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• Global bifurcation branches of internal capillary–gravity waves are computed.
• All possible behaviors from a global bifurcation theorem are realized.
• A numerical method is developed for computing the boundary of bifurcation surfaces.
• The role of the waves’ second harmonic in its bifurcation structure is discussed.
• Steep waves limited by self-intersection at both crests and troughs are computed.
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a b s t r a c t

A vortex sheet formulation of irrotational, incompressible Euler flow is used to compute periodic traveling
waves at the interface between two constant-density, two-dimensional fluids, including waves with
overturned crests. Branches of traveling waves are computed via numerical continuation, which are
jointly continuous in the physical parameters: Bond number, Atwood number and mean shear. Global
branches are computed, for various choices of parameters, illustrating the termination criteria of the
global bifurcation theorem of Ambrose et al. (2015). The dependence of the branches, and their termini,
on the physical parameters are probed via a boundary continuation method. Bifurcation surfaces are
computed; these surfaces are both overturned and self-intersecting. The connection between the second
harmonic of a Stokes’ wave expansion and the shape of these surfaces is discussed.

Published by Elsevier Masson SAS.

1. Introduction

Westudy the irrotational, incompressible Euler equations at the
interface between two constant-density fluids; these are an upper
fluid and a lower fluid. The fluid regions are infinitely deep in the
vertical direction and periodic in the horizontal direction. We seek
traveling wave solutions, or solutions for which the free surface is
of permanent form and steadily translating. Waves are computed
on this interface numerically, including the effects of the physical
parameters of surface tension, gravity, mean shear, and density
ratio. We compute large amplitude solutions, including those with
overturned crests or troughs, up to the limit of self-intersection.

Since the fluids are irrotational in the bulk, the vorticity is equal
to zero inside either fluid region. The velocity may jump at the
interface (specifically, the tangential component of the velocity
may jump, while the normal component must be continuous) [1],
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thus, the vorticity is not identically zero but is instead measure-
valued and supported only on the interface. The interface is thus
referred to as a vortex sheet.

We denote the densities of the fluids as ρ1 and ρ2, which can
each be any non-negative, constant value (not both zero). A useful
non-dimensional quantity, then, is theAtwoodnumber, At = (ρ1−

ρ2)/(ρ1+ρ2). The surface tension parameter is τ , which is taken to
be a positive constant, and the constant acceleration due to gravity
is g , which may be any real value.

The present work has its foundation in prior work by three of
the authors. In [2], a novel formulation for the interfacial traveling
wave problemwas introduced, and was used for both analysis and
computing. In particular, in the case in which the two fluids have
equal density (i.e., At = 0), a local bifurcation theorem was ap-
plied to show the existence of small-amplitude traveling waves,
for any value of the mean shear, for fixed, nonzero surface ten-
sion. Numerical solutions were computed using a quasi-Newton
method in Fourier space, similar to [3]. Subsequently, the same au-
thors followed up in [4], in which water waves were studied. The
water wave is the special case of the vortex sheet in which the up-
per fluid is taken to have density equal to zero (i.e., At = 1); the
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gravity parameter was able to be taken to be positive, negative, or
zero. The analysis of this work used the implicit function theorem
to demonstrate that Crapperwaves [5], which are a family of exact,
pure capillary travelingwaterwaves, can be perturbed through the
inclusion of gravity; see also [6,7] for further developments in this
area. The computational portion of [4] again used a quasi-Newton
method in Fourier space to compute these gravity-perturbed Crap-
per waves; a new wave of maximum amplitude was found when
the gravity parameter takes a specific small, negative value.

Further analysis has since been carried out by twoof the authors
and Strauss [8]. In this work, a global bifurcation theorem was
proved, for traveling Stokes’ waves between fluids of arbitrary
constant densities. In the case that the two fluids have different
densities, the main theorem of [8] specializes to the following:

Theorem 1. For all choices of the surface tension parameter τ > 0,
the spatial periodicity parameter M > 0, the mean shear parameter
γ0 ∈ R, the densities of the fluids ρ1, ρ2 ≥ 0 (with ρ1 ≠ ρ2)
and the gravity parameter g ∈ R, there exists a countable number
of connected sets of smooth non-trivial symmetric periodic traveling
wave solutions (bifurcating from a quiescent equilibrium) for the two-
dimensional gravity–capillary vortex sheet problem. Each of these
connected sets has at least one of the following properties:

(a) it contains waves whose interfaces have lengths which are
arbitrarily long;

(b) it contains waves whose interfaces have curvature which is
arbitrarily large;

(c) it contains waves where the jump in the tangential component of
the fluid velocity across the interface or its derivative is arbitrarily
large;

(d) its closure contains a wave whose interface contains a point of self
intersection;

(e) it contains a sequence of waves whose interfaces converge to a flat
configuration but whose speeds contain at least two convergent
subsequences whose limits differ.

