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Crapper waves are a family of exact periodic
travelling wave solutions of the free-surface
irrotational incompressible Euler equations; these are
pure capillary waves, meaning that surface tension
is accounted for, but gravity is neglected. For certain
parameter values, Crapper waves are known to
have multi-valued height. Using the implicit function
theorem, we prove that any of the Crapper waves
can be perturbed by the effect of gravity, yielding
the existence of gravity–capillary waves nearby to the
Crapper waves. This result implies the existence of
travelling gravity–capillary waves with multi-valued
height. The solutions we prove to exist include waves
with both positive and negative values of the gravity
coefficient. We also compute these gravity perturbed
Crapper waves by means of a quasi-Newton iterative
scheme (again, using both positive and negative
values of the gravity coefficient). A phase diagram
is generated, which depicts the existence of single-
valued and multi-valued travelling waves in the
gravity–amplitude plane. A new largest water wave
is computed, which is composed of a string of bubbles
at the interface.

1. Introduction
We study the irrotational, incompressible Euler equations
for a fluid bounded above by a free surface, with vacuum
above the free surface. We consider a fluid region that
is infinitely deep in the vertical direction and periodic
in the horizontal direction. We seek travelling wave
solutions, or solutions for which the free surface is of
permanent form and steadily translating. We consider
the effect of surface tension at the fluid boundary.

2013 The Author(s) Published by the Royal Society. All rights reserved.
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For this problem, in the absence of gravity, a family of exact solutions is known; these solutions
are called Crapper waves, as they were discovered by Crapper [1]. There is an exposition of these
waves in the book of Crapper [2], and also, in more detail, in the book of Kinsman [3]. A formula
for Crapper waves is given in §2.

Kinnersley extended the Crapper waves to the case of finite depth [4]. As in the infinite
depth case that Crapper studied [1], the travelling waves are found as exact solutions, in this
case involving elliptic functions. Building upon the work by Tanveer for translating bubbles
[5], Crowdy gives a different derivation of the Crapper waves, using conformal maps [6]. The
formulation of Crowdy also allows for the identification of other, previously unknown, exact
solutions of the free-surface Euler equations with surface tension. Crowdy further shows that
exact steady free-surface Euler flows such as the Crapper waves yield, through a transformation,
exact steady Hele–Shaw flows [7].

Uniqueness and stability of Crapper waves have also been studied. Assuming a certain
positivity condition, Okamoto has proved uniqueness of the Crapper waves (that is, any
travelling pure capillary water wave on infinite depth that satisfies the positivity condition is
a Crapper wave) [8]; see also the discussion in the book of Okamoto & Shōji [9]. Tiron & Choi [10]
studied stability of the Crapper waves. Stability was also studied by Hogan [11] and by Chen &
Saffman [12].

Given an exact solution or family of exact solutions of a nonlinear partial differential equation,
a natural question to ask is, can we perturb these solutions to find other, nearby solutions? Since
the Crapper waves are irrotational, pure capillary water waves, there are then several natural
directions in which to perturb them: through the inclusion of gravity, through the inclusion of
vorticity in the bulk of the fluid and through the addition of an upper fluid to replace the vacuum
above the waves. In this contribution, we prove that it is indeed possible to perturb any Crapper
wave solution through the inclusion of gravity, either positive or negative. We do this by using
a modified Liapunov–Schmidt analysis. We call the waves we find gravity perturbed Crapper
waves. Perturbing the Crapper waves with vorticity or an additional fluid is expected to be the
subject of future research.

In addition to proving they exist, we compute gravity perturbed Crapper waves and study
the differences in features of the waves caused by the presence of gravity. The computational
method used is the method introduced by the authors in [13]. This method uses a normalized
arclength parametrization of the free surface, as developed for a numerical method for initial-
value problems for vortex sheets in [14,15] and used analytically (again for the initial-value
problem) in [16]. Since we describe waves using the arclength parametrization, there is no
assumption that the interface has single-valued height, and thus the method works in exactly
the same way whether or not the interface has overturned.

