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a b s t r a c t

An envelope model for short laser pulses is proposed. These pulses are short compared
to fluid motion timescales and long compared to electron thermalization timescales.
Numerical simulation of the thermal blooming of laser pulses at powers near the
boundary of the self-focusing regime is presented in this model. The model includes
terms representing the contributions of thermal blooming and the Kerr effect. In the
context of the model, thermal blooming and the Kerr effect compete; Kerr driving and
thermal blooming suppressing wave collapse. The dynamics of pulses whose energies
are near the collapse threshold are numerically simulated.

Published by Elsevier B.V.

1. Introduction

Laser pulses have a variety of applications, including micromachining, ablation, surgery, tunneling, welding, remote
ensing, and many more [1–5]. The large irradiance levels achievable in these pulses create a large number of nonlinear
ffects which are not observed in the continuous wave2 case. These nonlinear effects include, but are not limited to

plasma defocusing and absorption, multiphoton and avalanche ionization, and the Kerr effect [6,7]. The importance of
these effects depends on the irradiance levels achieved, with the plasma and ionization effects becoming more important
as irradiance increases [8]. In this work we focus on two nonlinear effects which require the smallest laser powers, often
still quite large, to be relevant: the Kerr effect and thermal blooming.

Thermal blooming is the process wherein the laser heats its propagation medium (for example by molecular absorp-
tion [9,10]) and the resulting temperature fluctuations feedback on the beam via changes in refractive index. The result,
sometimes referred to as thermal lensing [11], has a defocusing effect on the beam spot. In the presence of cross wind [12],
or due to convection in a stagnation zone [13], thermal blooming can lead to crescent-shaped beam spots. There is a
long history of studying thermal blooming in the continuous wave case [14–18]; it has also been simulated for pulsed
lasers [6,19].

A standard technique for propagation studies of thermal blooming (at least when beam dynamics are simulated) is to
use a paraxial approximation to the laser, resulting in a Schrödinger equation for the envelope of the electric field [20–22].
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E-mail addresses: Benjamin.Akers@afit.edu (B.F. Akers), Tony.Liu@afit.edu (T. Liu).
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2 Continuous wave (CW) lasers have a steady beam with constant power, the alternative being pulsed lasers which alternate between ‘on’ and

‘off’ at some fixed repetition rate.
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n the nonlinear regime, Schrödinger’s equation can exhibit finite time singularity, or wave-collapse, depending on the
elative signs of the linear and nonlinear terms (and the dimension) [23–26]. In the regime where wave collapse occurs,
ocalized initial data either focuses to a point (collapse) or disperse across the domain, depending on a measure of the
nitial wave’s energy. Mathematically, solitary wave solutions to the nonlinear Schrödinger equation have energies which
ie exactly on this boundary [27,28]. In laser propagation, energies above this boundary correspond to beam irradiances
hich spontaneously filament at some distance from the aperture [29,30]. The addition of damping terms can suppress
ollapse [31,32] as can higher order dispersion [33]. In this work, a non-local nonlinear term due to heating is observed
o suppress collapse.

The model proposed here considers the evolution of a continuous temperature field. This modeling assumption places
n implicit restriction on the timescales for which the model is valid, the time has to be long enough for the notion of
emperature to be well-defined [34]. Ultra short pulses can occur at pulse rates faster than the electron relaxation time,
riving the fluid out of local thermal equilibrium [35,36]. In this circumstance it is common to introduce separate lattice
nd electron temperatures, and use a multi-physics approach to couple the laser with the molecular dynamics [37,38].
lthough molecular dynamics will not be employed here, the continuum model should agree with the molecular dynamics
n the limit.

In this work, the competing effects of thermal blooming and the Kerr effect on short laser pulses are considered in
simple model, valid in the regime where these two effects are of similar importance. The regime is one where the

aser amplitude is near the threshold for self-focusing, referred to here as the boundary of wave collapse, but where the
ulse rate is long enough to see thermal effects. In the context of this model, the boundary of wave collapse depends on
he relative magnitude of the thermal blooming and Kerr effect, as one should expect, with thermal blooming acting to
ncrease the amplitudes required to observe collapse-suppressing wave collapse at fixed amplitude. Numerical evolution of
nitial data of a variety of amplitudes are reported, focusing on the dependence of the solution dynamics, e.g. whether the
aves collapse or disperse, as a function of the thermal blooming coefficient and the wave’s initial amplitude. Thermal
looming is also observed to change the distance from the aperture and time of collapse for beams above the critical
hreshold.