One might say that a shortcoming of the theory of global
bifurcations is that, while a variety of possible behaviors along
bifurcation curves can be identified, the theory does not generally
identify which of these behaviors in fact occur. We thus address
this question via simulation. We have been able to find all of the
behaviors, (a) through (e), computationally, for some choices of
parameter values. For example, cases (a), (b), and (c) all occur in
the density matched cases, and are reported in [2]. Case (d) occurs
at the generic choice of parameter values in this work, and is well
known to occur for the Crapper family ofwaves (At = 1, g = 0) [5].
The most controversial is case (e), since in analytical work in the
absence of surface tension, this phenomenon can typically be ruled
out by a maximum principle argument; one example of such an
argument is in [9]. In the presence of surface tension, themaximum
principle argument is not available because of the larger number of
derivatives.We find that outcome (e) can occur for certain negative
values of the gravity parameter; this is illustrated in Fig. 1.

In addition to computing individual branches of traveling
waves, we seek to understand how these branches depend on the
physical parameters. We focus on the termini of these branches,
seeking to observe how the extreme wave’s character varies
from branch to branch. The extreme wave in the generic case is
self intersecting, case (d) of the global bifurcation theorem. We
ask whether this extreme wave, with a self-intersecting profile,
includes a bubble (or droplet) entrained into the upper or lower
fluid.We explore the extent to which small amplitude asymptotics
can be used to predict this behavior. We also compute surfaces on
which traveling waves exist (global bifurcation branches with one
of the physical parameter varied) and observe the character of the
boundaries of these surfaces.We develop a new numerical method

to compute these boundaries called BCM (boundary continuation
method). We observe that these surfaces, just like the waves, are
both overturned and self-intersecting. BCM allows us to compute
traveling waves which are not on a global bifurcation branch as
described by Theorem 1, i.e. they are not on branches of traveling
waves which are connected to small amplitude with fixed physical
parameters.

There are numerous studies of the similar problem without
surface tension. For example, the case of τ = 0 with At varying
has been numerically studied by Vanden-Broeck and Turner
[10,11]. They observe that the maximal waves are near turning
points in the speed–amplitude plane (i.e., the bifurcation curves
spiral in). Another early study is byMeiron and Saffmanwith τ = 0
and different values of At.

With surface tension, the special cases At ∈ {0, 1} have been
studied several times, including, aswe havementioned, by some of
the authors in [2,4,8].Modern studies of the caseAt = 1,with small
surface tension τ ≈ 0, include both the infinite [12] and finite
depth cases [13]. A host of classical and overturned travelingwater
waves (At = 1) have been computed by Okamoto and colleagues,
manyofwhich are presented in themanuscript [14]. Our numerical
work differs in flavor from much of that in the literature in our
focus on the global bifurcation picture, computing the location
in parameter space of waves of extremal displacement and self
intersection. The numerical methods described herein require that
the vortex sheet does not self intersect; traveling waves can be
computed with self intersections (or bubbles) via other methods,
see [15].

Other works have considered the case of two fluids, an upper
layer of finite depth and a vacuum above; in this setting, there
is an interface between the two fluids, and an upper free surface
[16,17]. Finally,wemention that there are also experimentalworks
on this subject, such as [18–21]. Of course, in addition to periodic
traveling waves, solitary waves are also considered, for example in
the numerical work [22].

The works just described all considered the Euler equations.
Of course, in interfacial fluid dynamics, there are also many
approximate models which have been developed, such as the
Korteweg–de Vries equation and the Benjamin–Ono equation,
among others. Some relevant papers using model equations
are [23–26]. Another kind of approximation technique is amplitude
expansion methods; the papers [27–30] make such expansions
in the manner of Stokes. The beginnings of such an amplitude
expansion for internal waves on the vortex sheet are derived
herein.

The remainder of the paper is organized as follows. In Section 2,
we will give the equations of motion for our capillary–gravity
interfacial fluid problem. This includes giving the traveling wave
ansatz, as developed by the authors in [2]. In Section 3, a
weakly nonlinear theory is developed, and the second harmonic
of a Stokes’ wave is calculated for generic parameter values.
In Section 4, our numerical methods are described, including
descriptions of two methods for exploring parameter space: one
based on adaptive sampling and another which uses continuation
to trace the boundaries of where traveling waves exist (BCM).
Numerical results from these algorithms are given in Section 5.
Conclusions and future research areas are presented in Section 6.