A number of other papers have computed overturning travelling waves in free-surface Euler
flows. Baker et al. [17] formulated the travelling wave problem in such a way as to allow for
overturning waves, but only computed waves with single-valued height in interfacial flows.
Other studies that computed interfacial waves with multi-valued height are those of Saffman &
Yuen [18], Meiron & Saffman [19], Turner & Vanden-Broeck [20] and Grimshaw & Pullin [21].

The self-intersection and extreme forms of gravity–capillary waves have been studied
previously. In particular, a detailed study was made by Hogan [22]. The method of Hogan [22]
is a boundary perturbation method, in the style of the expansions of Stokes [23] and Wilton
[24,25]. Similar boundary perturbation methods have been applied to the water wave problem,
with and without surface tension [26–31]. As noted in [30], these methods can be susceptible to
floating point instabilities. Hogan observed this problem in his results, and reacted by working in
quadruple precision and restricting the number of terms in his series expansions. The transformed
field expansions method (of Nicholls and collaborators), a boundary perturbation algorithm, is
stable to such errors [30,31]; however, it cannot compute overturned travelling waves.

A popular alternative to boundary perturbation is the combination of Fourier collocation and
a quasi-Newton solver. Such an approach has been applied to compute gravity–capillary waves
in a variety of settings, including finite and infinite depth, periodic and solitary waves [32]. For
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overturning waves, the majority of these computations are based on a conformal mapping applied
to the fluid domain. The closest works in this latter class to the present are those of Debiane &
Kharif [33] and Debiane et al. [34], in which the largest travelling waves are computed for a
sampling of Bond numbers, that of Schwartz & Vanden-Broeck [35], where a host of travelling
waves are computed at various amplitudes and Bond numbers, and Vanden-Broeck & Keller
[36] computed the analogue of Crapper waves with larger bubbles (by varying the internal
bubble pressure). Our numerical method also uses Fourier collocation and a quasi-Newton solver,
but rather than being based on a conformal mapping, it instead parametrizes the interface by
arclength [13]. This allows us to keep a uniform grid spacing along the interface, as opposed to
having our grid points chosen by the mapping.

To complement our existence results, we numerically compute wave profiles and speeds,
varying both the amplitude and the Bond number σ = g/k2τ (these quantities will be specified in
more detail in the sequel). The Bond number is the relevant non-dimensional quantity measuring
the relative importance of gravity and surface tension. It is common to see the inverse of this
quantity also called the Bond number; we choose this version of the Bond number as it is
bounded near the Crapper wave at g = 0. Because the existence proof relies on the implicit
function theorem, it does not require that gravity be positive; therefore, in our computations, we
perturb the Crapper wave with both positive and negative Bond number. We compute continuous
branches of travelling waves connecting Crapper waves (σ = 0) to gravity–capillary waves with
σ = 20, as well as to waves with negative Bond number −1 < σ < 0. Unlike methods based on
amplitude expansions, our method need not be altered to compute the resonant Wilton ripples
[37,38]. Our results support the conclusions of Schwartz & Vanden-Broeck [35]; we observe
travelling waves at the Wilton ripple Bond numbers that are continuously embedded among the
travelling waves computed elsewhere.

For the branches of waves bifurcating from the Crapper waves that we compute, as Bond
number increases, we observe that the Crapper wave is continuously connected to solitary
gravity–capillary waves. These computations serve as numerical verification of the argument
of Longuet–Higgins, whereby asymptotics about the Crapper wave are used to approximate
gravity–capillary solitary waves [39]. For the branches of waves with σ < 0, we observe that
the large-amplitude limit is typically a stationary (or standing) wave, rather than a travelling
wave with a self-intersecting profile. We have generated a phase portrait of the existence of
multi-valued and single-valued travelling waves in the gravity–amplitude plane. A new, globally
largest water wave is computed, which is both standing and self-intersecting. This wave consists
of a string of bubbles and droplets at the fluid interface.

The paper is organized as follows: in §2, we describe Crapper waves. In §3, we give our proof,
using the implicit function theorem, to show the existence of gravity perturbed Crapper waves.
In §4, we describe our numerical method and give our numerical results.

