

We now present a global bifurcation theorem for the traveling wave problem. In essence, this theorem
shows the existence of a rich variety of non-trivial solution sets. We prove this theorem throughout this
section.

Theorem 4. Let all be as defined in the previous section. For all choices of constants M > 0, S > 0,
τ1 > 0, A ∈ [−1, 1] , Ã ≥ 0, γ ∈ R, there exists a countable number of connected sets of smooth, non-
trivial traveling wave solutions of the two-dimensional hydroelastic vortex sheet problem with mass (i.e.,
solutions to (θ − Θ (θ, γ1; c) , γ1 − Γ (θ, γ1; c)) = (0, 0; c)). If γ �= 0 or A �= 0, then each of these connected
sets has at least one of the following properties (a)–(e):

(a): It contains waves with arbitrarily long interface lengths per period
(b): It contains waves whose interfaces have curvature with arbitrarily large derivative
(c): It contains waves in which the derivative of the jump of the tangential component of fluid velocity

can be arbitrarily large
(d): Its closure contains a wave whose interface self-intersects
(e): Its closure contains two trivial solutions with different speeds.

If γ = 0 and A = 0, then another possible outcome is

(f): It contains waves which have speeds which are arbitrarily large.
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Remark 5. The possible outcomes listed in the above theorem are very similar to the analogous main
theorem of [10]. Notably different is outcome (b), where we list the possibility for the derivative of
curvature to arbitrarily grow (instead of merely curvature itself). This distinction arises from a difference
in domain spaces used; here, we require θ to possess one higher derivative than in [10].

3.2. Global bifurcation results

3.2.1. General global bifurcation theory. Our main theorem posits the existence of certain solution sets
to the traveling wave problem; we show that this essentially follows directly from an application of a
global bifurcation theorem due to Rabinowitz [23] and generalized by Kielhöfer [17]. The conditions of
the theorem require a notion of odd crossing number for families of bounded linear operators.

Definition 6. Assume A (c) is a family of bounded linear operators depending continuously on a real
parameter c. Suppose at some c = c0, A (c) has a zero eigenvalue. Define σ< (c) := 1 if there are
no negative real eigenvalues of A (c) that perturb from this zero eigenvalue of A (c0), and σ< (c) :=
(−1)m1+···+mk if μ1, . . . , μk are all negative real eigenvalues of A (c) that perturb from this zero eigenvalue
of A (c0), each with algebraic multiplicities m1, . . . ,mk. We say A (c) has an odd crossing number at
c = c0 if (i) A (c) is regular for c ∈ (c0 − δ, c0) ∪ (c0, c0 + δ) and (ii) σ< (c) changes sign at c = c0.

Remark 7. We can think of the crossing number itself as the number of real eigenvalues (counted with
algebraic multiplicity) of A (c) that pass through 0 as c moves across c0 [10].

We now state the abstract theorem as it is appears in [10], which itself is a slight modification of the
Kielhöfer version (see Remark 9).

Theorem 8. (General bifurcation theorem). Let X be a Banach space, and let U be an open subset of
X × R. Let F map U continuously into X. Assume that

(a): the Frechet derivative DξF (0, ·) belongs to C (R, L (X,X))
(b): the mapping (ξ, c) �→ F (ξ, c) − ξ is compact from X × R into X, and
(c): F (0, c0) = 0 and DxF (0, c) has an odd crossing number at c = c0.

Let S denote the closure of the set of non-trivial solutions of F (ξ, c) = 0 in X × R. Let C denote the
connected component of S to which (0, c0) belongs. Then, one of the following alternatives is valid:
(i): C is unbounded; or
(ii): C contains a point (0, c1) where c0 �= c1 ; or
(iii): C contains a point on the boundary of U .

Remark 9. The Kielhöfer version of the theorem explicitly assumes the case U = X × R. The proof,
however, is easily modified to admit general open U ⊆ X × R. The choice of such U for our problem will
ensure well-definedness and compactness of our mapping (Θ,Γ) .

One condition for Theorem 8 is that the mapping in question can be written in the form “identity
plus compact.” We show that (Θ,Γ) is in fact compact over an appropriately chosen domain.

3.2.2. Mapping properties. To begin, we set up the necessary notation for the function spaces we wish
to work with.

Definition 10. Let Hs
per denote Hs

per [0, 2π] , i.e., the usual Sobelev space of 2π-periodic functions from
R to C with square integrable derivatives up to order s ∈ N. Let Hs

per,odd denote the subset of Hs
per

comprised of odd functions; define Hs
per,even similarly. Let Hs

per,0,even denote the subset of Hs
per,even
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comprised of mean zero functions. Finally, letting Hs
loc denote the usual Sobolev space of functions in

Hs (I) for all bounded intervals I, we put

Hs
M =

{
ω ∈ Hs

loc : ω (α) − Mα

2π
∈ Hs

per

}
.

For b ≥ 0 and s ≥ 2, define the “chord-arc space”

Cs
b =

{
ω ∈ Hs

M : inf
α,α′∈[a,b]

∣∣∣∣ω (α) − ω (α′)
α′ − α

∣∣∣∣ > b

}
.

We are now ready to set an appropriate domain for (Θ,Γ) and assert its compactness as a mapping
over such domain.

Proposition 11. Put
X = H2

per,odd × H1
per,0,even × R

and
Ub,h =

{
(θ, γ1; c) ∈ X : cos θ > h, Z̃ [θ] ∈ C2

b and Z̃ [Θ (θ, γ1; c)] ∈ C5
b

}
. (30)

The mapping (Θ,Γ) (where Θ,Γ are as defined in Sect. 2.4) from Ub,h ⊆ X into X is compact.