2. Formulation

We start from the formulation developed by the same authors
in [2,4], which we now describe. The traveling wave equations
are derived from the evolution equations for a vortex sheet at the
interface of two incompressible irrotational fluids. Aswith any free
boundary problem, both the interface and its evolution must be
described. We write the free surface as (x(α, t), y(α, t)), define
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Fig. 1. Examples of branches of waves in case (e) of the global bifurcation theorem, where the flat state at one speed is connected to the flat state at another speed. The
numerically computed branches, curves relating speed c and displacement, h = max(y) −min(y), are on the left. The largest amplitude profiles are standing waves (c = 0).
These standing waves are marked by stars in the left panel, and have profiles depicted in the right panel. All branches are computed with τ = 2, At = 0.5, and the Bond
number varies between branches: σ ∈ [−1.8, −0.09]. (The Bond number is defined in Section 2.)

its normal velocity to be U , and its tangential velocity to be V .
The normal velocity of the fluid on the interface is W · n̂, which
must match the interface normal U for continuity. The tangential
velocity of the fluid on the interface is W · t̂ , which appears
in the evolution equation for the vortex sheet strength (1), but
need not match V . We choose to describe the interface motion
in terms of its vortex sheet strength γ (α, t) and tangent angle
θ = arctan(yα/xα). In terms of these variables, the change in
vortex sheet strength is

γt =
2π
L

θαα +
2π
L

((V − W · t̂)γ )α

− 2At

2π
L

Wt · t̂ +
σ L
2π

sin(θ) +
π2

L2
γ γα

− (V − W · t̂)(Wα · t̂)


. (1)

The parameterσ =
g

k2τ
is the Bondnumber,measuring the relative

importance of gravity to surface tension (in which k is the typical
wavenumber); the number At =

ρ1−ρ2
ρ1+ρ2

is again the Atwood ratio
comparing the densities of the upper and lower fluids. The length
of the interface over one period is L, in a dimensionless coordinate
system where the horizontal period of the wave is 2π . The water
wave problem can be studied by setting At ≈ 1, whereas internal
oceanic waves and atmospheric vortex sheets have At ≈ 0. Eq. (1)
states that changes in vortex sheet strength occur due to curvature
of the surface, advection of the vortex sheet strength, inertia, and
gravitational forces. A full derivation of Eq. (1) from the potential
flow equations can be found in [1].

The function W is complexification of the fluid velocity at the
free surface, defined by the closure

W =
1

4iπ
PV

 2π

0
γ (α′, t) cot


1
2
(z(α) − z(α′))


dα′, (2)

with z(α) = x(α) + iy(α) being the complexified location of the
free surface. As noted in [31], the tangential velocity of the interface
is not a physical quantity, and need not match the tangential
velocity of the fluid particles on the interface. Thus we are free
to adjust the tangential velocity of the surface, for example to
preserve an arclength based parameterization, as we do here via

Vα = Uθα. (3)

Paired with Eq. (1) is the kinematic equation,

θt = Uα + Vθα. (4)

It is the evolution Eqs. (1) and (4), and their closures (2) and (3),
that we refer to as the vortex sheet formulation.

We seek traveling waves whose interface has a regular
parameterization, but are not necessarily single-valued functions
of x. Rather than the traditional traveling wave ansatz, θ = f (x −

ct), we use the method developed in [2,4] (see also [8]), which
instead imposes xt = c , yt = 0. This form of the traveling wave
ansatz in turn implies

U = −c sin(θ), V = c cos(θ), and γt = 0. (5)

With the ansatz (5), traveling waves to the vortex sheet
formulation are solutions (θ(α), γ (α), c) of the system

θαα + ((c cos(θ) − W · t̂)γ )α − 2At


σ L2

4π2
sin(θ) +

π

2L
γ γα

−
L
2π

(c cos(θ) − W · t̂)(Wα · t̂)


= 0, (6a)

W · n̂ + c sin(θ) = 0. (6b)

(Note that the Wt = 0 for traveling waves and thus some terms in
(1) disappear.) For the remainder of the paper we discuss solutions
of (6), beginning with small amplitude asymptotics, followed by
numerical solutions.

