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Abstract. The influence of surfactant on water wave packets is investigated. An envelope
equation for a slowly varying wave packet in the potential flow equations with variable Bond number
is derived. The properties of this equation depend on the relative phases of the wave packet and the
distribution of surface tension. We observe that small variations in the Bond number may change the
focusing nature of the envelope equation from that of the constant Bond number problem. Variations
in Bond number can thus suppress, or incite, the Benjamin-Feir instability. The existence of envelope
solitary waves depends in a similar way on the Bond number variation. The envelope equation is
also derived in a larger class of models.

1. Introduction. The existence and stability of traveling water waves has been
studied for over a century; Stokes derived the speed-amplitude relationship of periodic
waves in 1845 [1]. Depending on the depth of the water and the relative strength of
the surface tension, periodic traveling waves are subject to modulational instabilities
- the most famous of which is the Benjamin-Feir instability [2]. In this work we
discuss the modulational stability of periodic waves as well as the existence of wave
packet type solitary waves by deriving an approximate envelope equation. Envelope
equations have been derived for weakly nonlinear wave packets in deep water as well
as on more arbitrary fluid domains and in many other physical contexts [3].

Experimental evidence suggests that surfactant based damping [4] can stabilize
the Benjamin-Feir instability. Mathematically, the Benjamin-Feir instability can be
modeled in the context of the cubic nonlinear Schrödinger equation (NLS), where the
the addition of a small linear damping term has been shown to stabilize the instability
[4]. This result has spurred much recent interest in modeling the physical cause of
this damping both in the water wave equations and in NLS [5]. The effect of small
viscosity has been modeled as a damping term in both the water wave equations
and the Nonlinear Schrödinger equation [6, 7]. In the experiments of Henderson
[4], the damping is attributed to surfactant deposition on the free surface - periodic
waves on “clean” surfaces are Benjamin-Feir unstable, while “dirty” surfaces support
modulationaly stable periodic waves.

That the presence of surfactant can damp water waves is well known - famous
observations of this phenomenon were made by Benjamin Franklin in 1774 [8] and
Reynolds in 1880 [9]. Surfactants are known to influence surface rheology; there are
many experimental and theoretical works investigating the linear behavior of water
waves in the presence of surfactant [10, 11]. Weakly nonlinear theories have been
developed which model surfactants via linear damping terms in cubic envelope equa-
tions [12, 13]. In this work we derive an envelope equation including nonlinear quartet
interactions from a simple model for water waves in the presence of surfactant - the
potential flow equations with small spatiotemporal variations in the Bond number.
This envelope equation contains no linear damping, and reduces to the cubic non-
linear Schrödinger (NLS) or complex cubic Ginzburg-Landau equations for special
distributions of surface tension. We observe that simple coupling of the Bond number
to the wave may change the focusing nature of the envelope equation from that of the
constant Bond number case; waves which are Benjamin-Feir unstable may become
stable in the presence of variable surface tension without any linear damping.
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Envelope equations can also be used to predict the existence of wave packet
type solitary waves - by predicting the asymptotics of a wave’s shape. Wave packet
type solitary water waves, or capillary-gravity solitary waves, are well known to be
predicted by such asymptotic arguments [14, 15]. These traveling solitary water waves
are supported near frequencies which are both local extrema of the phase speed (so
that the envelope and the carrier wave travel at the same speed) and have focusing
envelope equations (so that the envelope can be localized). Because of the latter
requirement, the existence of these waves can be predicted with the envelope equation
derived here.

2. Derivation. In this section we derive an envelope equation for weakly nonlin-
ear traveling wavepackets in the potential flow equations with variable surface tension.
To begin, recall the potential flow equations for a body of water undergoing an irro-
tational motion, which acts under the forces of gravity and surface tension

φxx + φzz = 0, −H < z < εη, (2.1a)

φz = 0, z = −H, (2.1b)

ηt + εηxφx = φz, z = εη, (2.1c)

φt +
ε

2
φ2
x +

ε

2
φ2
z + η − σ ηxx

(1 + |∇η|2)3/2
= 0, z = εη. (2.1d)