Proof. The chord-arc conditions are imposed to ensure the well-definedness of the Birkhoff–Rott integral;
this is seen in [10]. With these conditions, alongside the condition cos θ > h, we ensure that each
component of Φ̃ is well defined over Ub,h. It is also demonstrated in [10] that Φ̃ costs a derivative in
θ and retains derivatives in γ; here, we have that Φ̃ maps from Ub,h to H1

per,0. We need to check the
mapping properties of Ψ (i.e., the terms that differ from the analogous equation of [10]). Recall that
Ψ := Ψ1 + Ψ2 + Ψ3, where

Ψ1 (θ;σ) =
3
2
θ2αθαα =

1
2
∂α

[
θ3α
]

Ψ2 (θ;σ) = −τ1σ
2θαα

Ψ3 (θ;σ) =
2Ãσ3

S
(cos θ)α

Using elementary results regarding algebra properties for Sobolev spaces, we have that the maps (·)3
and cos (·) both map from Hs

per to Hs
per as long as s > n

2 = 1
2 . The choice s = 2 satisfies this. Also, if

θ is odd, θα is even (as is θ3α), so ∂α

[
θ3α
]

is odd. The function θαα is also odd, so Ψ1,Ψ2 maps into an
“odd” space. Moreover, since ∂α cos (θ) = − (sin θ) (∂αθ) and ∂αθ is even, we see that Ψ3 maps into an
“odd” space as well. Thus, we can write

Ψ : H2
per,odd → H0

per,odd,

so ∂−4
α PΨ maps into H4

per.
Furthermore, Ψ maps bounded sets to bounded sets as well, as each ∂α is a bounded linear map

between appropriate Sobolev spaces and (·)3 also maps bounded sets to bounded sets given that its
domain satisfies the condition s > 1

2 . Since ∂−4
α and P are also bounded linear maps, we have that

∂−4
α PΨ maps bounded sets to bounded sets. Also, it is clear that ∂−4

α PΨ (θ;σ) retains parity of θ.
We summarize the mapping properties as follows:

Φ̃ : Ub,h → H1
per,0,odd,

∂−4
α P Φ̃ : Ub,h → H5

per,odd,

∂−4
α PΨ : Ub,h → H4

per,odd,

so by the above, we have by our definition of Θ,

Θ : Ub,h → H4
per,odd.
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As in [10], Γ is written as a composition of Θ and an operator that neither gains nor costs derivatives, so

Γ : Ub,h → H4
per,0,even.

By Rellich’s theorem, bounded sets in H4
per,odd are precompact in H2

per,odd, and bounded sets H4
per,0,even

are precompact in H1
per,0,even. Each term of (Θ,Γ) maps bounded sets to bounded sets. Thus, by viewing

(Θ,Γ) as a map from open Ub,h ⊆ X into X, we have that (Θ,Γ) is a compact map. �

We next compute the Frechét derivative of (θ − Θ (θ, γ1; c) , γ1 − Γ (θ, γ1; c)) and subsequently use this
to analyze the crossing number.

3.2.3. Linearization calculation. In order to abbreviate the linearization calculations of (Θ,Γ), we intro-
duce some notation. For any map μ (θ, γ1; c), let

(−→
θ ,−→γ

)
denote the direction of differentiation, and

define for general, sufficiently regular mappings μ

μ0 := μ (0, 0; c)

Dμ := Dθ,γ1μ (θ, γ1; c)|(0,0;c)

(−→
θ ,−→γ

)
:= lim

ε→0

1
ε

(
μ
(
ε
−→
θ , ε−→γ ; c

)
− μ0

)
.

Note that σ is dependent on θ; we denote Σ (θ) := σ = M/
(
2πcos θ

)
. We note the following elementary

results:

sin0 = 0, D cos = 0

Σ0 =
M

2π
, DΣ = 0.

A large number of components of (DΘ,DΓ) were explicitly computed in [10]. Namely, these results
yield for our closely analogous Φ̃

DΦ̃ = −πγ

M

(
− γ

τ1
+

cAM

πτ1

)
∂αH

−→
θ − AM2

2π2τ1
P

−→
θ +

(
c

τ1
− πAγ

τ1M

)
∂α

−→γ ,

where the projection P is as defined in (22) and H is the Hilbert transform (see (25)). We need to
compute the linearization of the “extra” terms Ψ1,Ψ2,Ψ3 that (loosely) correspond to the hydroelastic
and interface mass effects. Examine

DΨ1 =
1
2
∂αD

[
θ3α
]

=
3
2
∂α

[
(∂αθ)2 ∂α

−→
θ
]
,

so at θ = 0, we see DΨ1 = 0. Next, we examine

DΨ2 = D
[−τ1Σ2∂2

αθ
]

= −τ1
(
2Σ0DΣ

[
∂2

αθ
]
θ=0

+ Σ2
0∂

2
αDθ

)

= −τ1

(
0 +

(
M

2π

)2

∂2
α

−→
θ

)

= −τ1

(
M

2π

)2

∂2
α

−→
θ ,
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and

DΨ3 = D

[
−2ÃgΣ3

S
sin (θ) θα

]

= −2Ã

S

[
D
(
Σ3

)
sin0 [∂α (θ)]θ=0 + Σ3

0D cos [∂α (θ)]θ=0 + Σ3
0 sin0 ∂α

−→
θ
]

= −2Ã

S
[0 + 0 + 0]

= 0.

Thus,

DΨ = −τ1

(
M

2π

)2

∂2
α

−→
θ .

We pause to remark that the crossing number is entirely determined by the linearization near equi-
librium. Note that DΨ3 = 0 means that the presence of interface mass will not have any bearing on the
application of Theorem 8 to our problem; in other words, the same conclusions about bifurcation (given
odd crossing number) can be drawn in the Ã = 0 as in the Ã > 0 case.

Continuing, we recall the definition of Θ and calculate

DΘ = ∂−4
α P

[τ1
S

D
(
Σ2Φ̃

)
− DΨ

]

= ∂−4
α P

[τ1
S

(
2Σ0DΣΦ̃0 + Σ2

0DΦ̃
)

− DΨ
]

= ∂−4
α P

[
τ1
S

(
M

2π

)2

DΦ̃ − DΨ

]

=
τ1γM

4πS

(
γ

τ1
− cAM

πτ1

)
∂−4

α ∂αH
−→
θ − AM4

8π4S
∂−4

α P
−→
θ +

τ1M
2

4π2
∂−4

α ∂2
α

−→
θ

−τ1M
2

4π2S

(
πAγ

τ1M
− c

τ1

)
∂−4

α ∂α
−→γ .

The mapping Γ defined in (29) is the composition of Θ and a mapping identical to that which appears
in [10]. It is shown in [10] that DΓ = cM

π HDΘ, so by substituting our expression for DΘ, we obtain

DΓ =
cτ1γM2

4π2S

(
γ

τ1
− cAM

πτ1

)
H∂−4

α ∂αH
−→
θ − cAM5

8π5S
H∂−4

α P
−→
θ

+
cτ1M

3

4π3
H∂−4

α ∂2
α

−→
θ − cτ1M

3

4π3S

(
πAγ

τ1M
− c

τ1

)
H∂−4

α ∂α
−→γ .

