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• The spectrum of traveling water waves is asymptotically approximated, considering two and three-dimensional perturbations.
• A multiple scale expansion is employed, coupling wave slope to Bloch parameter.
• The radius of the disc of analyticity of the spectrum is predicted, and compared to numerical simulations.
• Modulational instabilities are computed.
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a b s t r a c t

The spectrum of periodic traveling waves in deep water is discussed. A multi-scale method is used,
expanding the spectral data and the Bloch parameter in wave amplitude, to compute the size and location
ofmodulated instabilities. The role of these instabilities in limiting the spectrum’s analyticity is explained.
Both two-dimensional and three-dimensional instabilities are calculated. The asymptotic predictions are
compared to numerical simulations.
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1. Introduction

The spectral stability of traveling deep-water waves is stud-
ied. The water wave stability problem has a rich history, with
great strides made in the late sixties with the work of Benjamin
and Feir [1] and the development of Resonant Interaction Theory
(RIT) [2–5]. The predictions of RIT have since been leveraged heav-
ily by numerical methods; the influential works of MacKay and
Saffman [6] and McLean [7] led to a taxonomy of water wave in-
stabilities based on RIT. The most recent review article is that of
Dias and Kharif [8]; since the publication of this review a number
ofmodern numerical stability studies have been conducted [9–13].

In RIT, wave dynamics are studied using approximate models
for the evolution of the amplitude of a small number of weakly
nonlinear wave modes: triads, quartets, etc. Examples of such
model equations which include modulational effects are the non-
linear Schrödinger equation, the Dysthe equation, and the Davey–
Stewartson/Benney–Roskes equations [4,14–16]. The stability of
Stokes waves has been studied in such models, often they were
derived for exactly this purpose [17–19].
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In this work, the spectrum of traveling water waves is approxi-
mated via small amplitude asymptotic expansion. This approach
contrasts the vast majority of spectral stability computations,
which are primarily numerical. Typical numerical computations
calculate the spectrumvia an eigensolver at each fixed amplitude—
see for example [9,20,10]. Boundary perturbation methods take
an alternative approach, expanding the traveling wave and spec-
trum in amplitude. Boundary perturbation methods calculate the
coefficients of a series representation of the spectrum. Boundary
perturbation methods have been applied to compute water waves
numerous times [21–24] and are reviewed in [25]. This approach
is employed for the water wave spectrum in [26,27].

In a series of recent works, the author and collaborators derived
the weakly nonlinear asymptotics of the spectrum in conjunction
with the development of boundary perturbationmethods, for deep
water gravity waves in [13], including surface tension in [28], and
with finite depth effects in [29]. Each article in this series considers
a two-dimensional fluid, and expands the spectrum in amplitude at
a sampling of fixed Bloch parameters; instabilitieswhich have both
fixed Bloch parameter and are analytic in amplitude are observed
to be rare.

It is known that small amplitude instabilities bifurcate from a
set of resonant configurations, whose locations may be predicted
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by linear theory [7,8]. These resonant configurations are the
Bloch parameters for which the spectrum of the linearization
about the flat-state contains eigenvalue collisions. It is known
that the spectrum is analytic as a function of amplitude at all
Bloch parameters where the flat-state eigenvalues are simple [30].
Recent numerical simulations suggest that the spectrum is also
analytic at eigenvalue collisions, but that the radius of the disc
of analyticity vanishes as the Bloch parameter approaches the
resonant configurations [28,29]. This vanishing radius has been
proposed as a mechanism for detecting instabilities [27].

The potential flow equations have traveling wave solutions
which are analytic in wave slope [31]. The leading asymptotics
of the traveling wave have been computed numerous times
[32–35]. The asymptotics of the spectrum have been computed
for a two-dimensional fluid in [13,28,29], these asymptotics all
compute the spectrum with fixed Bloch parameter. In this work,
instabilities are computed with Bloch parameters which depend
on amplitude, on both a two-dimensional and three-dimensional
fluid. We use a multi-scale expansion which couples frequency
and amplitude in a manner analogous to the modulational ansatz
which is typically used to derive envelope equations [14,36,16];
we refer to the unstable spectral data computed in this manner as
modulational instabilities.

Often the term modulational is used to refer only to the Ben-
jamin–Feir instability. Although much of the asymptotic work re-
garding Benjamin–Feir dates back to the 1960s and RIT, more
recently a number of authors have been pursuing rigorous proof of
the existence of this instability in a variety of wavemodels [37,38].
Most similar in spirit to this work is that in [39,40], where an anal-
ogous perturbation in Bloch parameter is used. Although we con-
sider only formal asymptotics, such asymptotics have been used as
the basis for proofs of the existence of solutions in the TFE frame-
work [31,30].