This equation has been non-dimensionalized as in [16], so that σ is the Bond number,
σ = γ

gL measuring the relative strength of gravity and capillary forces (sometimes

defined as the reciprocal) and ε = a
L is the wave slope measuring the relative size of

the nonlinearity - a is a characteristic scale for the free surface amplitude, L is the
spatial period of the wave. As a simple model for the presence of surfactants, we will
take σ to have small variations on the scale of the traveling wave, σ = σ0(1+εσ̃(x, t)).
Admittedly, the physics of surfactants is much more complicated - they may add
elasticity to the surface, diffuse into the fluid creating boundary layers, damp the flow
at contact lines, and much more [17]. An accurate model for surfactants should include
information about the fluid rheology as well as the motion, including solubility and
transport, of the surfactant [10, 11, 18]. Rather than modeling a particular surfactant,
assuming a constitutive law to couple surfactant concentration to surface tension like
the Boussinesq-Scriven law [19], we consider here only the simplest possible model,
that the Bond number depends on space and time, as in [20]. Because viscous stress,
and its effect on surfactant evolution, is neglected the linear damping term derived in
Miles [12], and again by Joo, Messiter & Schultz [13], does not appear in the envelope
equation. Instead, a significantly simpler calculation reveals that variations in the
Bond number can alter the nonlinear structure of the envelope equation. An envelope
equation which was focusing for constant Bond number can become defocusing when
the Bond number is allowed to vary. The envelope equation may be derived directly
from (2.1), we simplify the calculation using a cubic approximation as an intermediary.

A cubic model equation is derived from equation (2.1) in three steps, as in [16].
First the free surface boundary conditions are Taylor expanded about the mean z = 0.
Next, Laplace’s equation in a strip is solved for the z-dependence, essentially applying
the Dirichelet-to-Neumann map. Finally, the equations are truncated at cubic order
and the potential is eliminated in favor of the free surface displacement. The resulting
cubic approximation to the potential flow equations is

ηtt + LSη + εQ[η] + ε2C[η] + εσ0F [η, σ̃] + ε2σ0G[η, σ̃] = 0 (2.2)
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with

Q[η] = L
(

1

2
η2
t +

1

2
Hη2

t − ηΩ2η

)
−
(
ηtHηt + ηSηx

)
x
,

C[η] =

(
ηηtηxt −

1

2
η2LSηx + ηtH(ηHηt)x − η

(
1

2
η2
t +

1

2
Hη2

t − ηΩ2η

)
x

)
x

+L
(
ηtLH(ηHηt)−HηtL(ηHηt)− ηL

(
1

2
η2
t +

1

2
Hη2

t − ηΩ2η

))
+L

(
1

2
(σ0ηx)3

x + η(HηtLHηt + ηtLηt) +
1

2
η2Sηxx

)
F [η, σ̃] = −L(σ̃ηxx)

G[η, σ̃] = L(ηL(σ̃ηxx)) + (η(σ̃ηxx)x)x

which reduces to the model of [16] if σ̃ = 0. The operator L is that which is induced
by z-derivatives on the trace of the potential, at z = 0, in equation (2.1), whose

Fourier symbol is L̂η = |k|tanh(|k|H)η̂. The operator H is the Hilbert transform,

Ĥη = −isign(k)η̂ and S = (1 − σ0∂
2
x). Because the model (2.2) is approximates

the potential flow equation (2.1) including nonlinear contributions to cubic order, the
quartet equation derived here will be the same as that derived from the potential flow
equations (2.1) - quartets are an cubic phenomenon.

The classic ansatz for deriving a quartet envelope equation assumes a carrier wave
train with an envelope which varies slowly in space and time

η = A(ξ, τ)eiθ + ∗+ εη1 + ε2η2 + ..., (2.3)

with ξ = ε(x − cgt), τ = ε2t and θ = x − cpt. Here and throughout, ∗ stands for
complex conjugate. For simplicity, we focus on the deep water limit, H →∞, where
in the constant surface tension case σ̃ = 0, we recover the O(ε2) solvability condition

iAτ + λAξξ + χ0|A|2A = 0 (2.4)

This nonlinear Schrödinger equation (2.4) can be used to predict the stability of
Stokes’ waves, as well as the existence of envelope solitary waves, via the relative
signs of its coefficients. A Stokes wave, the spatially constant solution to equation
(2.4), is modulationally, Benjamin-Feir, unstable if the product λχ < 0. For the
potential flow equatons, the coefficients are

λ =
3σ2

0 + 6σ0 − 1

8
√

1 + σ0
and χ0 =

√
1 + σ0

2

(
2σ2

0 + σ0 + 8

(1 + σ0)(2− 4σ0)

)
,

which have been computed in a variety of contexts [21, 22]. Stokes wave solutions of

equation (2.4) are unstable for σ0 <
2
√

3−3
3 , where the boundary is due to a root of

λ at the minimum of the linear group velocity, and σ0 > 1/2, where the boundary
is due to the singularity of χ0 at the triad resonance known as Wilton’s ripple. The
envelope equation of this work is the analogy of equation (2.4) when there are small
changes in the distribution of surface tension in both space and time, σ̃ 6= 0.