2. Crapper waves
In §1.1 of the book of Okamoto & Shōji [9], they give the following equation whose solutions give
travelling spatially periodic gravity–capillary waves in a two-dimensional fluid of infinite depth:

F(θ ; p, q) := e2Hθ dHθ

da
− p e−Hθ sin(θ ) + q

d
da

(
eHθ dθ

da

)
= 0. (2.1)

Here, the independent variable a is in T := [−π , π ], θ is the tangent angle to the surface and
satisfies periodic boundary conditions, and H is the periodic Hilbert transform,

Hf (a) := 1
2π

PV
∫π

−π

cot
(

1
2

(a − s)
)

f (s) ds.
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For background on the periodic Hilbert transform, the interested reader could consult, for
instance, [40]. The non-dimensional constants p and q are given by

p := gL
2πc2 and q := 2πτ

ρc2L
,

where L is the spatial period of the wave, c is the travelling wave speed, g is the acceleration due
to gravity and τ is the surface tension constant. We remark that in the sequel, we will always take
q to be positive. This formulation of the travelling water wave problem follows from complex
variable methods initiated by Stokes [23], with important contributions from Levi-Civita [41].

An important feature here is that the free surface is not parametrized by arclength;
reconstruction of the surface from θ requires some more information. Specifically, if θ (a) is a
solution of (2.1), the parametrization of the free surface (x(a), y(a)) is given by

dx
da

:= − L
2π

e−Hθ(a) cos(θ (a))

and
dy
da

:= − L
2π

e−Hθ(a) sin(θ (a)).

⎫⎪⎪⎬
⎪⎪⎭ (2.2)

If one sets p = 0, then one can find exact formulae for solutions θ of (2.1), which are called
Crapper waves. We briefly explain these solutions now. When p = 0, (2.1) becomes

e2Hθ dHθ

da
+ q

d
da

(
eHθ dθ

da

)
= 0.

The left-hand side is a perfect derivative,

d
da

(
1
2

e2Hθ + q eHθ dθ

da

)
= 0.

Integrating gives
1
2

e2Hθ + q eHθ dθ

da
= const. (2.3)

In [9], the following is shown.

Lemma 2.1. For any θ ∈ L2(T),
∫π

−π

e±Hθ(a)−iθ(a) da = 2π . (2.4)

With this, one can show that the constant in (2.3) is 1/2. Equation (2.3) can then be rewritten as

q
dθ

da
+ sinh(Hθ ) = 0. (2.5)

Take q ≥ 1 and let A be either of the solutions of

q = 1 + A2

1 − A2 .

Note that A ∈ (−1, 1). Let

ω(z) := 2i log
(

1 + Az
1 − Az

)

and
θq(a) := �ω(eia).

Then, we have the following.

Theorem 2.2 (Crapper [1]).

q
dθq

da
+ sinh(Hθq) = 0.

Note that θq(a) is an odd function of a. The function θq gives the Crapper wave.
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Linearizing (2.5) about θq gives the operator

Γ u := qu′ + cosh(Hθq)Hu.

(Here and below, the prime indicates differentiation with respect to a.) The following lemma,
which is equivalent to [9, lemma 2.1], is used there to prove that the Crapper waves are locally
unique.

Lemma 2.3 (Okamoto & Shōji [9]). For q > 1, zero is an eigenvalue of Γ : X1 → L2(T) with
geometric multiplicity one and algebraic multiplicity two. The eigenfunction is dθq/da and the generalized
eigenfunction is ∂θq/∂q.

In the above,

Xs := {f ∈ Hs(T) : (f , 1) = 0}

and

(f , v) :=
∫π

−π

f (a)v(a) da.

In this article, we show that Crapper waves perturb to solutions of (2.1) when p ∼ 0. In
particular, we prove the following theorem.

Theorem 2.4. For all q > 1, there exist P = P(q) > 0 and a C∞ function

Θq : (−P, P) −→ X2

such that F(Θq(p); p, q) = 0 for |p| < P and Θq(0) = θq. Moreover, Θq(p) is an odd function of a, and Θq is
smooth with respect to q.

Remark 2.5. Note that this theorem gives the existence of travelling gravity–capillary waves
nearby to the Crapper waves, for small values of p, with either p > 0 or p < 0, i.e. with either
positive or negative values of the acceleration due to gravity. There are some theorems in the
literature on the non-existence of travelling water waves with negative gravity, in the case of pure
gravity waves [42,43].