3. Weakly nonlinear theory

In this section we derive the asymptotics of traveling waves
as a series in wave slope, ϵ. The first weakly nonlinear correction
to infinitesimal, linear waves is calculated exactly. At this level
of approximation, one may predict whether, at small amplitude,
the waves have steeper troughs or crests, as noted in [29,30]. This
approximation is used as an initial guess for small amplitudewaves
in a quasi-Newton numerical solver. In the numerical section that
follows, we consider a heuristic based on the small amplitude
prediction: Dowaveswhich have steeper crests and flatter troughs
at small amplitude have increasingly steep crests as amplitude
increases, and are they then limited in amplitude by a wave which
entrains a bubble into the upper fluid? On the other hand waves
with flatter crests and steeper troughs at small amplitudemayhave
increasingly steep troughs as amplitude increases, and could then
be limited in amplitude by a wave which entrains a bubble into
the lower fluid. If this heuristic were valid, then small amplitude
asymptotics would predict large amplitude behavior.
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Fig. 2. Left: Profiles of a typical branch of traveling waves, with σ =
1
2 ,At = 0.5, γ0 = 0.5, at a sampling of amplitudes are overlaid. The largest computed profile is marked

with the thicker line. Right: Wave profiles from Eq. (10) with ϵ = 0.25 and d1 = −1, 0, and 1, marked with plus signs, a solid line, and circles respectively. When d1 is
positive the profile has steeper troughs and flatter crests; when d1 is negative the profiles have steeper crests and flatter troughs.

To calculate thewave’s asymptotics, a Stokes’ expansion [32,33]
is directly substituted into (6), assuming

θ =

∞
n=1

ϵnθn γ =

∞
n=0

ϵnγn c =

∞
n=0

ϵncn.

In the non-dimensional form, the linear solutions havewavelength
2π , and non-trivial solutions exist at two phase speeds

c0 =
Atγ0

2
±


1
2

+ σAt −
(1 − At2)

4
γ 2
0 . (7)

The mean shear, γ0 cannot be determined from the equations, and
should be thought of as a parameter to be specified, like the Bond
or Atwood numbers (although not just any value of γ0 is allowed,
as we desire real valued speeds c0). With phase speed given by (7),
the linear solution to (6) can be written as

θ1 = eix + ∗ and γ1 = −2ic0eix + ∗,

where the ∗ refers to the complex conjugate of the preceding
terms; thus, the solutions are real. Continuing to the next order,
for general γ0,At, σ , the speed is uncorrected: c1 = 0. We have
calculated the corrections to the tangent angle and vortex sheet
strength

θ2 = id1e2ix + ∗, and γ2 = D1e2ix + ∗,

with

d1 =
2γ0c0 − 2Atc20 −

1
2Atγ

2
0

Atσ − 1 −
1
2γ

2
0

, (8a)

D1 =

1
4γ0(4τ + 2σAt − γ 2

0 ) + 3c20γ0 − 4Atc30
Atσ − 1 −

1
2γ

2
0

. (8b)

These corrections are singular, due to a triad resonance, at

γ0 = ±


2(Atσ − 1), and σAt = (1 + γ 2

0 /2). (9)

Notice that neither of these singularities occurs if σ = 0
(pure capillary waves). The latter singularity is the internal wave
analogue of the Wilton ripple [34], due to the interplay of gravity
and surface tension, and does not require amean shear. The former
is a shear-based singularity,whose presence suggests the existence
of a new type of ripple-like traveling waves. This singularity of the
d1 is not the Kelvin–Helmholtz instability, which happens in this
context at wavenumbers satisfying

|k|
2

+
σAt
|k|

−
1
4
(1 − At2)γ 2

0 < 0.

The shear-based singularity of d1 occurs when both k = 1
and k = 2 are traveling waves based on linear theory and
neither wavenumber is Kelvin–Helmholtz unstable. In this work
we consider parameter values where the denominator is non-
singular. The computation of internal wave ripples is planned as
an avenue of future study. At the generic, non-resonant, parameter
values the interface location is, to O(ϵ2),

y = 2ϵ sin(x) + ϵ2d1 cos(2x). (10)

In the case of no upper fluid, At = 1, with γ0 = 0, the coefficient
d1 reduces to the one reported by Pierson and Fife [35]. The
asymptotic in (10) is the beginning of a Stokes’ wave expansion.
Such expansions have been computed for both water and internal
waves numerous times in other models, for example [36–38,27–
29,39,40].