Combining our results for DΘ, DΓ, we write the linearization Lc at (0, 0; c) in matrix form:

Lc

[−→
θ−→γ
]

:=
[−→

θ − DΘ−→γ − DΓ

]
, (31)

where

Lc :=
[
L11 L12

L21 L22

] [−→
θ−→γ
]

,
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with

L11 := 1 − τ1γM

4πS

(
γ

τ1
− cAM

πτ1

)
∂−4

α ∂αH +
AM4

8π4S
∂−4

α P − τ1M
2

4π2
∂−4

α ∂2
α,

L12 :=
τ1M

2

4π2S

(
πAγ

τ1M
− c

τ1

)
∂−4

α ∂α,

L21 := −cτ1γM2

4π2S

(
γ

τ1
− cAM

πτ1

)
H∂−4

α ∂αH +
cAM5

8π5S
H∂−4

α P − cτ1M
3

4π3
H∂−4

α ∂2
α,

L22 := 1 +
cτ1M

2

4π2S

(
Aγ

τ1
− cM

πτ1

)
H∂−4

α ∂α.

3.2.4. Eigenvalue calculation. The next step in applying Theorem 8 to (θ − Θ, γ1 − Γ) is to find c that
yield zero eigenvalues of Lc. To do so, we note the periodicity of

(−→
θ ,−→γ

)
and examine the Fourier

coefficients of Lc. Let μ be a general 2π-periodic map with convergent Fourier series. Noting our

definition of ̂∂−4
α μ (k) in (21), along with the elementary results

∂̂αμ (k) = ikμ̂ (k) ,

∂̂2
αμ (k) = −k2μ̂ (k) ,

Ĥμ (k) = −i sgn (k) μ̂ (k) ,

P̂ μ (k) = (1 − δ0 (k)) μ̂ (k) ,

we compute, for k �= 0,

L̂11 (k) = 1 − τ1γM

4πS

(
γ

τ1
− cAM

πτ1

)
1

|k|3 +
AM4

8π4S

1
k4

+
τ1M

2

4π2

1
k2

,

L̂12 (k) = i
τ1M

2

4π2S

(
πAγ

τ1M
− c

τ1

)
1
k3

,

L̂21 (k) = i
cτ1γM2

4π2S

(
γ

τ1
− cAM

πτ1

)
1
k3

− i
cAM5

8π5S

sgn (k)
k4

− i
cτ1M

3

4π3

sgn (k)
k2

,

L̂22 (k) = 1 +
cτ1M

2

4π2S

(
Aγ

τ1
− cM

πτ1

)
1

|k|3 ;

thus,
̂

Lc

[−→
θ−→γ
]

(k) = L̂c (k)

[−̂→
θ
−̂→γ

]
=

[
L̂11 (k) L̂12 (k)
L̂21 (k) L̂22 (k)

] [−→
θ−→γ
]

.

For k = 0, P̂ μ (k) = 0, so L̂c (0) = I. Clearly, when k = 0, 1 is an eigenvalue with multiplicity 2. For
k �= 0, we compute the eigenvalues via Mathematica [33]. In this case, 1 is also an eigenvalue, as is

λk (c) := 1 +
M2τ1
4π2

|k|−2 +
−c2M3 + 2AcγM2π − γ2Mπ2

4π3S
|k|−3 +

AM4

8π4S
|k|−4

.

Note that λk (c) is even with respect to k. Also, by basic Fourier series results, {1}∪{λk (c)}k constitutes
the point spectrum of Lc. The eigenvector corresponding to λk (c) is

vk (c) :=

[
sgn(k) iπ

cM

1

]
, (32)

and thus, [ iπ
cM

1

]
exp (ikα) and

[− iπ
cM

1

]
exp (−ikα) .
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are each eigenfunction of Lc However, we can take real and imaginary parts of each and obtain eigen-
functions [− π

cM sin (kα)
cos (kα)

]
and

[ π
cM cos (kα)

sin (kα)

]
.

Only the first is in H2
per,odd×H1

per,0,even; thus, given our chosen function space, we have that the dimension
of the eigenspace of λk (c) is one. We can then drop the absolute values and state, for k > 0,

λk (c) = 1 +
M2τ1
4π2

k−2 +
−c2M3 + 2AcγM2π − γ2Mπ2

4π3S
k−3 +

AM4

8π4S
k−4. (33)

We summarize the spectral results thus far, along with a few immediate consequences, below:

Proposition 12. Let Lc be the linearization of (θ, γ1; c) �→ (θ − Θ (θ, γ1; c) , γ1 − Γ (θ, γ1; c)) at (0, 0; c).
The spectrum of Lc is the set of eigenvalues {1} ∪ {λk (c) : k ∈ N}, where λk (c) is as defined in (33).
Each eigenvalue λ ∈ {λk (c) : k ∈ N} of Lc has algebraic multiplicity equal to its geometric multiplicity,
which we denote

Nλ (c) := |{k ∈ N : λk (c) = λ}| ,
and the corresponding eigenspace is

Eλ (c) := span
{[− π

cM sin (kα)
cos (kα)

]
: k ∈ N such that λk (c) = λ

}
.

Also, for fixed k, if the inequality

AM4 +
(−2γ2Mπ3 + 2A2γ2Mπ3

)
k + 2M2π2Sτ1k

2 + 8π4Sk4 ≥ 0 (34)

holds, then the c ∈ R for which λk (c) = 0 is

c± (k) :=
Aγπ

M
±
√

AM4 +
(−2γ2Mπ3 + 2A2γ2Mπ3

)
k + 2M2π2Sτ1k2 + 8π4Sk4

2kM3π
, (35)

and this zero eigenvalue has multiplicity N0 (c± (k)) ≤ 2. Specifically, if we define the polynomial (in l)

p (l; k) := −AM4 + 2klπ2S
(
4
(
k2 + kl + l2

)
π2 + M2τ1

)
,

p (·; k) has a single real root (denoted l (k)), and we have N0 (c± (k)) = 2 if and only if l (k) is a positive
integer not equal to k.