In the current framework, the classic long wave modulational
instability, Benjamin–Feir, is recovered as are many other modu-
lational instabilities. The onset of instability at fixed Bloch param-
eter, and thus the amplitude at which the fixed Bloch parameter
spectrum loses analyticity, is predicted. Both two-dimensional and
three-dimensional perturbations are considered. The asymptotic
instability locations are compared with the numerical estimates of
these locations using the method of Akers and Nicholls [13,28].

The paper is organized as follows. Section 2 begins by in-
troducing the spectral stability problem for water waves. The
asymptotics of the spectrum are then presented, in subsections
organized by the type of resonance which is responsible for the
flat-state eigenvalue collisions. Triad resonance is presented in
Section 2.1; quartets are discussed in Section 2.2. We comment
on higher order resonances in 2.3, and finally compute the Ben-
jamin–Feir instability in Section 2.4.

2. Modulational instabilities of deep water waves

The widely-accepted model for irrotational motions of a large
bodyof deepwater in the absence of viscosity is the Euler equations

φxx + φyy + φzz = 0, z < ϵη, (2.1a)

φz = 0, z → −∞, (2.1b)
ηt + ϵ(ηxφx + ηyφy) = φz, z = ϵη, (2.1c)

φt +
ϵ

2


φ2
x + φ2

y + φ2
z


+ η

− σ


ηxx + ηyy

1 + ϵ2(η2
x + η2

y)
3/2


= 0, z = ϵη, (2.1d)

where η is the free-surface displacement and φ is the velocity
potential. System (2.1) has been nondimensionalized as in [13,41].
We assume that the wave slope, ϵ = A/L is small (A is a typical
displacement and L, the characteristic horizontal length, is chosen
so thatwaves in (2.1) have spatial period 2π ). The constantσ =

γ

gL2

is a Bond number comparing the relative importance of gravity, g ,
to surface tension γ .

The potential flow equations (2.1), have traveling wave solu-
tions which depend analytically on wave slope [31]. These solu-
tions can be written in terms of the speed c , the displacement η,
and the free surface trace of the potential Φ , each as a series in ϵ.
Periodic traveling wave solutions are often called Stokes’ waves,
as the leading order terms of this series were first written by
Stokes [32]. We consider the stability of the classic Stokes wave,
which is constant in transverse direction, and at leading order is
supported at wavenumber k0 = (1, 0). The speed, displacement
and free surface trace of the potential of this wave are, to O(ϵ2),

c =

∞
n=0

ϵncn =

√
1 + σ
0



+ ϵ2

 2σ 2
+ σ + 8

4(1 − 2σ)
√
1 + σ

0

+ O(ϵ3), (2.2a)

η̄ =

∞
n=1

ϵnη̄n = ϵeik0·x + ϵ2


1 + σ

1 − 2σ


e2ik0·x + ∗ + O(ϵ3), (2.2b)

Φ̄ =

∞
n=1

ϵnΦ̄n = ϵi
√
1 + σ eik0·x

+ ϵ2


3iσ

√
1 + σ

1 − 2σ


e2ik0·x + ∗ + O(ϵ3). (2.2c)

In (2.2), the ∗ refers to the complex conjugate of the preceding
terms. This traveling wave solution is constant in the transverse
horizontal direction, here y. Later the perturbations of this wave
will be permitted to have non-trivial dependence on both horizon-
tal coordinates, x = (x, y).

The spectral stability of these traveling waves (2.2) is consid-
ered by writing Eq. (2.1) in terms of the free surface trace Φ and
displacement η, as in [42], then substituting the ansatz

η = η̄(x + ct) + δζ (x + ct)eλt , and

Φ = Φ̄(x + ct) + δu(x + ct)eλt ,
(2.3)

and neglecting quadratic powers of δ. The result is a generalized
spectral problem of the form

A(η̄, Φ̄, c)w = λB(η̄, Φ̄, c)w, (2.4)

where w = (ζ , u)T . Traveling waves are considered spectrally
unstable if solutions to (2.4) have λ with positive real part. It is
straightforward to calculate the operators A and B, and we refer
the interested reader to [13,28].

To solve (2.4), we must append boundary conditions for w.
Rather than assuming perturbations w share a period with the
traveling waves, thus restricting to superharmonic perturbations
[43], we consider arbitrary periods, including subharmonic pertur-
bations [44]. Subharmonic perturbations satisfy Bloch (quasi) pe-
riodic boundary conditions [45]. If the traveling wave is x-periodic
with period L, then the perturbations satisfy

w(x + L, y) = eipLw(x, y). (2.5)

For L = 2π-periodic traveling waves, it is sufficient to consider the
set of Bloch parameters with p ∈ [0, 1). Similar conditions apply in
the y-direction,whose corresponding Bloch parameter is labeled q;
we will combine these two parameters in a vector κ = (p, q)T .
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Fig. 2.1. A cartoon depicts the location of two-dimensional instabilities in the Bloch
parameter—amplitude plane. As derived in the following sections, triad instabilities
have linear boundaries, p − p0 = O(ϵ). Quartet instabilities have square root
boundaries, p − p0 = O(ϵ2). Higher order instabilities occur near curves which
have the quartet boundary scaling, but have asymptotically small,O(ϵr )with r > 2,
width. All of these instabilities would cause a fixed Bloch parameter boundary
perturbationmethod to lose analyticity. The dashed arrowsdepict trajectories along
which a non-modulational method, like that of [28], would be able to compute the
spectrum.