In this work, as a constitutive relation has not been assumed to predict the
relationship between surfactant concentration and Bond number, the Bond number
variation is instead treated as a known function. To begin, the Bond number variation
is decomposed into a series of normal modes, assuming spatial variations which are
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superharmonic relative to the Stokes wave, each with a known temporal frequency
Ωn,

σ̃ =
∑
n

Bne
inx−iΩnt. (2.5)

Substituting this form for σ̃ as well as ansatz (2.3) into (2.2) yields a forced linear
equation for η1,

η1,tt + LSη1 + 2(1 + σ0)A2e2iθ + σ0

∑
n

|n+ 1|ABnei(n+1)x−i(cp+Ωn)t + ∗ = 0, (2.6)

where θ = x − cpt. This equation is resonantly forced if either of the harmonics e2iθ

or ei(n+1)x−i(cp+Ωn)t are proportionate to free wave solutions, einx−iωnt, of the linear
equation

ηtt + LSη = 0.

This first forcing term in (2.6), the second harmonic of the Stokes wave, is responsible
for a triad resonance if ω2 = ±2ω1. Such resonances are called Wilton’s ripples and
occur at a countable set of Bond numbers [23, 24]. The second forcing term in equation
(2.6) causes a triad resonance when ω1 + Ωn = ±ωn+1. In either case, the appropriate
evolution equation for the wave amplitude, A, would be a triad equation, requiring
that the amplitude depends on T = εt, see [3]. Such resonances have been shown to
play an important role for water waves with small periodic vorticity or topography
[25, 26].

We now focus on the special case σ̃ = σ̃(x−cpt), or Ωn = ncp, where the variations
in Bond number travel at the phase speed of the wave. Although the relationship
between surfactant and Bond number is not modeled here, it is worth noting that
one would expect the surfactant particles to be transported with the surface flow, at
the Stokes drift O(ε2) - as well as diffusing into the fluid and being deposed upon it
at other rates. On the other hand oscillations in the surfactant concentration may
move with at the wave speed without net transport of surfactant - analogous to how
the free surface displacement travels without the free surface particles traveling. Of
course the existence of such traveling waves in surfactant concentration depends on
the model chosen for surfactant dynamics, see Joo et. al. [13] for an example of a
model where the Bond number variations move at the phase speed. Proceeding with
a traveling σ̃, the variation in Bond number is written as a sum of traveling harmonics
with slowly varying envelope

σ̃ =
∑

Bn(X,T )einθ, (2.7)

where X = εx, T = εt and by definition B0 = 0. Substituting the ansatz (2.3) into
equation (2.2), the correction η1 is solves the following forced linear equation

η1,tt + LSη1 + 2(1 + σ0)A2e2iθ + σ0

∑
|n+ 1|ABnei(n+1)θ + ∗ = 0 (2.8)

If B2 (or B−2) is nonzero this equation will be resonantly forced, and a solution of the
form of equation (2.3) does not exist due to a triad resonance. As triad resonances
exist for only a small set of depths and Bond numbers σ0 [24], and the goal here is to
investigate the Benjamin-Feir instability and envelope solitary waves, both based on
quartet resonances, we assume that there is not a triad resonance at σ0.
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If the surface tension is not supported at the second harmonic, or the size of the
support is sufficiently small, then there are no resonant terms in equation (2.8), and
the first correction to the free surface is

η1 = αA2e2iθ + σ0

∑
n

βn+1ABne
i(n+1)θ (2.9)

where

α =
(1 + σ0)