The method of proof is, roughly speaking, a Liapunov–Schmidt analysis, and follows relatively
quickly from theorem 2.2 and lemma 2.3. Despite the brevity of its proof, we point out a
particularly important and novel feature of theorem 2.4: it implies the existence of periodic
travelling capillary–gravity waves that overhang. It is well known that for q large enough, the
profile of the Crapper wave is not given by a function over the horizontal Eulerian coordinate.
As our theorem applies for any q > 1 and Θq is continuous with respect to p, we have the same
feature for the gravity perturbed Crapper wave.

We will be employing the implicit function theorem several times in our proof and for
completeness, we state the version of this theorem we use here.

Theorem 2.6 (The implicit function theorem). X, Y and Z are Banach spaces and ζ : X × Y → Z is
Ck, k ≥ 1. If ζ (x∗, y∗) = 0 and Dxζ (x∗, y∗) is a bijection from X to Z, then there exists ε > 0 and a unique
Ck map χ : Y → X such that χ (y∗) = x∗ and ζ (χ (y), y) = 0 when ‖y − y∗‖Y < ε.

Statements of implicit function theorems can be found in many standard texts; for example, a
similar statement to theorem 2.6 can be found in [44, ch. 13 ].
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3. Existence of gravity perturbed Crapper waves
Our first task is to rewrite the problem (2.1) as a perturbation of (2.5). Note that we can
write (2.5) as

d
da

[
1
2

e2Hθ + q eHθ θ ′
]

− p e−Hθ sin(θ ) = 0.

Integrating this from 0 to a, we get

1
2

e2Hθ + q eHθ θ ′ − p
∫ a

0
e−Hθ(a′) sin(θ (a′)) da′ = γ , (3.1)

where γ is a constant. Note that it is possible to determine the value of γ in advance for a solution,
as is done in the derivation of (2.5) above. However, it is to our advantage in the proof to leave this
constant undetermined at this time, as it gives us an extra parameter at our disposal. Recalling
the constant of integration when p = 0 was 1/2, we set

γ = 1
2

+ κ ,

where κ ∈ R. Also, we define

I(θ )(a) :=
∫ a

0
e−Hθ(a′) sin(θ (a′)) da′.

We then recast (3.1) as
1
2

e2Hθ + q eHθ θ ′ − pI(θ ) − 1
2

− κ = 0.

A quick rearrangement of terms converts this to

Φ(θ ; p, κ) := qθ ′ + sinh(Hθ ) − p e−Hθ I(θ ) − κ e−Hθ = 0. (3.2)

Observe that theorem 2.2 shows that Φ(θq; 0, 0) = 0. Moreover, if we linearize Φ at θ = θq and
p = κ = 0, we have

DθΦ(θq; 0, 0) = Γ .

Lemma 2.3 tells us that Γ is not invertible. As such, we cannot directly employ the implicit
function theorem to find solutions of Φ = 0.

Nevertheless, we can eliminate the kernel of Γ by restricting attention to odd functions. Let

X1
odd := {f ∈ H1(T) : f is odd}

and

Y0
even := {f ∈ L2(T) : f is even}.

Of course X1
odd is a subspace of X1 and Y0

even is a subspace of L2(T).

Proposition 3.1. Φ(θ ; p, κ) is a C∞ map from X1
odd × R2 into Y0

even.

We omit the proof of this. The key thing is that d/da, H and I all map odd functions to even
ones.

Recall that θq is odd, and thus θ ′
q is even. Therefore, the kernel of Γ as a map on X1

odd is trivial.
That is, we have the following corollary of lemma 2.3.

Corollary 3.2. When Γ is viewed as a map from X1
odd to Y0

even,

ker Γ = {0}.
It might at this time appear that we could apply the implicit function theorem to find solutions

of (3.2). However, this is not the case. While Γ is injective as a map from X1
odd to Y0

even, it is not
surjective, as the following proposition demonstrates.
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Proposition 3.3. Let f ∈ Y0
even. Then, there exists u ∈ X1

odd with

Γ u = f

if and only if
(f , cos(θq)) = 0.

Proof. Lemma 2.1 implies, for any function w ∈ L2(T),
∫π

−π

e−iw(a) sinh(Hw(a)) da = 0.