Solutions to the spectral stability problem, Eq. (2.4), can also be
written as a series in amplitude, see [30,27],

ζ (x, y) =

∞
n=0

ϵnζn(x, y),

u(x, y) =

∞
n=0

ϵnun(x, y), λ =

∞
n=0

ϵnλn.

(2.6)

The main thrust of this paper is the role that the boundary con-
ditions play in the analyticity of the spectral data, λ, ζ and u, as
functions of wave slope ϵ. For a two-dimensional fluid, with fixed
Bloch parameter, p, the corrections λn, ζn and un have been com-
puted about simple eigenvalues in [30] and about repeated eigen-
values in [13,28]. Because the form of these series (2.6) changes at
repeated eigenvalues, the radius of convergence is typically discon-
tinuous in the neighborhood of resonant Bloch parameters (those
with flat-state eigenvalue collisions). Often the spectrum has fi-
nite disc of analyticity at a resonant Bloch parameter, but will
have a vanishingly small disc of analyticity as the Bloch parame-
ter approaches this configuration. Such discontinuities in radii are
reported in [28,29]. This dependence of the disc of analyticity is
explained here by locating the curves in the Bloch parameter
amplitude plane where finite amplitude instabilities occur; these
instabilities necessarily cause the spectrum to lose analyticity. A
cartoon of the instability locations is presented in Fig. 2.1.

In the following sections, the instabilities which limit the
spectrum’s analyticity will be described using an asymptotic
expansion which couples amplitude and Bloch vector,

κ = κ0 + ϵκ1 + ϵ2κ2 + · · · ,

where each correction to the Bloch vector is labeled κj = (pj, qj)T .
To begin, we consider the flat-state, ϵ = 0, problem. It is a simple
calculation to recover the spectrum of infinitesimal waves

λ0 = ±iω(kj) + ic0 · kj, (2.7)

whereω(k) = ±


|k|(1 + σ |k|2) and for planar Stokeswaves c0 =

(
√
1 + σ , 0)T .With Bloch boundary conditions, thewavenumbers

are expressed as kj = (mj, nj)
T

+ (p0, q0)T , with mj, nj ∈ Z and
p0, q0 ∈ [−1, 1). A flat-state eigenvalue collision, λ0(k1) = λ0(k2),
implies a resonance condition between the temporal frequencies

± ω(k1) ∓ ω(k2) = c0 · (k1 − k2) = (m1 − m2)ω(k0). (2.8)
Eq. (2.8) is fundamental in understanding instabilities of Stokes
waves. Examining the left and rightmost sides of (2.8), flat-state
eigenvalue collisions occur when the wave numbers of the pertur-
bations, k1 and k2 resonatewith1m = m1−m2 copies of the Stokes
wave, at frequency k0. It is the resonantmixing of thesewave num-
bers that may lead to instabilities; only near these resonances may
finite amplitude eigenvalue collisions and instabilities occur [7,8].
The difference between the first component of thewavenumbers of
the perturbations, 1m, determines the type of resonance, and the
character of the spectrum. For this reason it is natural to present
the results in using the naming conventions of Resonant Interac-
tion Theory [3]. When this difference is 1mj = 1 the eigenvalue
collision is due to a triad resonance. Similarly 1m = 2 is a quar-
tet resonance, 1m = 3 is a quintet, etc. Although collisions of
more than two eigenvalues are rare, we include the asymptotics
of the spectrum about one collision of four flat-state eigenvalues,
the Benjamin–Feir case.

The same base perturbation series can be used to derive the
leading eigenvalue correction in all cases, by beginning with a
leading order perturbation of the form

ζ0
u0


= β0,1

 1
λ0 + ic0 · k1

|k1|

 eik1·x

+ β0,2

 1
λ0 + ic0 · k2

|k2|

 eik2·x + β0,3


0
1


. (2.9)

We will normalize the eigenfunctions so that β0,1 = 1. When the
flat-state eigenvalue, λ0, has algebraic multiplicity of two, β0,3 will
be set to zero; to consider the Benjamin–Feir case the wave num-
bers of the perturbations are set as k1 = k0, and k2 = −k0. The
O(ϵ) corrections to the perturbation solve a forced linear partial
differential equation,

λ0 + c0∂x L
1 − σ∆ λ0 + c0∂x


ζ1
u1



+

3
j=1

1
m=−1

β0,j


qmj
Qm
j


ei(kj+mk0)·x = 0, (2.10)

whereL is the operator induced by z-derivatives using a Dirichlet-
to-Neumann map, as in [42,46], with Fourier symbol L̂(k) = |k|.