Proof. The point spectrum of Lc, along with each Eλ (c) , was explicitly calculated above. The fact
that the the geometric and algebraic multiplicities are equal follows from the Fourier decomposition, as
calculated above, and the diagonalizability of L̂c (k) for each k.

The result (35) follows from an easy computation, as λk (c) is quadratic in c. Next, we wish to make
statements about the multiplicity of the zero eigenvalue λk (c± (k)). Using (33) and (35), we compute

λl (c± (k)) = − (k − l)
(−AM4 + 2klπ2S

(
4
(
k2 + kl + l2

)
π2 + M2τ1

))
8kl4π4S

. (36)

Obviously, λl (c± (k)) = 0 when l = k . The other factor in the numerator of λl (c± (k)) is precisely the
polynomial p defined above, which is cubic in l. Using Mathematica, we compute its three roots and
label them l1 (k), l2 (k), l3 (k):
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l1 (k) :=
−B + 4k8/3π4/3S5/3

(
C + 3

√
3
√

D
)1/3

+
(
2k2S2

(
C + 3

√
3
√

D
))2/3

12π4/3 (kS)5/3
(
C + 3

√
3
√

D
)1/3

,

l2 (k) :=
zB − 8k8/3π4/3S5/3

(
C + 3

√
3
√

D
)1/3

− z
(
2k2S2

(
C + 3

√
3
√

D
))2/3

24π (kS)5/3
(
C + 3

√
3
√

D
)1/3

,

l3 (k) := l2 (k),

where

z := 1 + i
√

3,

B := 2 · 21/3k2S2
(
8π8/3k2 + 3M2π2/3τ1

)
,

C := 27AM4 + 56k4π4S + 18k2M2π2Sτ1,

D := 27A2M2 + 4k2π2S2
(
3k2π2 + M2τ1

) (
4k2π2 + M2τ1

)2
+ 4Ak2M4π2S

(
28k2π2 + 9M2τ1

)
.

We see D > 0 given the nature of the constants in our problem; also, we have B,C ∈ R, so l1 (k) is real.
For l2 (k) to be real, we would need

Im
[
zB − z

(
2k2S2

(
C + 3

√
3
√

D
))2/3

]
= 0.

But,

Im
[
zB − z

(
2k2S2

(
C + 3

√
3
√

D
))2/3

]

=
√

3
[
B +

(
2k2S2

(
C + 3

√
3
√

D
))2/3

]
.

Thus, for l2 (k) to be real, we would need

B = −
(
2k2S2

(
C + 3

√
3
√

D
))2/3

.

Since S > 0, k > 0, we see that B is always positive, yet the right-hand side is always negative (recall
that D > 0). Thus, l2 (k) (and, subsequently, l3 (k) as well) necessarily has nonzero imaginary part and
hence cannot be an integer. Therefore, when counting the multiplicity of zero eigenvalues of Lc, we only
need to consider the real root l1 (k), which we label as l (k) . Given k such that (34) holds, we have that
N0 (c± (k)) ≤ 2, since p has one real root l (k).

If l (k) �= k is a positive integer, then we clearly have N0 (c± (k)) = 2 (since in this case both k
and l (k)—and only these two positive integers—correspond to the same zero eigenvalue). Conversely,
if N0 (c± (k)) = 2, then the right-hand side of (36) must have a positive integer root l �= k, and we
established that such l must be the real root l(k) of the polynomial p. �

Remark 13. This work focuses on the N0 (c± (k)) = 1 case; the necessity for this is seen in Sect. 3.2.5. In
a companion paper [5], we study the N0 (c± (k)) = 2 case.

With this spectral information at hand, we are now ready to make some statements about the crossing
number of Lc.
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3.2.5. Necessary and sufficient conditions for odd crossing number.

Proposition 14. Fix constants A ∈ [−1, 1] , γ ∈ R and S, τ1,M > 0. Define the mapping (θ − Θ, γ − Γ) as
before, and let Lc be its linearization at (0, 0; c). Given fixed k, define c± (k) and l (k) as in Proposition
12. Further, put

K := {k ∈ N : AM4 +
(−2γ2Mπ3 + 2A2γ2Mπ3

)
k + 2M2π2Sτ1k

2 + 8π4Sk4 > 0 (37)
and l (k) /∈ N \ {k}}.

Then, Lc has an odd crossing number (specifically, the crossing number is one) at c = c± (k) (which is
real) if and only if k ∈ K. Furthermore, |K| = ∞.

Proof. First, assume k ∈ K. The first condition in the definition of K ensures (34) holds in Proposition
12, so we have that c = c± (k) is real and yields a zero eigenvalue of Lc, so N0 (c± (k)) ≥ 1. The second
condition ensures that N0 (c± (k)) < 2 by the last conclusion of Proposition 12. Thus, N0 (c± (k)) = 1.

For a direct calculation of the crossing number, we examine a perturbation of this zero eigenvalue,
computed via Mathematica:

λk (c± (k) + ε) = ∓ M3

2k3π3S

√
AM4 +

(−2γ2Mπ3 + 2A2γ2Mπ3
)
k + 2M2π2Sτ1k2 + 8π4Sk4

2kM3π
ε (38)

− M3

4k3π3S
ε2.

Note that this expression is exact, since from (33) we have that λk (c) is quadratic in c. Also, in the
leading-order term of (38), the expression under the radical is identical to that which is under the radical
of (35); yet, we have a strict inequality in the first condition in the definition of K. Thus, since this
leading-order coefficient is positive, we see that λk (c± (k) + ε) changes sign as ε passes over zero. Since
we have a multiplicity of one, we see that there is an odd crossing number at c = c± (k) from a direct
application of Definition 6 (and this crossing number is in fact one, as exactly one eigenvalue, counted
with multiplicity, is changing sign as ε passes over zero.

Now, assume an odd crossing number at a real c = c± (k) for some k ∈ N. By definition of c± (k), we
have N0 (c± (k)) ≥ 1, and by Proposition 12, we have N0 (c± (k)) ≤ 2. Thus, either N0 (c± (k)) = 1 or
N0 (c± (k)) = 2. We show that the former implies k ∈ K, and that the latter leads to a contradiction.
In the case N0 (c± (k)) = 1, we necessarily have l (k) /∈ N \ {k}; otherwise, the multiplicity would be 2.
Moreover, c± (k) must be real, and since the crossing number is odd, λk (c± (k) + ε) (which is the only
eigenvalue perturbing from the zero eigenvalue, assumed in this case to be of multiplicity 1) must change
sign as ε passes over 0. Thus, by the same calculation (38), we need the leading-order term to be nonzero,
which forces the strict inequality in the first condition in the definition of K. Thus, we have k ∈ K.