Taking the real part of this gives
∫π

−π

cos(w(a)) sinh(Hw(a)) da = 0.

Also, as d/da sin(w(a)) = cos(w(a))w′(a), we have
∫π

−π cos(w(a))w′(a) da = 0. So, for any function
w ∈ H1(T), ∫π

−π

cos(w(a))[sinh(Hw(a)) + qw′(a)] da = 0. (3.3)

Fix u ∈ H1(T) and let w = θq + εu, where ε ∈ R. Inserting this into (3.3) gives, for all ε,
∫π

−π

cos(θq(a) + εu(a))[sinh(Hθq(a) + εHu(a)) + qθ ′
q(a) + εqu′(a)] da = 0.

Differentiating this with respect to ε, and then setting ε = 0 gives

−
∫π

−π

sin(θq(a))u(a)[sinh(Hθq(a)) + qθ ′
q(a)] da

+
∫π

−π

cos(θq(a))[cosh(Hθq(a))Hu(a) + qu′(a)] da = 0.

The first line vanishes by theorem 2.2. The term in square brackets in the second line is Γ u. Thus,
we have, for all u ∈ H1(T), ∫π

−π

cos(θq(a))Γ u(a) da = (Γ u, cos(θq)) = 0. (3.4)

If f ∈ Y0
even and u ∈ X1

odd satisfy Γ u = f , then (3.4) tells us

(f , cos(θq)) = 0.

And so we have shown the ‘only if’ part of the proposition.
To finish the proof, we need to show that if f ∈ Y0

even and (f , cos(θq)) = 0, then there exists
u ∈ X1

odd with Γ u = f . First, note that

Ku := cosh(Hθq)Hu

defines a bounded map from X1
odd to Y0

even. It is also bounded from L2(T) to itself. Suppose that
{un} ⊂ X1

odd is a bounded sequence. As X1
odd ⊂ H1(T) ⊂⊂ L2(T) (owing to the Rellich–Kondrachov

theorem), we know {un} contains a subsequence that converges in L2(T). We abuse notation and
call this subsequence {un}. Since the functions un are odd, so is the limit. Also, K is bounded on
L2(T), and thus {Kun} is a convergent sequence of even functions in L2(T). The limit is even. Thus,
K is a compact operator from X1

odd to Y0
even.

Now, Γ u = qu′ + K, which means that Γ is a compact perturbation of

Γ0 := q
d
da

.

We claim that Γ0 is a Fredholm operator from X1
odd to Y0

even with index −1. This is straightforward.
We recall that q is non-zero and that the kernel of d/da is the set of constant functions. The only
odd constant function is 0. Therefore, the kernel of Γ0 in X1

odd is trivial. Likewise, Γ0u = f has
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a periodic solution u if and only if
∫π

−π f (a′) da′ = 0. This implies that the cokernel of Γ0 is one
dimension. Thus, the index of Γ0 is −1.

As compact perturbations do not change the index of an operator [44], we know that Γ is also
a Fredholm operator from X1

odd to Y0
even with index −1. As we know the kernel of Γ is trivial from

corollary 3.2, we must therefore have that the dimension of the cokernel of Γ is equal to 1.
As (cos(θq), cos(θq)) �= 0, the work above tells us that cos(θq) is not in the range of Γ . Thus, the

equivalence class of this function, which we call [c], spans the cokernel of Γ . Now take f ∈ Y0
even

with (f , cos(θq)) = 0. Let [f ] be the equivalence class of f in the cokernel. There must be a constant
β ∈ R such that [f ] = β[c]. This means that there exists u ∈ X1

odd with Γ u = f − β cos(θq). From the
first part of this proof, we know that this implies (f − β cos(θq), cos(θq)) = 0, which implies β = 0.
This in turn implies that Γ u = f , and we are done. �

So Γ is not surjective. Our method is a modification of the Liapunov–Schmidt strategy
commonly used in perturbation theory when the linearization of the problem fails to be injective
to the case when the problem fails to be surjective. Define

Πu := μ(cos(θq), u) cos(θq),

where μ := (cos(θq), cos(θq))−1. A quick calculation shows Π2 = Π , and so Π is a projection.
Moreover, (3.4) tells us that

ΠΓ = 0. (3.5)

Let R := ker Π and M := R⊥. Proposition 3.3 tells us that R = Γ (X1
odd). Let

Φred(θ ; p, κ) = (1 − Π )Φ(θ ; p, κ).