. Modeling short pulses with near-critical energy

In this work, short pulse lasers are modeled with an envelope equation

Az +
ik′′

0

2
Aττ +

i
2k0n0

Axx + (in1 + α) A = 0, (2.1)

n which k′′

0 is the Group Velocity Dispersion (GVD), n1 are nonlinear corrections to the base refractive index n0, α is the
oss due to absorption, z is the propagation coordinate, x is a transverse spatial coordinate, and τ = t−z/vg is the retarded
ime coordinate with vg the group velocity [7]. We consider two nonlinear contributions to n1, from thermal blooming
nd the Kerr effect [39], n1 = n1,T + n1,K ,

n1,T = −
k0(n0 − 1)(T − T0)

T0
, n1,K =

k0η2

η0
|A|

2.

he thermal blooming term, n1,T , assumes an ideal gas at a temperature T which has small fluctuation about an average
emperature T0; the Gladstone-Dale relationship to refractive index fluctuations to density fluctuations, as in [13].
n Eq. (2.1), we have neglected some physical effects in order to focus on the competition between thermal blooming and
err. These effects are important at larger laser energies, and include multiphoton absorption, electron plasma defocusing
nd absorption, and high-order Kerr effects [7,40,41]. Previous work making these modeling choices, neglecting higher
rder terms and using similar envelope equations, include [6,8]; this work is distinct from these in its simulation of the
volution of the temperature field.
Eq. (2.1) is a generalized nonlinear Schrödinger equation in 2+1 dimensions (two transverse and one propagation

imension). The character of such equations depends crucially on the relative signs of the linear and nonlinear terms,
hich dictate whether the equation is of focusing or defocusing type [23,42]. The sign of k′′

0 , the Group Velocity Dispersion,
epends both on material and wavelength [43]. In this work, we will work in a scaled model where only the signs effect
ur analysis. Example of values of the GVD coefficient are k′′

0 = 360 fs2/cm in fused silica [39] or k′′

0 = 0.2 fs2/cm in
air (both of these values are at a wavelength of λ = 800 nm) [41,44] (note that other signs of k′′

0 are possible at other
avelengths in other propagation media [43,45]).
The temperature in (2.1) will be assumed to be initially constant, but permitted to evolve in time, by the equation

Tt + (u · ∇)T = κ∆T + β|A|
2, (2.2)

n which κ is the thermal diffusivity and β =
α

cpρ
represents the heating due to absorption by the laser [13]. The parameter

c is the specific heat, ρ is the density of the propagation medium.
p
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.1. Parameters and non-dimensionalization

Before combining (2.1) and (2.2) we note that the importance of the terms in these equations varies with scenario. To
bserve the relative sizes of each term in these equations we will non-dimensionalize the equations,

T̃ =
T − T0

T1
, Ã =

A
A0

, τ̃ =
τ

T
, t̃ =

t
T

, x̃ =
x
L
, ũ =

u
U

here L is a lengthscale, T is a timescale, T1 is a scale for temperature fluctuations, T0 is the undisturbed temperature,
nd A2

0 is typical laser irradiance. After rescaling, and having dropped the tilde’s on the independent variables, the coupled
aser-temperature equations are

T̃t +
T U
L

ũ · ∇ T̃ =
κT
L2

∆T̃ +
βA2

0T
T1

|Ã|
2

(2.3)

Ãz +
ik′′

0L
2T 2 Ãττ +

i
2k0L

Ãxx − i

(
k0(η0 − 1)T1T̃ L

T0
−

k0η2A2
0L

η0
|Ã|

2
+ αL

)
Ã = 0 (2.4)

Setting the temperature fluctuation scale based on the heating term, T1 = βA2
0T , the temperature equation becomes

T̃t + ϵ1ũ · ∇ T̃ = ϵ2∆T̃ + |Ã|
2

(2.5)

The parameters ϵj are small when the timescale of the pulse is small compared to the diffusive and convective timescales,