The sign of coefficient d1 determines whether small amplitude
solutions have steeper troughs or crests. When this coefficient is
negative, waves of increasing amplitude have increasingly steep
troughs. When it is positive, waves of increasing amplitude have
increasingly steep crests, see Fig. 2. Numerically we observe that
this behavior continues along a branch of traveling waves, away
from ϵ = 0.

In the following sections, we explore the parameter space
of traveling waves. We compute global branches and surfaces
in parameter space where traveling waves exist. We also test
the heuristic that the qualitative nature of self-intersecting wave
profiles, whether they include entrained bubbles (into the lower
fluid) or drops (into the upper fluid), can be predicted by their
small amplitude behavior:whether the small amplitudewaves had
steeper troughs or crests, respectively, as predicted by the sign of
d1.

4. Numerical method

The numericalmethod used to solve system (6) is similar to that
of [2,4]. Fourier-collocation is used to discretize spatial derivatives.
We seek symmetric, even profiles in terms of tangent angle θ and
vortex sheet strength γ . When the system is discretized with N
spatial points, we must then solve for N Fourier modes and the
wave speed c . The projection of the partial differential equations
into Fourier space gives N equations, to which we append an
equation fixing the amplitude to close the system. The resulting
nonlinear system of algebraic equations is then solved via a quasi-
Newton method, using Broyden’s update of the Jacobian [41].
Branches of waves are then computed using continuation in
amplitude (or Bond number, Atwood number, or mean shear)
similarly to [42,43].
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Fig. 3. Left: The trajectories of the two continuation methods used to determine where traveling waves exist are depicted. The vertical arrows denote continuation paths
used with the MAQS algorithm of Section 4.1. The increasingly small circles near the boundary denote a continuation path taken by BCM. Right: The location of the largest
traveling wave is traced using the BCM, in displacement and Atwood number, for a variety of Bond numbers. The origin is in the back right corner of this figure, for display
purposes. These boundaries are observed to generically resemble breaking waves (in that they overturn).

This method is used to compute traveling waves at various
values of displacement h = max(y) − min(y), Bond number
σ , Atwood number At, and mean shear γ0. The four-dimensional
parameter space (h, σ , At, γ0) is quite vast. To efficiently explore
this space we use two numerical strategies. The first, which
assumes continuity of branches of traveling waves only in total
displacement, is the adaptive sampling methodology described
in the following subsection. In this strategy, the Bond number,
Atwood number and mean shear are sampled, and branches of
waves are computed in total displacement (depicted by vertical
lines in Fig. 3). The second method, which we refer to as the
boundary continuation method (BCM), uses continuation to trace
the boundaries of where traveling waves exist (either the largest
wave on a branch or the limit of self intersection). The latter
method follows the boundary of where traveling waves exist by
using small circular paths inside of this domain, see Fig. 3.

4.1. Sampling methodology

In this section we describe a sampling method used to
adaptively select points (values of Atwood ratio, Bond number
and mean shear) for which branches of traveling waves of varying
amplitude are computed. This method is used to efficiently probe
the full four-dimensional parameter space of traveling waves. This
is in contrast to the method presented in Section 4.2, which is
designed to compute only boundaries of this space.

The sampling methodology is based on a multidimensional
adaptive quadrature routine over simplices (MAQS) [44,45]. The
method is designed for high dimensional quadrature; we apply it
here to two-dimensional domains. For example, the results of one
application of this procedure are in Fig. 3, wherein we fix Bond
number, and adaptively sample values of mean shear and Atwood
ratio. The function we sample is the displacement of the largest
wave on a branch of traveling waves with fixed values of At, σ ,
and γ0; for each parameter choice we continue in displacement to
the largest wave and report its value of h. This adaptive routine
uses linear function approximations over triangular elements in
an adaptively refined mesh. The adaptive refinement is based on
an estimate of the error in the sample over the given triangle.
In this case, the error is estimated as the absolute value of the
difference between a linear and quadratic approximation of the
function over a given triangle, or simplex. The algorithm creates
a priority queue of the simplices, based on the size and estimated
error associated with each simplex. The algorithm then proceeds
to process (subdivide) the simplex associated with the highest
priority. This process is repeated until the required error tolerance

or other stopping criteria (e.g. maximum number of function
evaluations) is met.

The function estimate is based on multivariate Lagrange
interpolation in the spirit of [46]. This allows function evaluations
to be used and reused until the algorithm has terminated.
Additionally, each simplex can be processed independently, which
allows for the parallel processing of multiple high error simplices
at once. More information on the sampling method, as well as its
error estimations and convergence properties are in [44], other
competitive sampling algorithms are discussed in [47].