Note that ΠΦred = (Π − Π2)Φ = 0, and so Φred is a map from X1
odd × R2 into R.

From theorem 2.2, we know

Φred(θq; 0, 0) = 0.

Also,

DθΦred(θq; 0, 0) = (1 − Π )Γ .

As ΠΓ = 0, we see that (1 − Π )Γ is injective because Γ is. Moreover, by construction, (1 − Π )Γ
is surjective onto R. And thus we can, at last, apply the implicit function theorem: there exists a
unique C∞ map

Ξ (p, κ) : R2 → X1
odd,

so that

Φred(Ξ (p, κ); p, κ) = (1 − Π )Φ(Ξ (p, κ); p, κ) = 0,

for all (p, κ) sufficiently small and

Ξ (0, 0) = θq.

Now set

g(p, κ) := ΠΦ(Ξ (p, κ); p, κ)
μ cos(θq)

= (cos(θq), Φ(Ξ (p, κ); p, κ)).

This is a map from R2 to itself. That is to say, g(p, κ) satisfies ΠΦ(Ξ (p, κ); p, κ) = μg(p, κ) cos(θq). If
we find g(p∗, κ∗) = 0, then note that Ξ (p∗, κ∗) has

Φ(Ξ (p∗, κ∗); p∗, κ∗) = ΠΦ(Ξ (p∗, κ∗); p∗, κ∗) + (1 − Π )Φ(Ξ (p∗, κ∗); p∗, κ∗) = 0.

That is to say, it solves (3.2).
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Clearly, g(0, 0) = 0. We claim that

Dκg(0, 0) = −2π . (3.6)

If so, we can call again on the implicit function theorem. This tells us that there exists a unique
map, ξ (p), smooth, with ξ (0) = 0 and defined for p sufficiently small, for which

g(p, ξ (p)) = 0.

(Note that this function ξ (p) selects κ and thus γ .) Let

Θq(p) := Ξ (p, ξ (p)).

This is the map whose existence we were hoping to establish. There are two things left to check.
The first is to establish (3.6) and the second is to show that Θq(p) ∈ X2, not just X1

odd. This latter
is important in that a solution of (3.2) in X2 will also be a solution of (2.1), which is our ultimate
goal. We mention that the smoothness of Θq with respect to q follows from our repeated use of
the implicit function theorem.

For (3.6), note that

Dκg(0, 0) = Π [Γ Ξκ (0, 0) + DκΦ(θq; 0, 0)]
μ cos(θq)

.

As ΠΓ = 0, we have

Dκg(0, 0) = ΠDκΦ(θq; 0, 0)
μ cos(θq)

.

Then, we see from (3.2) that DκΦ(θq; 0, 0) = −e−Hθq , and therefore

Dκg(0, 0) = − Π e−Hθq

μ cos(θq)
= −(e−Hθq , cos(θq)) = −

∫π

−π

e−Hθq(a) cos(θq(a)) da

= −1
2

∫π

−π

e−Hθq(a)+iθq(a) da − 1
2

∫π

−π

e−Hθq(a)−iθq(a) da.

Using lemma 2.1, we have Dκg(0, 0) = −2π , as claimed.
Finally, let θ := Θq(p). We know that θ ∈ X1

odd ⊂ H1(T) and that θ solves (3.2). Since θ ∈ H1(T),
we know Hθ ∈ H1(T) as well. This in turn implies that sinh(Hθ ) and e−Hθ are in H1(T). Likewise
for I(θ ). Thus,

ρ := sinh(Hθ ) − p e−Hθ I(θ ) − κ e−Hθ ∈ H1(T).

It is straightforward to see that as θ depends smoothly on p, so must ρ. As (3.2) states that
θ ′ = −(1/q)ρ, we have θ ′ ∈ H1(T), and thus θ ∈ H2(T). Therefore, we can differentiate (3.2) to see
that θ solves (2.1) and depends smoothly on p. (We remark that this argument could be repeated
to conclude higher regularity of θ .) This completes the proof of theorem 2.4.