T U
L

≪ 1 and
T κ

L2
≪ 1. (2.6)

eglecting the ϵj terms in (2.5), then changing variables from t to τ = t −
z
vg

gives3

T̃τ = |Ã|
2
. (2.7)

qs. (2.6) restricts from above the timescale for which model (2.7) can be used. Since this is an equation for the continuous
emperature field (as opposed to lattice or phonon temperatures [34,36,38,46]), the pulse timescale is also implicitly
estricted from below. In order for the lattice and phonon temperatures to equilibrate, timescales should be larger than
0−11 s in fused silica [47] or 10−9 s in air [37] (the latter number depending on moisture content [35]). As a result, this
odel should be considered in the intermediate regime, pulses which are fast relative to fluid motion and diffusion, but
low compared to electron energy transitions and thermalization. The timescales for which (2.7) is valid depend on the
edium, two examples are below

Material U κ L Timescales

Fused silica 0 0.0138 cm2/s 1 cm 10−11s ≪ T ≪ 102s
Air 10 cm/s 0.2 cm2/s 1 cm 10−9s ≪ T ≪ 10−1s

For continuous wave (CW) studies, the solution to the temperature Eq. (2.7) is sometimes approximated as a power series,
e.g. T̃ = τ |Ã|

2
+ O(τ 2) [48]. Such an expansion does not make sense for pulse lasers, where the temporal oscillations are

of fundamental interest. Instead, the differential equation for the temperature equation is kept as (2.7), and coupled to
the envelope equation,

Ãz + iλ1Ãττ + iλ2Ãxx − i
(
δT̃ − χ |Ã|

2
+ α̃

)
Ã = 0 (2.8)

All of the coefficients in (2.8) can be small depending on the physical scenario. In this work we will consider the case
where α̃ and δ are small. The former will be neglected (a study of the effect linear damping on collapse can be found
n [32]); the latter will be used to measure the relative importance the thermal blooming term compared to the Kerr
onlinearity.

.2. Wave collapse

For simplicity of presentation and analysis, system (2.7) & (2.4) is rescaled to

Az + iAττ + iAXX − i(δT − |A|
2)A = 0 (2.9a)

Tτ = |A|
2 (2.9b)

3 This change of variables can also be done before neglecting the spatial derivatives in (2.5), in which case the change of variables introduces a

few new terms, each of which have smaller coefficients than those neglected between (2.5) and (2.7).

4
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he remaining non-unitary coefficient, δ, measures the relative importance of the thermal effects (defocusing) to the
err effect (focusing). This model is novel to this work, and should not be confused with other generalized nonlinear
chrödinger equations, the most similar being the Davey–Stewartson [42,49] and Schrödinger–Debye systems [26,50].
When δ = 0, (2.9) decouples and (2.9a) is a focusing nonlinear Schrödinger equation which is known to exhibit a finite

ime singularity, known as wave collapse. A classic argument [23,42,51,52] shows that the solutions to Eq. (2.9a) (with
= 0) whose initial data are above a certain amplitude threshold localize to a point. We present this argument below.
Eq. (2.9a) (with δ = 0) has two conserved quantities,4

M =

∫∫
|A|

2dτdx, and E =

∫∫
|∇A|

2
−

1
2
|A|

4 dτdx.

With the knowledge that M and E are constant in the evolution of (2.9) (with δ = 0), collapse is predicted by the evolution
of the quantity

P(z) =

∫∫
(x2 + τ 2)|A|

2 dτdx. (2.10)

It is a straightforward, though tedious, exercise to show that P satisfies the equation5

d2P
dz2

= 8E. (2.11)

Since E is constant in solutions of Eq. (2.9a) (with δ = 0), the differential Eq. (2.11) is trivial to solve, supporting
arabolic trajectories. These parabolic trajectories reach P = 0 at finite z whenever E < 0. At this value of z the intensity
A| must be wholly concentrated at the origin - a phenomenon called wave collapse. Brief examination of E reveals that
his happens for any initial profile shape of sufficient amplitude (since the negative term in E is proportionate to a higher
ower of the amplitude than the positive term). Thus for each fixed beam profile, there will be an amplitude threshold for
hich the wave collapses. Below this threshold, waves disperse. Solitary wave profiles live balanced at E = 0 and neither
isperse nor collapse [56]. For the numerical investigations in this work, we use a spatial and temporally localized pulse
f the form

A(x, τ , 0) = A0sech
(
1
4
x
)
sech

(
1
4
τ

)
. (2.12)

In the next section we observe, numerically, the effect of δ ̸= 0 in model (2.9) with particular attention paid to the
ocalization and growth of solutions near the collapse threshold.