The forcing in Eq. (2.10) is introduced in two ways. First, non-
linear interactions between the leading order perturbation (ζ0, u0)
with the leading order Stokes wave (η1, Φ1) generate the coeffi-
cients q±1

j ,Q±1
j . Second, the first variation of the linear operators

when expanded in Bloch parameter generates the q0j ,Q
0
j , which

contain themodulational contribution to this series. The nonlinear
interaction coefficients were reported for a two dimensional fluid
in [28], and are calculated for a three-dimensional fluid below. The
coefficients of the forcing terms, for j = 1, 2 are

q±1
j = i(kj ± k0) ·


ikj

(λ0 + ic0 · kj)
|kj|

− k0
1 + σ

c0 · k0


,

Q±1
j =


i(1 + σ)(±|kj| − k0 · kj)

λ0 + ic0 · kj
(c0 · k0)|kj|

− ω(kj)2 − ω(k0)2


,

q0j = λ1 +


ic0 −

λ0 + ic0 · kj
|kj|2

kj


· κ1,

Q 0
j =


λ0 + ic0 · kj

|kj|


(λ1 + ic0 · κ1) + 2σkj · κ1.
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Fig. 2.2. Left: The numerical estimates of the radii of convergence, ϵ, of a series expansion of the spectrum based on the TFE method of [28] at σ = 3, marked with circles,
are compared to the asymptotic prediction of Eq. (2.13), marked with the solid lines emanating from p0 ≈ 0.202. Notice that circles are not continuous at the resonant
Bloch parameter p0 ≈ 0.202, having a limit of zero but a value of ϵ ≈ 0.35. The Benjamin–Feir instability is also marked with the solid line emanating from p0 = 0, using
(2.25). Right: The TFE predictions for the radii of convergence, ϵ, of the spectrum near a quartet resonance is depicted as a function of the Bloch parameter p at σ = 0.24.
The predictions of Eq. (2.18) are marked with two solid (almost overlapping) curves.
The eigenfunction at wavenumber k3 = 0 is treated specially.
The forcing terms due to interaction with this wavenumber have
q±1
3 = Q±1

3 = 0 and

q03 = −|κ1|,

Q 0
3 = λ1 + ic0 · κ1.

Eq. (2.10) is always solvable; λ1 is set by enforcing the Fredholm
condition, that the forcing terms are orthogonal to Ψj in the kernel
of the adjoint of linear operator in (2.10),

(λ̄0 − c0∂x) L

1 − σ∆ (λ̄0 − c0∂x)


Ψj = 0.

The Ψj are labeled based on their support, which is at the same
wave numbers as the leading order eigenvectors (ζ0, u0), at k1, k2,
and in the Benjamin–Feir case k3.

Ψj =

 1

−
λ̄0 − ic0 · kj
1 + σ |kj|2

 eikj·x. (2.11)

Enforcing solvability, orthogonality of the forcing terms to Ψj,
yields different equations forλ1 depending on the difference in fre-
quency between the wave numbers k1, k2 and k3. In the following
sections we discuss the solvability conditions, and their solutions,
categorized by this frequency difference.

2.1. Triads

In this section the first eigenvalue correction λ1 is computed.
The correction is nonzero only when k1 ± k0 = k2 which we refer
to as a triad. If a triad occurs, we label the wavenumbers so that
k1 − k0 = k2. With this labeling, imposing orthogonality of the
forcing terms to Ψ1 and Ψ2 gives

2(λ1 + i(c0 − cg(k1)) · κ1) + β0,2τ1 = 0, (2.12a)

2β0,2(λ1 + i(c0 − cg(k2)) · κ1) + τ2 = 0, (2.12b)

where

τ1 = q−1
2 −


λ0 + ic0 · k1
1 + σ |k1|2


Q−1
2 , and

τ2 = q+

1 −


λ0 + ic0 · k2
1 + σ |k2|2


Q+1
1 .
For a general triad, the τj ≠ 0, and the first nonzero correction to
the flat-state spectrum is

λ1 = −i

c0 −

cg(k1) + cg(k2)
2


· κ1

±
1
2


τ1τ2 − ((cg(k2) − cg(k1)) · κ1)2,

where cg(kj) = ωk(kj) is the group velocity vector at frequency kj.
Both τj are pure imaginary, so if τ1τ2 > 0, then there is a band

of κ1 where instabilities occur, which includes the non-modulated
case κ1 = 0. If κ1 is parallel to the difference of the group velocities,
i.e. longitudinal perturbations, then instabilities exist within the
interval

|κ1| <

√
τ1τ2

|cg [k1] − cg [k2]|
. (2.13)

The largest triad instabilities are the non-modulational ones; the
triads in the band of instabilities where λ1 has the largest real part
are at κ1 = 0.