4. Numerical results
In this section, we augment the preceding existence proof with numerical computations of
branches of travelling waves bifurcating from the Crapper waves. The branches are computed in
the arclength parametrized vortex sheet formulation of the water wave problem [13]. Travelling
waves are computed at different values of total displacement h = max(y) − min(y) and Bond
number σ = g/k2τ (here, τ is the surface tension coefficient, k is a representative wavenumber and
g is the acceleration due to gravity). The branches are continuous in both parameters. We observe
that the amplitude along a branch is either limited topologically, by a profile that self-intersects
or by a turning point, in which case, the largest profile is a stationary (i.e. standing) wave. As
our preceding proof does not require positive values of gravity, we compute perturbations of
the Crapper wave with both signs of σ . We allow large departures from σ = 0, computing wave
profiles with σ ∈ (−1, 20], in which interval we observe continuous dependence on Bond number,
including at the Wilton ripple configurations [25,45,46].
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The numerical method used to compute these waves is based on the method of [13]. In this
method, we find functions θ and γ that solve the equations

U = −c sin(θ ) and Ut = 0;

this is the travelling wave ansatz, as developed in [13]. Here, U is the normal velocity of the
fluid interface and is equal to the normal component of the Birkhoff–Rott integral (which will
be introduced in the following paragraph). A Fourier-collocation method is used to discretize
spatial derivatives. We seek symmetric, even profiles in terms of tangent angle θ and vortex sheet
strength γ . The frame of the wave is defined so that the mean of γ and θ are zero. When the system
is discretized with N spatial points, we must then solve for N Fourier modes and the wave speed c.
The projection of the partial differential equation into Fourier space gives N equations, to which
we append an equation fixing the amplitude to close the system. The resulting nonlinear system
of algebraic equations is then solved via Broyden’s method, and continuation in amplitude or
gravity, similar to [47,48].

The collocation method is standard, with the possible exception of the implementation of the
Birkhoff–Rott integral, W = (W1, W2), given by

W1 − iW2 = 1
4π i

PV
∫ 2π

0
γ (β)cot

(
1
2

(z(α) − z(β))
)

dβ,

which is computed using the method used in [13,49], wherein the integral is split into singular
and regular parts. The singular portion is 1/2H(γ /zα), where H is the Hilbert transform and is
computed using its definition in Fourier space, Ĥ(f )(k) = −i sign(k)f̂ (k). The remainder integral,
W1 − iW2 − 1/2H(γ /zα), is non-singular and is computed using the trapezoidal rule at alternating
grid points. The numerical results presented here use n = 512 spatial points, resulting in an
arclength step size of �α ≈ 0.01. At this resolution, the largest computed waves, which have
overturned crests and are near pinch-off, have Fourier modes that decay to 10−8 by wavenumber
k = 256.

We observe that travelling waves depend continuously on Bond number. The waves are also
continuous in amplitude, and we use this fact to continue in both parameters to find the largest
amplitude waves. As our numerical method is based on a vortex sheet formulation, we cannot
compute waves that self-intersect, like those in [36,39] (that is, for self-intersecting waves, we
would be unable to compute the Birkhoff–Rott integral). We are able to compute waves very
close to the first self-intersecting configuration, which we refer to as pinch-off. The Crapper wave
first self-intersects when the scaled displacement h/2π = (max(y) − min(y))/2π = 0.73 [1,10]. We
have computed overturned profiles with scaled displacements up to h/2π = 0.723, or 99% of the
Crapper pinch-off displacement. Computed Crapper wave profiles at a sampling of amplitudes
are superimposed in figure 1a.

An advantage of quasi-Newton-based methods over amplitude expansions, like Hogan [22] or
Haupt & Boyd [37], is that no modification is necessary to compute travelling waves at the Wilton
ripple resonant configurations. We observe Wilton ripples that are continuously embedded in
the branches of travelling waves. In figure 1b, the profiles of travelling waves are presented for
‖y‖∞ = 0.2 at a sampling of Bond numbers σ ∈ [−0.95, 20].