. Numerical simulations

The numerical simulations in this work use a Fourier-split step scheme, as has become the industry standard for
imulations of laser-envelope equations [21,57,58]. This method splits Eq. (2.9) into

Az + iAττ + iAXX = 0 (3.1)

nd

Az − i(δT − |A|
2)A = 0, (3.2a)

Tτ = |A|
2. (3.2b)

After splitting, (3.1) is integrated in Fourier space with no time discretization errors. For system (3.2), at each z-step (3.2b)
is integrated using the trapezoid scheme. To integrate (3.2a), given T from (3.2b), notice that (3.2a) conserves |A|

2,

Az = i(δT − |A|
2)A, Āz = −i(δT − |A|

2)Ā

which implies

|A|
2
z = Az Ā + ĀzA = i(δT − |A|

2)|A|
2
− i(δT − |A|

2)|A|
2

= 0.

Since |A|
2 is constant in z, one can exactly integrate (3.2a) (given the results from integrating Eq. (3.2b)). The combined

scheme for (2.9) is spectrally accurate in x and second order in τ and z (due to the second order Strang splitting and
trapezoid rule used to solve (3.2b)).

System (2.9) was simulated with a variety of initial amplitudes A0 in (2.12) and thermal coefficients δ, on both sides
of the collapse threshold. A depiction of a dispersing trajectory, below the collapse threshold, is in Fig. 2.1; a collapsing
trajectory is depicted in Fig. 2.2. In the dispersing trajectory, Fig. 2.1, the solution’s maximum monotonically decreases
as it propagates in z. The profile also spreads out, becoming less focused as it evolves. In the collapsing trajectory,

4 ‘Conserved quantities’ are those which are invariant in the evolution, see [53–55].
5 This argument generalizes to higher dimensions, with small changes to Eq. (2.11).
5
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Fig. 2.1. The evolution of (2.12) with A0 = 0.4 and δ = 0.1 is depicted at a sampling of distances. This initial data has E > 0, thus is below the
unperturbed (δ = 0) collapse threshold. The evolution decays in amplitude and spreads out. Only a portion of the computational domain is shown.

Fig. 2.2. The evolution of (2.12) with A0 = 0.6 and δ = 0.1 is depicted at a sampling of distances. This initial data has E < 0, thus is above the
unperturbed (δ = 0) collapse threshold. The evolution grows in amplitude and becomes increasingly localized. The entire computational domain is
shown.
6
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Fig. 3.1. Plots of the |A| at a sequence of times in the x–z plane are depicted, for the initial data (2.12) with A0 = 0.6 and δ = 0. The sample times
re, from left to right τ = −15, −7.5, −1.875, −1.41 and 0. In this coordinate system τ = −15 is when pulse is turned on; τ = 0 is when the
ulse has its peak amplitude at the aperture, z = 0. In this simulation, collapse occurs at t = 0, z ≈ 7.13, marked with a star at the top of the right
anel, at exactly the time when the peak amplitude leaves the aperture and at a shorter distance than when δ ̸= 0 (compare to Fig. 3.2).

Fig. 3.2. Plots of the |A| at a sequence of times in the x–z plane are depicted, for the initial data (2.12) with A0 and δ = 0.1. The sample times are,
rom left to right τ = −15, −11.25, −7.5, −5.625, and −4.218. In this coordinate system τ = −15 is when pulse is turned on; τ = 0 is when the
ulse has its peak amplitude at the aperture, z = 0. In this simulation, collapse occurs at t ≈ −4.218, z ≈ 10.12, marked with a star at the top of
he right panel, both earlier in time and further in distance than the same amplitude with δ = 0 (see Fig. 3.1).