Eq. (2.13) predicts the location of finite amplitude instabilities
near triads on both two and three-dimensional fluids. It also
predicts the vanishing radius of convergence of a fixed Bloch
parameter boundary perturbation scheme in the neighborhood of
a triad resonance. In the left panel of Fig. 2.2, estimates of the radius
of convergence of the TFEmethod of Akers and Nicholls, computed
by the first non-canceled pole of a Pade’ interpolant, is compared
to the prediction of Eq. (2.13), with good agreement.

2.2. Quartets

If the wave numbers of the eigenvalue in question do not
participate in a triad interaction, then the τj are absent in (2.12),
and the first eigenvalue correction is pure imaginary

λ1 = i(cg(k1) − c0) · κ1.

This is the case at quartets. For a typical quartet interaction, where
cg(k1) ≠ cg(k2), Eqs. (2.12) imply β0,2 = 0. For quartets with non-
zero λ1 and β0,2 = 0, the spectrum behaves like a stable triad, and
there is no instability. To compute modulated quartet instabilities,
β0,2 must be undetermined at this order, which occurs when

cg(k1) · κ1 = cg(k2) · κ1.

This condition is satisfied at generic wave numbers kj if κ1 = 0, so
that λ1 = 0, and the leading correction to the flat-state spectrum is
λ2. Note, as presented in Section 2.4, the Benjamin–Feir instability
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is a special quartet, where the wave numbers also take part in a
degenerate triad interaction (one where the above group velocity
condition is satisfied). The Benjamin–Feir instability is of quartet
type, but with non-zero λ1.

After computing λ1, Eq. (2.10) is solvable, with solution
ζ1
u1


=


j=1,2

1
m=−1

β0,j


γ m
j

Γ m
j


ei(kj+mk0)·x +


ζ1,h
u1,h


. (2.14)

The u1,h and ζ1,h are homogeneous solutions of (2.10), which do
not effect the stability results presented herein. When computing
the eigenvalue corrections to all orders in wave slope, one should
choose the homogeneous solutions to have zero support at k1,
as in [13]. The size of the homogeneous solutions is determined
by solvability at later orders. The coefficients in (2.14) have been
explicitly calculated,

γ ±1
j = −

(λ0 + ic0 · (kj ± k0))q±1
j + |kj ± k0|Q±1

j

(λ0 + ic0 · (kj ± k0))2 + (1 + σ |kj ± k0|2)|kj ± k0|
, (2.15a)

γ 0
j = −

q0j
2(λ0 + ic0 · kj)

, (2.15b)

Γ ±1
j = −

(λ0 + ic0 · (kj ± k0))Q±1
j − (1 + σ |kj ± k0|2)q±1

j

(λ0 + ic0 · (kj ± k0))2 + (1 + σ |kj ± k0|2)|kj ± k0|
, (2.15c)

Γ 0
j =

−Q 0
j

2(λ0 + ic0 · kj)
. (2.15d)

The equation for the next corrections (ζ2, η2) and λ2 is
λ0 + c0∂x L
1 − σ∆ λ0 + c0∂x


ζ2
u2



+

2
j=1


m=−2,0,2

β0,j


tmj
Tm
j


ei(kj+mk0)·x = 0. (2.16)

The coefficients tmj and Tm
j are due to interactions of wavenum-

ber kj with the Stokes wave k0 in the nonlinear terms of (2.1) as
well as the second variation of the linear operators with respect to
Bloch parameter. They are analogous to the qmj in Eq. (2.10), ex-
cepting that the terms t0j and T 0

j include both the nonlinear in-
teraction and the expansion of the linear operators (where as q0j
and Q 0

j include only contributions from the expansion of the lin-
ear operator, without any contributions from the nonlinearity).
The coefficients are reported below as t0j = (t0j )L + (t0j )N and
T 0
j = (T 0

j )L + (T 0
j )N to emphasize the different origins. As with

the previous section, the nonlinear contributions were computed
for two-dimensional fluids absentmodulation in [13]. Themodula-
tional and three-dimensional coefficients extensionwas calculated
here using the results of [13]. It is worth noting that the effect of
modulationwas calculated to quintic order in the context of the Za-
kharov equation by Stiassnie and Shemer [17], in which the below
coefficients are also calculated.
t0j

L

= λ2 + ic0 · κ2 + ic2 · kj −

1
2
κT
1 L̂kk(kj)κ1 + L̂k(kj) · κ2


×

iω(kj)
|kj|

+ (λ1 + ic0 · κ1)γ
0
j − L̂k(kj) · κ1Γ

0
j ,

t0j

N

= ikj ·

i(kj + k0)Γ +1

j + i(kj − k0)Γ −1
j

− k0(c0 · k0)(γ +1
j + γ −1

j ) − 2k0(c0 · k0) − kjω(kj)

,

t±2
j = i(k2 ± 2k0) ·


i(kj ± k0)Γ ±1

j − k0(c0 · k0)γ ±1
j

+ 2ik0F2 − E2
ω(kj)
|kj|

kj − k0(c0 · k0) −
1
2
ω(kj)kj


.