4.2. Boundary continuation method (BCM)

In addition to the adaptive sampling algorithm described
in the previous section, we also implemented a continuation
method specifically to compute the boundaries of the space where
travelingwaves exist. The samplingmethod in the previous section
computes trajectories in parameter space where h varies and
(σ , At, γ0) are fixed. This method does not require that the
maximal displacement be continuous, but does require that the
boundary is a function of (σ , At, γ0).Weobserve the opposite to be
the case. The boundaries are continuous, but are not single-valued
functions of (σ , At, γ0), see Fig. 3. Based on this observation we
also compute these boundaries by a continuation method (BCM)
described below.

BCM begins by computing one trajectory to the boundary from
h = 0. After one point on the boundary has been approximated,
traveling waves are computed on an arc of a circle in parameter
space, within the domain of existence of traveling waves. The
computedboundary point is used as the center of the arc, the radius
is fixed. The angle on the arc is used as the continuation parameter.
When a newboundary point is computed along the arc, this point is
used as the center of the next circle and the procedure is repeated.
This procedure computes points on the boundary until either a
maximum number of points are reached, the entire boundary is
computed, or the boundary has a cusp. The third criteria is tested
by checking the change in the tangent vector of the computed
boundary: if the change in tangent angle is larger than π/3, the
radius of the circles is decreased, and the procedure continueswith
smaller arcs.

The boundary continuation method involves additional as-
sumptions over the sampling method of the previous section. Both
methods assume that the traveling waves are jointly continuous in
all four parameters. The boundary continuation method also as-
sumes that the region, in parameter space, in which these trav-
eling waves exist, is simply connected (so that it has a single
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Fig. 4. The wave speed of a branch of traveling waves is depicted as a function of the scaled total displacement. The speed has a turning point, so computing this branch
requires two continuation parameters. The wave with the largest displacement is marked with a star; its profile is in the center panel. The branch terminates in a self
intersecting profile, with smaller total displacement, whose speed ismarkedwith a circle on the left, and is depicted in the rightmost panel. Thesewaves all have At = 0.565,
γ0 = 0.5, and σ = 0.5.

Fig. 5. Left: The adaptive grid generated using the MAQS algorithm with σ = 0. Right: The largest wave amplitude computed using continuation paths along which only h
varies, and γ0 and At are sampled using theMAQS algorithm. The curve where d1 = 0 is marked with a solid line. Darker shading corresponds to larger total displacement, h.

continuous boundary). The previous sampling method does not
make such an assumption, in fact should the boundary not be con-
tinuous, or not a single valued function of amplitude, it computes
the lowest points on the boundary as a discontinuous function of
the other parameters (Atwood number, Bond number and mean
shear). The trajectories of each method are reported in the left
panel of Fig. 3, where the BCM computes travelingwaves on circles
near the boundary, and the adaptive sampling method computes
traveling waves along adaptively chosen vertical lines. Both meth-
ods should be used when exploring parameter space: BCM for the
computation of the boundary (since it is both less expensive, scal-
ing in cost like the length of the boundary, and can compute over-
turning boundaries), and the adaptive sampling method (to verify
the region below the boundary is simply connected and to provide
information on the location and the number of cusps).

5. Numerical results

In this section we discuss the subsets of our four dimensional
parameter space, At, σ , h, and γ0, for which we have computed
traveling waves. We focus on computing the extremal values of
displacement h for which solutions exist, for each value of Atwood
ratio At, mean shear γ0 and Bond number σ . We consider both
pure-capillary (σ = 0) and capillary–gravity (σ ≠ 0) internal
waves (0 ≤ At < 1). We consider σ < 1, so as to stay away from
the Wilton ripple resonance, beginning at σ =

1
At (1 + γ 2

0 ), see
Eq. (9). There is evidence that the limiting waves and bifurcation
structure is significantly more complicated as τ → 0, perhaps due
to these resonances [12], andwe leave this area for future study. At
each value of (σ ,At, γ0), we compute largest wave profiles and the
simply-connected regions of parameter space in which traveling

waves exist. We compute the boundaries of these regions using
BCM. We verify that these regions are simply connected using the
adaptive sampling algorithm (MAQS).

We observe that there are two boundaries of interest in this
problem. First, we compute the amplitude for which traveling
waves self intersect, which is necessarily at the end of a branch of
traveling waves. Second, we compute the extremal amplitude of a
branch of traveling waves (fixing At, σ , and γ0), which we observe
to occur sometimes at self-intersecting waves, and sometimes at
turning points, see Fig. 4.