If N0 (c± (k)) = 2, then clearly l (k) �= k is a positive integer. A Mathematica calculation shows

λl(k) (c± (k) + ε) = − (k − l(k))
(−AM4 + 2k l(k)π2S

(
4
(
k2 + k l(k) + [l(k)]2

)
π2 + M2τ1

))
8k [l(k)]4π4S

(39)

∓ M3

2[l(k)]3π3S

√
AM4 +

(−2γ2Mπ3 + 2A2γ2Mπ3
)
k + 2M2π2Sτ1k2 + 8π4Sk4

2kM3π
ε

− M3

4[l(k)]3π3S
ε2.

As expected, the zeroth-order (in ε) term of (39) is precisely λl(k) (c±(k)) (see (36)), which vanishes by
definition of l(k). Then, we can see that the first-order term of (39) is real and nonzero if and only if the
first-order term of (38) is real and nonzero. Thus, as ε passes over zero, either (i) both λk (c± (k) + ε)
and λl(k) (c± (k) + ε) change signs, or (ii) neither of them change signs. In either case, we cannot have
an odd crossing number, which contradicts our assumption.
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Finally, we need to show that |K| = ∞. First, we see that 8π4S is positive, so for sufficiently large
k, the first condition in the definition of K is satisfied. For the second condition, we need to check the
behavior of l (k). Perform the substitution k = 1/δ (δ > 0) and examine the Taylor series expansion of
l (1/δ) about δ = 0 (computed via Mathematica):

l

(
1
δ

)
=

AM4

8π4S
δ3 + O

(
δ5
)
.

We see that

lim
δ→0

l

(
1
δ

)
= 0,

so
lim

k→∞
l (k) = 0

as well. Thus, for sufficiently large k, the second condition in the definition of K holds. Since both the
first and second conditions hold for sufficiently large k, we have that |K| = ∞. �

Remark 15. There are other, “indirect” methods for providing sufficient conditions for an odd crossing
number. One result, which appears in [17], states that if 0 is a geometrically simple eigenvalue of
DxF (0, c0), and (

Q

[
d

dc
DxF (0, c)

]
c=c0

)
v �= 0, (40)

where v is an arbitrary element of the null space of DxF (0, c0) and Q is the projection onto the cokernel
of DxF (0, c0) (note the dimensions in this case are such that the left-hand side is a scalar quantity),
then DxF (0, c) has an odd crossing number at c = c0. For our problem, we note that for matrices A,
coker(A) = ker (A∗), and thus, we examine

wk (c0) ·
([

d

dc
L̂c (k)

]
c=c0

vk (c0)

)
(41)

where vk (c0) is as defined in (32), wk (c0) is the eigenvector corresponding to the zero eigenvalue of[
L̂c0 (k)

]∗
, and the dot indicates the usual Euclidean dot product.

We arrive at precisely the same condition for (41) to be nonzero as the strict inequality in the definition
of K (37). This, coupled with the assumption that the null space is in one dimension, allows us to conclude
that if k ∈ K, then the crossing number is odd. Unfortunately, (40) is stated as only a sufficient condition
for odd crossing number, and so we could not conclude the “only if” direction of Proposition 14 by using
this method alone. Because of this, and because the nature of the problem fortunately allowed for the
method to be manageable and conclusive, we favored a “direct” verification of an odd crossing number
(namely calculations (38) and (39)).

3.2.6. Global bifurcation conclusion. We can now apply Theorem 8 and cast the conclusions of this
abstract theorem in the language of our problem.

Theorem 16. Define U0,0 := ∪b,h>0Ub,h, where Ub,h is as defined in (30). Let S ⊆ U0,0 be the closure (in
H2

per,odd × H1
per,0,even × R) of the set of non-trivial (i.e., θ, γ1 are not both zero) solutions of the traveling

wave problem (θ − Θ (θ, γ1; c) , γ1 − Γ (θ, γ1; c)) = 0. Furthermore, let c± (k) and K be as in Propositions
12 and 14. For fixed k ∈ K, define C± (k) to be the connected component of S that contains (0, 0; c± (k)).
Then, one of the following alternatives is valid:
(I) C± (k) is unbounded; or

(II) C± (k) = C+ (j) or C± (k) = C− (j) for some j ∈ K with j �= k; or
(III) C± (k) contains a point on the boundary of U0,0.
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Proof. Assume k ∈ K. Given b, h > 0, we have by Proposition 11 that (Θ,Γ) is compact on Ub,h, and by
Proposition 14, there is an odd crossing number of the linearization at c = c± (k). Since the conditions
for Theorem 8 are met, we can conclude that one of the outcomes (i), (ii), (iii) in the conclusion of
this theorem occurs (using U = Ub,h). The outcomes (i) (ii) correspond exactly with outcomes (I), (II)
above. Taking a union over all b, h > 0, outcome (iii) yields outcome (III) above via a simple topological
argument. �

3.3. Proof of main theorem

We are now ready to prove Theorem 4. With the bifurcation results of Theorem 16 at hand, this proof
will largely be comprised of matching the outcomes (I)–(III) above with the outcomes (a)–(e) in Theorem
4. Many of these conclusions can be reached through arguments identical to (or closely analogous to)
those in [10].

Proof. First, note that Proposition 14 gives us that |K| = ∞; hence, by Theorem 16, we have a countable
number of connected sets of the form C± (k) (k ∈ K) that satisfy one of the outcomes (I) – (III).

We can immediately see that outcome (II) means (e).
Next, consider outcome (III). Recall the definition of U0,0 in Theorem 16, and note that we can write

U0,0 =
{

(θ, γ1; c) ∈ X : cos θ > 0, Z̃ [θ] ∈ C2
0 and Z̃ [Θ (θ, γ1; c)] ∈ C5

0

}
,

where

X = H2
per,odd × H1

per,0,even × R.