The symbol L̂(kj) = |kj| is the Fourier transform of the operator
induced by z-derivatives, using the Dirichlet-to-Neumann map, as
in [42]. The symbols L̂k(kj) and L̂kk(kj) are its gradient andHessian
respectively.

(T 0
j )L = (λ2 + ic0 · κ2 + ic2 · kj)

λ0 + ic0 · kj
|kj|

+

σ |κ1|

2

+ 2σkj · κ2

+ (λ1 + ic0 · κ1)Γ

0
j + 2σkj · κ1γ

h
j ,

(T 0
j )N =


−ik0 · (kj + k0)(c0 · k0)Γ +1

j − i|kj + k0|(c0 · k0)Γ +1
j

+ |kj + k0|(λ0 + ic0 · (kj + k0))Γ +1
j

− ik0 · (kj − k0)(c0 · k0)Γ −1
j − i|kj − k0|(c0 · k0)Γ −1

j

+ |kj − k0|(λ0 + ic0 · (kj − k0))Γ −1
j − 3σ |kj|2

− (γ +1
j + γ −1

j )(c0 · k0)2 + 2(1 + σ) + 2(kj · k0)ω(kj)

× (c0 · k0) + 2
(kj · k0)(c0 · k0)ω(kj)

|kj|
− |kj|ω(kj)2


,

T±2
j =


−(c0 · k0)2γ ±1

j −
2iω(kj)kj · k0F2

|kj|
± 2iω(kj)F2

− ω(kj)2E2 + 4ic0 · k0F2 − ik0 · (kj ± k0)(c0 · k0)Γ ±1
j

± i|kj ± k0|(c0 · k0)Γ ±1
j + |kj ± k0|(λ0 + ic0

· (kj ± k0))Γ ±1
j +

3
2
σk2 · (kj ± 2k0) − (1 + σ)

− ikj · k0(λ0 + ic0 · kj)(c0 · k0) ± i(λ0 + ic0 · kj)

× (c0 · k0) +
(kj · k0)(c0 · k0)ω(kj)

|kj|

∓
|kj|2(c0 · k0)ω(kj)

|kj|
−

|kj|ω(kj)2

2


.

These coefficients include contributions from ζ1, u1, η2 and Φ2.
The coefficients of the Fourier modes of ζ1 and u1 are defined
in (2.15). The coefficients of the second harmonics in η2 and Φ2
appear in Eq. (2.2) and are referenced in the above formulae as

E2 =


1 + σ

1 − 2σ


and F2 =


3iσ

√
1 + σ

1 − 2σ


.

Labeling the wave numbers so that k1 = k2 + 2k0, the solvability
conditions are

2(λ2 + i(c0 − cg(k1)) · κ2) +


t01 −

λ0 + ic0 · k1
1 + σ |k1|2

T 0
1


+ β0,2


t+2
2 −

λ0 + ic0 · k1
1 + σ |k1|2

T+2
2


= 0,

2β0,2(λ2 + i(c0 − cg(k2))κ2) +


t−2
1 −

λ0 + ic0 · k2
1 + σ |k2|2

T−2
1


+β0,2


t02 −

λ0 + ic0 · k2
1 + σ |k2|2

T 0
2


= 0.

In these solvability conditions appear the quartet interaction
coefficients, Pi,j, which are the result of wavenumber kj interacting
with the Stokes wave to force equation (2.16) at wavenumber ki,
absent modulation. These coefficients are defined as

P1,1 =


λ0 + ic0 · k1
1 + σ |k1|2

T̃ 0
1 − t̃01


,

P1,2 =


λ0 + ic0 · k1
1 + σ |k1|2

T+2
2 − t+2

2


,

P2,1 =


λ0 + ic0 · k2
1 + σ |k2|2

T−2
1 − t−2

1


,

P2,2 =


λ0 + ic0 · k2
1 + σ |k2|2

T̃ 0
2 − t̃02
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Fig. 2.3. The location of instabilities asymptotically near κ0 is approximated, on the left near a triad in the κ1 plane, on the right near a quartet in the κ2 plane. The triad
resonance occurs at κ0 ≈ (0.2908, 0.1) and σ = 2.75 when ϵ = 0, and finite amplitude instabilities persist at this κ0 for ϵ > 0. On the right, a quartet resonance occurs at
σ = 0.24 and κ0 ≈ (0.159.0) at ϵ = 0. In this case, finite amplitude instabilities do not occur at the resonant configuration; the origin in the κ2 plane is not within the band
of instabilities.
where the terms with the tilde are evaluated at κ1 = κ2 = 0,
i.e. absent modulational effects, so that the Pi,j match the defini-
tions used in [13,28]. In terms of these quartet interaction coeffi-
cients, which are all pure imaginary, we can find the first non-zero
correction to the free surface,

λ2 =
1
4


P2,2 + P1,1


− i


c0 −

cg(k1) + cg(k2)
2


· κ2

±
1
4


(P2,2 − P1,1 + 2i


cg(k1) − cg(k2)


· κ2)2 + 4P1,2P2,1. (2.17)

Since the Pi,j are pure imaginary, λ2 can have positive real part only
if the product P1,2P2,1 is positive. The strongest such instabilities
will occur when

P1,1 − P2,2 = 2i(cg(k1) − cg(k2)) · κ2

which is generically a modulational instability, i.e. does not occur
at κ2 = 0. This is different from the triad case, where the largest in-
stabilities are notmodulational (the largest triad instabilities occur
at κ1 = 0).