ig. 2.2, the amplitude monotonically increases as the profile focuses. Although the numerical simulations cannot observe
he trajectory all the way to collapse (the solution is ultimately too focused for any fixed grid spacing), the numerical
bservations include similar focusing dynamics as the δ = 0 case (in terms of solution growth and localization), where
ollapse is known. A marked difference between the δ ̸= 0 and δ = 0 settings is that the solution becomes crescent
haped in the xτ -plane. This crescent is reminiscent of, but should not be confused with, the classic thermal blooming
rescent, which occurs in space rather than space–time. The authors have, to date, resisted the temptation to make an
nalogy regarding a ‘wind’ in space–time.
In Figs. 2.1 and 2.2 solutions are plotted in the xτ -plane, the natural one for reporting solutions of (2.9) as an evolution

quation in z. It is more physical to report the solutions in the xz-plane at a sequence of τ . Two collapsing trajectories
re depicted this way in Figs. 3.1 and 3.2. In these two figures one may observe the effect of δ ̸= 0 on collapse for initial
mplitudes A0 above the collapse threshold. The most noticeable difference between these two figures (which use the
ame initial amplitude A0 = 0.6) is the distance that the pulse propagates in z before collapse. With δ = 0, collapse
ccurs at z ≈ 7.13; with δ = 0.1 collapse occurs at z ≈ 10.12. The thermal effects thus allow the beam to propagate
40% farther before collapsing. The inclusion of thermal effects causes the collapse threshold to increase in amplitude

nd the collapse distance to increase in z. Both of these are thermally induced suppressions of collapse. Interestingly, the
ollapse location in space time is also shifted in τ by the presence of δ in the negative direction (see Fig. 2.2). Thus collapse
appens earlier in be the presence of δ, and thermal effects could be said to enhance, rather than suppress, collapse as a
unction of τ .
7
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Fig. 3.3. Eq. (2.9) was simulated with a variety of δ and A0 values for z ∈ (0, 75] (simulations which collapse are stopped early). The threshold for
ave collapse with δ = 0 is marked with the vertical dashed line. Left: The value of the H1 norm at the end of the simulation (normalized by the
1 norm of the initial data). The H1 norm is infinity at wave collapse, but may also grow for non-localized solutions. Right: The value of P̃(z) at
he end of the simulation, normalized by P̃(0), If this ratio is less than one the solution is becoming more localized.

For system (2.9), with δ ̸= 0, the quantity E is not conserved and the ODE (2.11) is no longer satisfied. As alternative
ndicators of collapse, two solution metrics are tracked. These are the H1 norm of the solutions,

∥A∥H1 =

(∫∫
|Ax|

2
+ |Aτ |

2
+ |A|

2 dx dτ
)1/2

nd a modified version of the integral in (2.10),

P̃ =

∫∫ (
(τ − τm)2 + x2

)
|A|

2 dx dτ .

he quantity P̃ is a temporally shifted version the integral in (2.10). The shift τm is the location in time where the solution
ttains it maximal modulus over the entire simulation duration. For dispersing waves this time is τm = 0; for collapsing
aves this time is observed to be negative (and more negative the closer to the collapse threshold the initial data is).
he H1 norm and the seminorm P were computed for a variety of initial amplitudes, A0, and coefficients, δ. With each
air, the initial data (2.12) was evolved either to z = 75 or until the solution became too localized for the grid spacing.
he latter was measured by enforcing a threshold of 10−5 for the amplitude of the highest frequency Fourier modes. The
esults of these simulations are reported in Fig. 3.3.

Both panels of Fig. 3.3 give approximations of the boundary of wave collapse in parameter space. Wave collapse occurs
hen the solution both grows to infinity and localizing to a point. The growth is measured by the H1 norm in the left
anel, the localization is measured by P̃ in the right panel. The precise location of this boundary in parameter space is
ifficulty to interrogate, as the distance at which collapse occurs approaches infinity as one approaches the boundary.
he simulation distance, z = 75, was chosen so that increasing the distance does not change Fig. 3.3 at the resolution at
hich it is reported.

. Conclusion

Simulations of the effect of thermal blooming on wave collapse in short laser pulses were conducted. These simulations
se an envelope model coupled with an equation for the temperature of the propagation medium. In the context of this
odel, temperature effects were seen to increase the distance at which wave collapse occurs, as well as increase the
mplitude threshold at which collapse occurs, suppressing wave collapse. Solution dynamics were observed and phase
iagrams of parameter space were created.

isclaimer: This report was prepared as an account of work sponsored by an agency of the United States Government.
either the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or
mplied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information,
pparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference
erein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does
ot necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or
ny agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the

nited States Government or any agency thereof.
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