When tracing the largest displacement, we observe that this
boundary has a cusp somewhere between At = 0 and At = 1.
To compute this cusp, we use two runs of BCM (once increasing
At from zero, once decreasing At from 1). Both applications detect
the presence of the cusp, and adaptively decrease the radius of the
BCM circles until a prescribed tolerance is reached. In this way the
procedure computes boundarieswhich are C0 (but need not be C1).
The adaptive circle radius was designed specifically for this case,
where the boundary has a single cusp; however, it would be simple
to extend the algorithm to compute boundaries with more cusps.

The largest displacement h along a branch, as a function ofmean
shear and Atwood number, is reported for σ = 0 (pure-capillary
waves) in the right panel of Fig. 5. In this panel, the parameter
values where the coefficient d1 (the coefficient of the second
harmonic tangent angle in a Stokes expansion) changes sign are
marked with a solid curve. For σ = 0, the region within which
traveling waves exist has a boundary which is a function of both
At and γ0. This boundary is observed to have a cusp, near the zero
of d1, which marks the location where the self intersecting wave
transitions from entraining bubbles in the upper fluid to the lower
fluid. The agreement of the cusp with the root of d1 is not exact,
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Fig. 6. Left: The regionwhere travelingwaves exist in Atwood number and displacement. The lighter gray region corresponds to that which is reported in Fig. 3, its boundary
(markedwith circles) is thewave ofmaximal displacement on a branch. The thick black curve (in both panels) is the location of self-intersectingwaves as computed using the
BCM. The dark gray region is that which cannot be computedwith continuation only in amplitude, but does correspond to regular wave profiles. The doubly self-intersecting
profile in Fig. 7 is marked with a star. Right: The surface where traveling waves solutions exist is visualized in Atwood number (At), speed (c), and total displacement (h). The
surface is folded along the dashed (blue) curve, which in the left panel is marked by the circles which lie to the left of the cusp. The amplitude of self intersection is marked
with the solid thick black curve (which does not self intersect). Waves whose second harmonic vanishes are marked red triangles. Both panels compute waves with mean
shear γ0 = 0.5 and Bond number σ = 0.5. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

but considering that d1 is a small amplitude property it is quite
remarkable that it is able to make any prediction about bubble
entrainment at all (this being a large amplitude property). Fig. 5
was generated using the adaptive sampling algorithm, continuing
only in displacement.

For non-zero Bond numbers, the wave of largest displacement
for fixed physical parameter values (At, γ0, σ ) often occurs at a
turning point. In this setting, the displacement h of the largest
traveling wave on a branch is not a single valued function of
the At, σ or γ0. If we continue only in the physical parameters
and displacement, applying the boundary continuation algorithm
computes a single wave at each set of parameter values, resulting
in Fig. 3. The boundaries of the computed regions themselves
resemble overturned waves—as is also depicted in 3. The extent to
which these boundaries overturn increaseswith Bond number (the
boundary does not overturn for σ = 0). Fig. 3 takes mean shear
γ0 = 0.5, other values of mean shear have similar boundaries.
We observe that the computed boundaries depend continuously
on mean shear and Atwood ratio, and Bond numbers, but overturn
for all non-zero Bond numbers. Many of the computed waves
with maximal displacements are regular. These waves cannot
correspond to the end of the branch of traveling waves (see the
global bifurcation theorem of [8]); they are at turning points. An
example branch of traveling waves where the wave of maximal
displacement is neither self-intersecting nor the end of the branch
is depicted in Fig. 4.

When thewave ofmaximal displacement on a branch is regular,
the branch terminates with a self-intersecting profile, after a turn-
ing point.We have applied the boundary continuation algorithm to
trace the location of self-intersectingwaves (regardless of whether
they are the wave of maximal displacement). We observe that the
location of these self-intersecting waves (in parameter space) is
itself self-intersecting, at least when projected into the Atwood
number/displacement plane, see the left panel of Fig. 6. When em-
bedded in higher dimensions, as in the right panel of Fig. 6, the
surface ofwhere travelingwaves exists is self-intersecting, but two
boundaries are not. For σ = 0.5 and γ0 = 0.5, we have computed
the entire surface on which traveling waves exist by continuation
inward from the two ‘‘boundaries’’ (of maximal displacement and
of self-intersection) computed with the BCM. This surface is visu-
alized in the three-dimensional space of Atwood number, speed,
and total displacement in the right panel of Fig. 6.