Whenever P1,2P2,1 > 0, there are Bloch vectors causing
modulational quartet instability satisfying2i(cg(k1) − cg(k2)) · κ2 − (P1,1 − P2,2)

 <

4P1,2P2,1. (2.18)

For deep water gravity waves, there is a quartet interaction at
p0 = 1/4 which has P1,2 = P2,1 = 0. Eq. (2.18) predicts no
instability in this case. Thus this asymptotic argument explains
why there is no observed instability or loss of analyticity near
(p, ϵ) = (1/4, 0) in [13]. For gravity–capillary waves in deep
water, there are quartetswhich lead to instability (see Fig. 2.3). The
radii of convergence of the spectrum at Bloch parameters near one
such quartet is compared to the prediction of (2.18) in the right
panel of Fig. 2.2.

2.3. Higher order resonances

For finite amplitude spectra bifurcating from flat-state eigen-
value collisions of algebraic multiplicity two, the remaining cases
(quintets, sextets, etc.) can be summarized as follows. For these
higher order resonances, where |k1 − k2| > 2, with general κ2

λ2 = −i(c0 − cg(k1)) · κ2 +
1
2
P1,1,

β0,2 = 0 and the two eigenfunctions, are at leading order,
decoupled. All later eigenvalue corrections λn are pure imaginary,
and the eigenvalue collision does not cause instability. To have an
instability bifurcating from a quintet resonance a necessary, but
not sufficient, condition is

2i(cg(k2) − cg(k1)) · κ2 = P1,1 − P2,2. (2.19)

Thus the Bloch parameter corrections κ2, at which instabilities can
occur, live on a line in the κ2 plane. Although the series is not
computed here, we expect instability to be possible near quintet
resonances for a line of κ2 and a band of the κ3 plane, near sextet
resonances for a line in the κ3 plane and a band in the κ4 plane,
etc. The locus of such instabilities will be at leading order at κ =

κ0 + ϵ2κ2, with κ2 from Eq. (2.19), whenever |k1 − k2| > 2. Thus
although the sufficient conditions for the existence of such high
order (and asymptotically small) instabilities are not reported, Eq.
(2.19) predicts the locations of such instabilities. This intuition is
consistent with the size and location of the instabilities computed
in [20].

2.4. The Benjamin–Feir instability

The flat-state spectrum rarely has eigenvalue collisions of alge-
braic multiplicity larger than two, but one such collision occurs for
all Bond numbers, and is responsible for the famous Benjamin–Feir
instability. Note, although themultiplicity four eigenvalue collision
occurs for all Bond numbers (and depths), the collision results in
instability only for some. For example, deep-water waves in one
space dimension are Benjamin–Feir stable for σ ∈ [2

√
3/3−1, 1

2 ],
but still have a multiplicity four eigenvalue collision at zero ampli-
tude. The location and size of the Benjamin–Feir instability can be
predicted in this modulational framework. The Benjamin–Feir in-
stability bifurcates from a flat-state eigenvalue collision at λ0 = 0,
of algebraic multiplicity 4 and geometric multiplicity 3; the eigen-
vectors are supported at three wave numbers, k1 = k0, k2 = −k0
and k3 = 0. The flat-state eigenfunctions are

ζ0
u0


=


1

ic0 · k0


eik0·x + β0,2


1

−ic0 · k0


e−ik0·x

+ β0,3


0
1


. (2.20)

Eq. (2.10) now has solvability conditions at three frequencies,
yielding

2(λ1 + i(c0 − cg(k1)) · κ1) = 0 (2.21a)

2β0,2(λ1 + i(c0 − cg(k2)) · κ1) = 0 (2.21b)

β0,3q03 = 0. (2.21c)
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Fig. 2.4. The Benjamin–Feir instability region in the κ1 plane is shaded black (on the left with σ = 0, on the right with σ = 1). This region is predicted by Eq. (2.24). The
shape difference is due to a sign change in the Hessian of the linear dispersion relation, and is captured by Eq. (2.24).
Although the Benjamin–Feir wave numbers take part in multiple
triad interactions, for example k1 + k3 = k0, k3 − k2 = k0, these
interactions are degenerate inmultiple senses. The nonlinear inter-
action coefficients due to these interactions, the τj of Section 2.1,
are zero. The group velocities are also equal, so Eq. (2.21b) does
not restrict the value of β0,2 From Eq. (2.21c) we see that the mean
flow term vanishes, β0,3 = 0. This is special to deep water; β0,3
is undetermined at this order of approximation in the finite-depth
problem. The first correction to the flat-state eigenvalue is

λ1 = −i(c0 − cg(k1)) · κ1.