Outcome (III) means either cos θ = 0 or Z̃ [θ] = Z̃ [Θ (θ, γ1; c)] /∈ C5
0 . As in [10], cos θ = 0 implies (a). If

Z̃ [θ] /∈ C5
0 , we have that the interface self-intersects by the same argument as in [10] (the s = 5 regularity

does not affect this argument). This is outcome (d).
Outcome (I) (i.e., unboundedness of the solution set) can lead to more outcomes in this main theorem.

If C± (k) is unbounded, then it contains a sequence of solutions (θn, γ1,n; cn) in U such that

lim
n→∞

(
|cn| + ‖θn‖H2

per
+ ‖γ1,n‖H1

per

)
= ∞. (42)

We first note that, as in [10], if (a) does not hold, then σn is bounded above independently of n. For the
remainder of this proof, assume (a) does not hold, and hence, σn is bounded above independently of n.
At least one of the three terms of (42) must diverge; we subsequently examine each case.

If |cn| → ∞, yet ‖θn‖H2
per

+ ‖γ1,n‖H1
per

is bounded, then either γ �= 0 or A �= 0 is violated as in [10]
(yet |cn| → ∞ is outcome (f), which may be possible, independent of the other outcomes, when γ = 0
and A = 0). To see this, first recall that (17) implies

‖cn sin (θn)‖H2 = ‖Re (W ∗
nNn)‖H2 .

Lemma 5 of [10] shows us that the right-hand side is bounded, so we have that cn sin (θn) is bounded in
H2. Since by assumption |cn| → ∞, this forces ‖sin (θn)‖H2

per
to approach 0; then, by Sobolev embedding,

we have sin (θn) → 0 uniformly. Thus, θn must converge to a multiple of π; but, by continuity and the
fact that θ is an odd function, we have θn → 0 uniformly, and clearly |cos (θn)| → 1 (uniformly) as well.
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Now, recall (11):

0 = − S

τ1σ2

(
∂4

αθ +
3θ2αθαα

2
− τ1σ

2θαα

)
− 2Ãσ

τ1
(cos θ)α

+
1
τ1

((c cos θ − Re (W ∗T )) γ)α

− A

τ1

(
∂α

(
γ2
)

4σ
+ 2σ sin θ + σ∂α

{
(c cos θ − Re (W ∗T ))2

})
,

or

0 = S

(
−∂4

αθ

σ2
− 3θ2αθαα

2σ2
+ τ1θαα

)
− 2Ãσ (cos θ)α

+ ((c cos θ − Re (W ∗T )) γ)α

−2A

(
∂α

(
γ2
)

σ
+ σ2 sin θ +

1
2
σ∂α

{
(c cos θ − Re (W ∗T ))2

})
.

We integrate twice with respect to α and substitute our sequences of solutions:

0 = S

⎛
⎝−∂2

αθn

σ2
n

−
α∫

(∂αθn)3

2σ2
dα + τ1θn

⎞
⎠ − 2Ãσn

α∫
cos θndα

+

α∫
(cn cos θn − Re (W ∗T )) γndα

−2A

α∫ ⎧⎨
⎩
⎡
⎣1

8
γ2

n

σn
+ σ2

n

α∫
sin θndα +

σn

2
(cn cos θn − Re (W ∗

nTn))2
⎤
⎦
⎫⎬
⎭dα.

Given that ‖θn‖H2
per

is bounded, we have that

S

⎛
⎝−∂2

αθn

σ2
n

−
α∫

(∂αθn)3

2σ2
dα + τ1θn

⎞
⎠

is bounded in L2
per, as is the “mass” term

2Ãσn

α∫
cos θn dα.

Thus,
α∫

(cn cos θn − Re (W ∗T )) γndα (43)

−2A

α∫ ⎧⎨
⎩
⎡
⎣1

8
γ2

n

σn
+ σ2

n

α∫
sin θn dα +

σn

2
(cn cos θn − Re (W ∗

nTn))2
⎤
⎦
⎫⎬
⎭dα

must be bounded in L2
per.

Now, assume that A = 0. With this assumption, we are left with the conclusion that
α∫

(cn cos θn − Re (W ∗T )) γn dα
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is bounded in L2
per. Again, Lemma 5 of [10] shows Re (W ∗T ) is bounded in H1

per, so since γn is also
assumed to be bounded in H1

per, we have that
α∫

Re (W ∗T ) γn dα

is bounded in H2
per and hence is also bounded in L2

per. Thus,
α∫

cn cos (θn) γn dα

is subsequently bounded in L2
per as well. Since |cn| → ∞ , this forces

α∫
γn dα → 0

(
in L2

per

)
.

However, we can write γn = γ1,n + γ, where γ1,n has mean zero. Since
α∫

γ1,ndα → 0
(
in L2

per

)
,

we need
α∫

γdα = γα → 0
(
in L2

per

)
.

This forces γ = 0.
Now, suppose A �= 0. Divide (43 ) by c2n:

α∫ (
1
cn

cos θn − 1
c2n

Re (W ∗T )
)

γndα (44)

−2A

α∫ ⎧⎨
⎩
⎡
⎣1

8
γ2

n

c2nσn
+

σ2
n

c2n

α∫
sin θn,dα +

σn

2c2n
(cn cos θn − Re (W ∗

nTn))2
⎤
⎦
⎫⎬
⎭ dα.

Since (43) is bounded in L2
per, we have that (44) must approach 0. Examining each term of (44), we see

that all, but possibly
α∫

σn

2c2n
(cn cos θn − Re (W ∗

nTn))2 dα

clearly approach 0. After expanding the integrand, we see that all terms would in fact approach zero on
their own merit except for the leading-order (in cn) term

α∫
σn

2c2n
c2n cos2 θndα =

1
2

α∫
σn cos2 θndα.

Since all other terms of (44) approach zero, this forces

1
2

α∫
σn cos2 θndα → 0.

Thus,
σn cos2 θn → 0,

which is a contradiction, since |cos θn| → 1 from earlier.
In whole, we have a contradiction between the statements (i) |cn| → ∞, but ‖θn‖H2

per
+ ‖γ1,n‖H1

per

is bounded, and (ii) either γ �= 0 or A �= 0. Thus, if we assume either γ �= 0 or A �= 0 and |cn| → ∞,
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we must necessarily have ‖θn‖H2
per

+ ‖γ1,n‖H1
per

additionally unbounded; hence, in this case, outcome (f)
implies other outcomes as in [10]. But, if both A = 0 and γ = 0, we do not exclude the possibility
|cn| → ∞, but ‖θn‖H2

per
+ ‖γ1,n‖H1

per
is bounded, so we list (f) as another possible outcome.