Of particular interest in Fig. 6 is the dark gray region in the left
panel. For the Atwood numbers below this region, approximately
At ∈ (0.35, 0.55), branches of traveling waves parameterized by
displacement do not have turning points, and terminate in self-
intersecting waves whose displacements are marked by circles.
Using BCM to follow the location of self-intersecting waves we
see that for these Atwood ratios, there are two values of h at
which there is a self-intersecting profile. The larger profile is on
the same surface as the smaller one, but is not on the same branch
of traveling waves for fixed Atwood ratio. This upper branch of
traveling waves is near to having two self-intersections, at both
the crests and troughs. We believe that only one wave has self-
intersection at both places; an approximation of this wave is in
Fig. 7.

In Section 3, we presented the small amplitude asymptotics
of Stokes’ waves. From these asymptotics, we observe that the
sign of d1 predicts whether small amplitude waves have steeper
troughs or crests. This small amplitude property is often preserved
along a branch:when small amplitudewaves have steeper troughs,
they culminate in a bubble at the crest (and vice versa when the
small amplitude wave has steeper trough). This heuristic does
not actually predict the location where the self-intersecting wave
switches from entraining a bubble in the upper to lower fluid. This
can be seen in the right panel of Fig. 5, where the location of the
largest waves is slightly offset from the curve where d1 = 0.

In addition, in Fig. 6 we plot the parameter values where the
second harmonic of the finite amplitude waves vanish, ŷ(k = 2) =

0, marked with triangles. This curve connects to the point at zero
amplitude where d1 = 0, and traces the trajectory in parameter
spacewhere the finite amplitude travelingwaves have zero second
harmonic. We observe that self-intersecting profiles with bubbles
on both the troughs and crests exist at parameter values on both
sides of this curve, just as they live on both sides of the parameter
values where d1 = 0. Thus this extension of the previous heuristic
based on d1 is also not predictive regarding the character of self-
intersection.

For a general cross section of parameters, the large amplitude
waves with zero second harmonic are not the globally largest
waves. In Fig. 6 one can observe that the globally largest wave
does not lie on the curve with zero second harmonic (marked with
triangles). Moreover, the globally largest wave does not entrain
bubbles/drops into both fluids (as was the case in [4]). The wave
which entrains bubbles into both fluids is marked with a star
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Fig. 7. Left: Profiles of traveling waves as the upper right (black) boundary is traversed through the star in the left panel of Fig. 6. Right: At the transition, in parameter
space, between waves which entrain a bubble into the lower fluid and the upper fluid is a wave which entrains bubbles into both fluids. Above is a regular wave in the
neighborhood of such a doubly self-intersecting configuration. This is the wave marked with a star in Fig. 6.

in Fig. 6 and is depicted in right panel of Fig. 7. Wave profiles
on the boundary of the bifurcation surface as the extremal wave
transitions from a bubble in the lower fluid to a bubble in the upper
fluid are depicted in the left panel of Fig. 7. The rearmost profile in
the left panel is the globally largest wave, with h ≈ 7.24, where
the wave with bubbles at its crests and troughs has h ≈ 6.9.

6. Conclusion

In thisworkwe compute overturning traveling capillary–gravity
waves on the interface between two constant-density fluids. We
compute branches which can be parameterized by displacement,
as well as those with turning points. Global branches of traveling
waves are computed, including those which connect flat state con-
figurations at two different speeds, illustrating the theorem of [8].
We trace the location of traveling waves of extremal displacement
and as well as the locations of self-intersecting waves, in parame-
ter space, in both cases using numerical continuation methods. Bi-
furcation surfaces are computed, which are themselves overturn-
ing and self-intersecting respectively. We also evaluate the heuris-
tic that branches of waves which have steeper troughs at small
amplitudes might terminate with a bubble at their trough, while
branches of waves that have steeper crests at small amplitude
might terminate at a wave with a bubble on its crest. We observe
that although this heuristic performs admirably, it is not the truth.

Our methods require regular profiles, and can compute profiles
only in the limit approaching self-intersection. Amending our
method to compute waves which self intersect (coupled to a
specification of the pressure within any bubbles) would allow us
to compute larger waves. A second future research area is the
overturning structure of Wilton ripples, and their internal wave
counterparts (both surface tension and shear based). We are also
currently pursuing extension of this method to three-dimensions
as well as computing the spectral stability of overturned traveling
waves for both two and three-dimensional fluids.
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