The solutions to (2.10) are identical to those of the previous
section and are reported in Eq. (2.14), with the exception that
since q−1

1 = q+1
2 = Q−1

1 = Q+1
2 = 0, the coefficients γ −1

1 =

γ +1
2 = Γ −1

1 = Γ +1
2 are zero. Direct use of (2.15) would yield an

indeterminate form. In the Benjamin–Feir case, Eq. (2.16) has three
solvability conditions

2(λ2 + i(c0 − cg(k1)) · κ2) − iκT
1 · H(k1) · κ1

− P1,1 − β0,2P1,2 = 0 (2.22a)

β0,2

2(λ2 + i(c0 − cg(k2)) · κ2) − iκT

1 · H(k2) · κ1


− P2,1 − β0,2P2,2 = 0 (2.22b)

λ1

γ −

1 + β0,2γ
+

2


= 0. (2.22c)

The Pi,j are the same quartet interaction coefficients reported in the
previous section. The matrix H(kj) is the Hessian of the dispersion
relation ω(k) evaluated at wavenumber kj. The third equation in
(2.22) provides no new information (since λ1 is known and γ +

1 =

γ −1
2 = 0). The first two equations in (2.22) determine the next

eigenvalue correction given in Box I.
In our choice of coordinates, the Stokes wave is oriented along

the x-axis, k0 = (1, 0), and Eq. (2.23) can be simplified greatly. At
k0 = (1, 0), the quartet interaction coefficients are

P1,1 = P1,2 = −P2,1 = −P2,2 = i
2σ 2

+ σ + 8

2(1 − 2σ)
√
1 + σ

.

In addition, cg(k0) = cg(−k0), and H(k0) = −H(−k0), so that

H(k0) = −H(−k0) =


3σ 2

+ 6σ − 1
4(1 + σ)3/2

0

0
1 + 3σ

2(1 + σ)1/2

 ,

λ2 = −
1
2
i

c0 − cg(k0)


κ2

±
1
2


κT
1H(k0)κ1(2iP1,1 − κT

1H(k0)κ1). (2.24)
The region of instability, in the κ1 plane, based on the discrimi-
nant in Eq. (2.24) is plotted in Fig. 2.4. In the left panel of this figure
is the famous Benjamin–Feir ‘x’, the instability region at σ = 0. In
the right panel is the donut-shaped Benjamin–Feir instability re-
gion when σ = 1. The difference in shape is due to the change in
sign of the entries of the Hessian: at σ = 0 the Hessian has two
opposite signed entries, at σ = 1 it is of one sign. This sign change
is the reason that capillary–gravity lump solitary waves exist near
σ = 1, as in [47,48], but such waves do not exist in the absence
of surface tension. This figure could also be computed in the con-
text of the nonlinear Schrödinger equation (NLS), as in [36]; it is in-
cluded here to show that the modulational spectrum includes the
predictions of NLS.

If one considers perturbations whose principal modulation is in
the longitudinal direction, κ1 = (p1, 0), then instabilities exist in
two adjacent intervals of Bloch parameter, between p1 = 0 and

p1 = ±


4(2σ 2 + σ + 8)(1 + σ)

(3σ 2 + 6σ − 1)(2σ − 1)
. (2.25)

Eq. (2.25) predicts the boundary across which the spectrum is
not analytic in amplitude ϵ, or frequency p, and is marked by the
dashed line emanating from the origin in the left panel of Fig. 2.2.

3. Conclusion

The leading order asymptotics of the spectral data of traveling
waves in infinite depth are derived using a modulational, multi-
scale expansion. Formulae are also derived for the location
of instabilities in frequency amplitude space. These formulae
predict where the spectrum loses analyticity in amplitude, at
locations which agree well with the numerical computations. Both
transverse and longitudinal perturbations are considered. General
collisions of two flat-state eigenvalues are considered, as is the
Benjamin–Feir case, a special collision of four eigenvalues at the
origin.

Disclaimer: This report was prepared as an account of work
sponsored by an agency of the United States Government. Neither
the United States Government nor any agency thereof, nor any of
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or process disclosed, or represent that its use would not infringe
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3)
2λ2 = −i

c0 −

cg(k1) + cg(k2)
2


κ2 + iκT

1


H(k1) + H(k2)

2


κ1 +

P1,1 + P2,2
2

±
1
2


i(cg(k1) − cg(k2))κ2 + iκT

1 (H(k1) − H(k2))κ1 + P1,1 − P2,2
2

+ 4P1,2P2,1 (2.2

Box I.
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