With the case |cn| → ∞ handled, we now turn our attention to the case in which ‖θn‖H2
per

(the second
term of (42)) diverges. This means that one of θn, ∂αθn, or ∂2

αθn diverges. Recall that κ (α) = ∂αθ (α) /σ,
so ∂ακ (α) = ∂2

αθ (α) /σ. Since

2πcos θ =

2π∫
0

cos (θ (α′)) dα′ =
M

σ
,

we cannot have σn → 0. Since σn is bounded above as well, then if ∂2
αθn diverges, then so does the

derivative of curvature. This is outcome (b).
Finally, it is shown in [10] that ‖γ1,n‖H1

per
→ ∞ implies either outcome (a) or outcome (c).

Note that if curvature or the jump of the tangential component of fluid velocity themselves is arbitrarily
large, then (respectively) (b) or (c) occurs as well, so we omit these as separate outcomes. �

In the next section, we proceed to numerically compute some of these diverse solution curves.

4. Numerical methods and results

4.1. Methods

For our numerical computations, we employ methods very similar to those in [2]. Our computations use
the version of our equations given by (12) and (17 ). We specify the horizontal domain width M = 2π
(α ∈ [−π, π]) and project each of θ, γ onto a finite-dimensional Fourier space:

θ (α) =
k=N∑

k=−N

ak exp (ikα) , γ (α) =
k=N∑

k=−N

bk exp (ikα) .

As in the formulation of our problem, we work with odd, real θ and even, real γ. This forces a−k = −ak

(so a0 = 0) and b−k = bk (and clearly b0 = γ). Thus, with γ specified a priori, we can see that a
traveling wave solution (θ, γ; c) is determined by the 2N coefficients a1, . . . , aN , b1, . . . , bN , along with the
wave speed c. To solve for these 2N + 1 values, we project both sides of Eqs. (12), (17) onto each basis
element exp (ikα), 1 ≤ k ≤ N . This yields a system of 2N algebraic equations; to complete the system,
we include another equation that allows us to specify the amplitude of the solution.

The most difficult, non-obvious portion of the computation of these algebraic equations is, perhaps,
the computation of the Birkhoff–Rott integral W ∗ in Fourier space. However, as in [10] (and what was
used in our “identity plus compact” formulation (27), (28)), we can write W ∗ as the sum

W ∗ =
1
2
H

(
γ

zα

)
+ K [z] γ,

where, as before, H is the Hilbert transform, and the remainder K [z] γ can be explicitly written as

K [z] γ (α) =
1

4πi
PV

2π∫
0

γ (α′)
[
cot

(
1
2

(z (α) − z (a′))
)

− 1
∂α′z (α′)

cot
(

1
2

(α − α′)
)]

dα′.

The Hilbert transform H is easily computed in Fourier space, as

Ĥμ (k) = −i sgn (k) μ̂ (k) .
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Fig. 1. An example computation of an entire branch of traveling waves, with S = 0.25, τ1 = 2, A = 1, and Ã = 0.2. A
sampling of wave profiles at different locations on the branch is depicted in the left panel. These profiles are marked with
stars on the speed amplitude curve in the right panel. The branch terminates with a self-intersecting profile

The remainder K [z] γ is computed with the trapezoid rule, in an “alternating” sense (i.e., to evaluate
this integral at an “even” grid point, we sum the “odd” nodes, and vice-versa).

We proceed to numerically solve these 2N + 1 algebraic equations with Broyden’s method (a quasi-
Newton method which approximates the Jacobian of the system with a rank-one update to the Jacobian
at the previous iteration; see [13]). A small-amplitude solution to linearized Eq. (31) (with linear wave
speed c± given by (35)) is used as the initial guess for Broyden’s method, where amplitude (displacement)
is specified as the y-coordinate of the free surface at the central node x = 0. After iterating to a solution
within a desired tolerance, we record the solution.

Then, as is typically done in these types of continuation methods, we look for more solutions along
the same branch by perturbing the previously computed solution by a small amount in some direction
and then using this perturbation as an initial guess for the next application of Broyden’s method. The
perturbation direction is called the continuation parameter. We begin using total displacement as the
continuation parameter. If a given “step size” of displacement does not yield convergence, then we
choose a smaller (i.e., halve the previous step size) perturbation from the last known solution as an initial
guess. However, if the step size drops below a given threshold, we switch to using a Fourier mode as our
continuation parameter. If the step size for this continuation process becomes to small, we subsequently
continue in higher Fourier modes.

We follow a branch of solutions until the solution self-intersects (i.e., outcome (d) of Theorem 4),
returns to the trivial solution [i.e., outcome (e)], or becomes to large to resolve [evidence of outcome (a)].
After any such termination criterion is achieved, we cease the continuation process and record all solutions
along the branch. An example of a computed branch of waves which terminates in self-intersection is shown
in Fig. 1.

4.2. Results

In this section, we present computations of global branches of traveling hydroelastic waves. Global
branches are computed which terminate in a self-intersecting profile, as well as branches whose most
extreme representative is a stationary wave, c = 0. We pay particular focus to the role of Ã, a proxy for
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Fig. 2. An example of a profile just before the self-intersecting configuration, for the branch of waves in Fig. 1. The wave
is depicted in the left panel. The right panel depicts the Fourier modes of the displacement, when N = 128 points, marked
with green plus signs, and N = 256 points, marked with orange circles

the mass of the ice sheet. This parameter was chosen as it appears only in the nonlinearity; the linear
speeds and infinitesimal profiles are independent of Ã. To avoid searching a vast parameter space, we have
restricted M = 2π, γ̄ = 0, S = 1/4, τ1 = 2 and A = 0 (density-matched fluids) or A = 1 (hydroelastic
water waves). A parameter study of the dependence on A and γ̄ exists for the non-elastic problem in [4].