We have employed continuation schemes to follow continuous branches of travelling waves
in both amplitude and Bond number. Beginning with the Crapper wave, we observe that
waves become more localized with increased Bond number. As σ increases, profiles become
more solitary than periodic, gaining oscillatory tails similar to those computed in [47,50]. These
changes occur at all amplitudes, see figure 1 for the case of ‖y‖∞ = 0.2, however, the size of
oscillations in the tail decreases with amplitude. These numerical results support the argument
of Longuet-Higgins [39], that the large-amplitude Crapper wave is connected continuously to
gravity–capillary solitary waves. It is natural that the waves become solitary, as increasing the
Bond number has the dual interpretation of decreasing k and increasing the wavelength.

In figure 2, we report both the globally largest wave and a phase portrait of the existence of
travelling waves in the gravity–displacement plane. We observe that branches of travelling waves
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Figure 1. (a) Crapper waves with g= 0, at different displacements. The largest computed wave has scaled displacement
h/2π = 0.723. (b) Travelling wave profiles with ‖y‖∞ = 0.2 for different values of the Bond number σ ∈ [−0.95, 20].
The wave profiles deform continuously from the sinusoidal wave with σ = −0.95, marked with a dashed curve, towards a
gravity–capillary solitary wave, similar to the profile withσ = 20, marked with a thick solid line. (Online version in colour.)
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Figure 2. (a) Two periods of the profile of the largest computedwater wave interface are plotted as a function of the horizontal
coordinate. This wave is marked by a star in (b). This wave hasσ ≈ −.0432, and h/λ ≈ 2.62, more than triple that of the first
self-intersecting Crapper wave. (Here, λ = 2π is the horizontal period.) (b) A phase portrait displays the regions of gravity–
displacement space where single-valued (grey) travelling waves andmulti-valued (black) travelling waves exist. The boundary
with the white region is either a self-intersecting wave, to the right of the star, or a standing wave, to the left of the star. The
globally largest wave is both standing and self-intersecting and is marked by the star. (Online version in colour.)

culminate in one of two ways: either in a standing wave or a self-intersecting profile. We consider
self-intersecting interfaces to be the terminus of a branch of travelling waves. It is possible that
branches of travelling waves continue to exist after self-intersection, however, such profiles need
to be computed with an alternative method, for example, that of [36]. In figure 2b, we report a
phase portrait of the space of travelling waves. In the grey region, travelling waves are single-
valued functions of the x-coordinate. In the black region, the waves have overturned crests. The
boundary between the black and white region is an estimate of the displacement of the largest
wave. This boundary corresponds to self-intersection of the wave profile to the right of the star
and a standing wave (c = 0) to the left of the star. The globally largest wave is marked by a star,
and is both stationary and self-intersecting.

That travelling waves exist with negative Bond numbers (owing to negative gravity
coefficients) is not surprising when one examines the linear situation. The speed of a linear wave
is cp = ±√

1 + σ . One might expect travelling waves whenever the phase speed is real—thus
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Figure 3. (a) The largest computed waves to the left of the star in figure 2, with σ ∈ (−1,−0.0432). These profiles are all
standing waves. (b) The largest computed waves to the right of the star in figure 2, for σ ∈ (−0.0432, 0.2]. In this range, the
largest travelling wave profile self-intersects, entraining a bubble at its trough. Both the length and breadth of the bubble are
decreasing functions of Bond number. The largest profile, marked with the thicker solid black line, is marked with the star in
figure 2 and has σ ≈ −0.0432. The smallest profile has σ = 0.2, and is marked by the black dashed line. (Online version
in colour.)

linear theory predicts travelling waves for σ > −1. When σ = −1, the speed of the wave is zero,
and we are left with stationary, standing waves. This is exactly what we observe numerically.
Moreover, we observe that for the most negative Bond numbers, the branches of nonlinear
travelling waves have amplitudes limited by standing waves. These standing waves form the
boundary of the white region in figure 2b, from σ = −1 to σ ≈ −0.0432 marked by the star. Profiles
of these standing waves are shown in figure 3a. The water wave problem has a symmetry between
waves moving to the left and right. Given a wave of a particular amplitude and speed, there is
a corresponding wave with the same amplitude and negative speed. At stationary waves, these
two branches of travelling waves intersect to form a closed loop. Whenever branches of travelling
waves are thus connected, the standing wave will be the profile of limiting amplitude.
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