The quasi-Newton iteration described in the previous section uses an error threshold of 10−9, approx-
imately the size of the floating point errors in approximating the derivatives in the Jacobian matrix of
the quasi-Newton iteration via finite difference approximations. The error is defined as the infinity norm
of the Fourier modes of the projection of (12) and (17). The bulk of the numerical results use N = 128
points to discretize the interval of the pseudo-arclength α ∈ [0, 2π). When N = 128, the most extreme
waves computed have Fourier modes which decay to approximately this threshold; thus, the choice of our
discretization and error threshold is self-consistent. As a check to see that the waves at this resolution
are resolved to the reported threshold, we also computed a single, representative branch at N = 256.
The waves profiles agree within the expected threshold; the Fourier modes of the extreme wave on this
branch are reported at both resolutions which are shown in the right panel of Fig. 2. The profile used for
this comparison is reported in the left panel of Fig. 2.

From the perspective of the global bifurcation theorem, self-intersecting waves result in a branch
terminating at finite amplitude, case (d) of the theorem. Stationary waves signify a return to trivial, case
(e) of the theorem. At a stationary wave, a branch of waves with positive speed is connected to a branch
of traveling waves with negative speed. This setup can equally be interpreted as a branch which begins at
one flat state configuration with one speed and terminates at another flat configuration with a different
speed.

We have numerically computed two examples of bifurcation surfaces, composed of a continuous family
of branches of traveling waves with varying Ã. These bifurcations surfaces are presented in Fig. 3. As
extreme examples, we computed bifurcations surfaces with A = 0, the density-matched case, and A = 1
where the upper fluid is a vacuum. Each wave on these surfaces has the same values of S = 0.25 and
τ1 = 2. We present these surfaces in the three-dimensional space of c, Ã, and total displacement h =
max(y) − min(y). We chose to compute the surfaces for varying Ã, because the linear wave speeds don’t
depend on Ã. Thus, the changes in the surface for different Ã are fundamentally due to large-amplitude,
nonlinear effects. In both computed surfaces, (A = 0 and A = 1), we observe that for small Ã, branches
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Fig. 3. Two examples of bifurcation surfaces are depicted in the parameter space of Ã, c, and the total interface displacement
h = max(y) − min(y). These waves were computed with S = 0.25, τ1 = 2 and A = 1 (left panel) and A = 0 (right panel).

Branches with small Ã, in the back of the figure, terminate in self-intersecting waves, whose locations are marked with black
triangles. In both cases, there is a critical Ã, corresponding to a switch from branches which terminate in self-intersecting
waves to those which end in stationary waves, whose locations are marked with red stars. The stationary waves mark the
merger of the surfaces of positive and negative speeds
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Fig. 4. Numerical evidence of a branch of waves which contains interfaces of arbitrary length, case (a) of the main theorem.
In the left panel, the displacement of the largest wave, h, for A = 0, S = 0.25, and τ1 = 2, is depicted as a function of
Ã. Numerical computations are marked, either self-intersecting waves or stationary waves, using the marking convention
in Fig. 3. As a guide, the value h = 5Ã−1/2 is marked with a solid line; waves exist in the shaded region. In the center
are profiles computed at (Ã, A, S, τ1) = (0, 0, 0.25, 2); no evidence of a largest profile was found. On the right is the speed
amplitude curve, with a logarithmic horizontal axis, for the same configuration as the center. The speed limits on a finite
value; thus, this is not case (f)

of traveling waves terminate in self-intersection. After some critical Ã, the extreme wave on a branch is
a stationary wave; the branches of waves with positive speed are connected to branches of waves with
negative speed, a “return-to-trivial” global bifurcation.

In addition to computing bounded branches of traveling waves, we observe evidence of an unbounded
branch. In the case where the fluid densities match A = 0 and the interface has no mass Ã = 0, we found
no evidence of a largest wave. Considering the limit as Ã → 0, we observe a largest self-intersecting wave
with total displacement h ∼ Ã−1/2, suggesting that wave when Ã → 0, the interfaces can be unboundedly
large. This behavior is depicted both in the right panel of Fig. 3 and in the left panel of Fig. 4.



 141 Page 26 of 27 B. F. Akers, D. M. Ambrose and David W. Sulon ZAMP

In search of an unbounded branch of traveling waves, we computed a branch of traveling waves in the
configuration, (Ã, A, S, τ1) = (0, 0, 0.25, 2). The results of this computation are in the center and right
panels of figure 4. In the center panel are examples of increasingly large profiles of traveling waves. We
observe no evidence of a largest profile or any tendency toward self-intersection. The speed’s dependence
on displacement is depicted in the right panel of Fig. 4. The speed limits on a finite value, as the profiles
become arbitrarily large. We consider this configuration an example of case (a) of the main theorem.
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[30] Wang, Z., Părău, E.I., Milewski, P.A., Vanden-Broeck, J.-M.: Numerical study of interfacial solitary waves propagating

under an elastic sheet. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 470(2168):20140111, 17 (2014)
[31] Wang, Z., Vanden-Broeck, J.-M., Milewski, P.A.: Two-dimensional flexural-gravity waves of finite amplitude in deep

water. IMA J. Appl. Math. 78(4), 750–761 (2013)
[32] Wilton, J.R.: LXXII. On ripples. The London, Edinburgh, and Dublin. Philos. Mag. J. Sci. 29(173), 688–700 (1915)
[33] Wolfram Research Inc. Mathematica 10.3 student edition, Champaign, IL (2015)

Benjamin F. Akers
Department of Mathematics and Statistics
Air Force Institute of Technology, WPAFB
2950 Hobson Way
Dayton
OH 45433
USA
e-mail: benjamin.akers@afit.edu

David M. Ambrose and David W. Sulon
Department of Mathematics
Drexel University
3141 Chestnut Street
Philadelphia PA19104
USA
e-mail: dws57@drexel.edu

David M. Ambrose
e-mail: dma68@drexel.edu

(Received: April 6, 2017; revised: October 24, 2017)


	Periodic traveling interfacial hydroelastic waves with or without mass
	Abstract
	1. Introduction
	2. Governing equations
	2.1. Equations of motion
	2.2. Traveling wave ansatz
	2.3. Periodicity considerations
	2.4. Final reformulation

	3. Global bifurcation theorem
	3.1. Main theorem
	3.2. Global bifurcation results
	3.2.1. General global bifurcation theory
	3.2.2. Mapping properties
	3.2.3. Linearization calculation
	3.2.4. Eigenvalue calculation
	3.2.5. Necessary and sufficient conditions for odd crossing number
	3.2.6. Global bifurcation conclusion

	3.3. Proof of main theorem

	4. Numerical methods and results
	4.1. Methods
	4.2. Results

	References