1− 2σ0
,

βn =
|n|

n2(1 + σ0)− |n|(1 + σ0n2)
,

for |n| > 1 and defining β0 = β1 = β−1 = 0. For a bounded correction η2 to exist,
one must impose the solvability condition

iAτ + λAξξ + χ0|A|2A+ χ1B̄1A
2 + χ2|A|2B1 + χ3Ā

2B3

+
∑

γjBjB2−jĀ+
∑

ρj |Bj |2A = 0 (2.10)

with

χ1 =
−2α√
1 + σ0

,

χ2 = −σ0

√
1 + σ0β2,

χ3 = −σ0
ᾱ(12− 4σ0) + 2β2(1 + σ0)− 2

2
√

1 + σ0
,

γj = −σ2
0

(j − 1)2(βj−1 + β1−j)

2
√

1 + σ0
,

ρj = −σ2
0

(j + 1)2βj+1 + (1− j)2β1−j

2
√

1 + σ0
.

The properties of equation (2.10) may or may not be similar to that of the NLS
equation (2.4) for the constant surface tension case. As an example to illustrate the
possibilities, we take Bj = 0 for j 6= 1 and discuss equation (2.11) for different choices
of B1. If the Bond number varies proportionate to the wave envelope, B1 = µA, as is
the case in Joo et. al [13], then equation (2.10) becomes the NLS equation

iAτ + λAξξ + χ(µ, σ0)|A|2A = 0 (2.11)

with

χ(µ, σ0) =

(
2σ2

0 + σ0 + 8− 4µ̄σ0(1 + σ0)− 2µσ0(1 + σ0)− 8σ2
0 |µ|2

4
√

1 + σ0(1− 2σ0)

)
.

Notice that we have not specified the sign of µ, nor that it is real. Thus the relative
phase of B1, as compared to A, determines the properties of (2.11). It may behave
as a focusing or defocusing NLS (for µ real) or a cubic Ginzburg-Landau equation
(µ complex). Since the sign of a real χ, relative to λ, determines the stability of
a Stoke’s wave, we can see that small variations in surface tension may stabilize the
Benjamin-Feir instability if they maintain the appropriate phase relative to the carrier
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Fig. 2.1. Left: The sign of λχ is depicted as function of the Bond number σ0 and the real ratio

of the first harmonic of the surface tension distribution to that of the traveling wave µ. In the black
regions, the NLS is focusing (λχ < 0) and in the white regions it is defocusing (λχ > 0). The sign

changes at σ0 = 1/2, σ0 = 2
√
3−3
3

and at µ = − 3(1+σ0)
8σ0

+ 1
8σ0

√
73 + 26σ0 + 25σ2

0. In the black

regions plane, periodic waves are modulationaly unstable - due to the Benjamin-Feir instability.
Right: An example of the profile of a gravity-capillary solitary wave solution of equation (2.2) in
deep water. This profile exists near σ0 = 1, µ = 0 - where the NLS equation is focusing and the
speed of the envelope equals the speed of the carrier wave.

wave. The region of the σ0µ-plane where equation (2.11) is focusing (Benjamin-Feir
unstable) is depicted by the black region in the left panel of figure 2.1. Notice that
the Benjamin-Feir instability of infinitely long, gravity waves (σ0 = 0) persists for all
values of µ however, for any finite σ0 there is a value of µ for which the modulational
stability changes.

As a model for the envelope of a water wave, NLS has also been used as a predictive
tool for the existence of wave packet like solitary waves [14, 27]. For the water wave
problem, wave packet type solitary waves exist near σ0 = 1 - with a length scale of
about 2cm. An example of a wave packet type, or capillary gravity solitary wave, is in
the right panel of figure 2.1. Experimental efforts to observe these waves have seen only
transients resembling these waves, where the transient nature is attributed to damping
- of both the surfactant and viscous types [28, 29]. With variable surface tension, and
appropriate phase difference, complex µ, between the distribution of surface tension
and the envelope, equation (2.10) can be dissipative. Moreover, equation (2.10) may
be focusing or defocusing, to a degree that depends on the size and phase of the
surface tension distribution relative to the wave envelope. The possibility exists here
for balancing of the viscous dissipation by an appropriately engineered distribution of
surface tension. One could also consider managing the dispersion in the defocusing
case, effectively engineering dispersion-managed water wave packets by controlling
the surface tension distribution - similar to Feshbach resonance management in Bose-
Einstein condensate [30]. The physical relevance, and practicality of engineering, such
distributions of surface tension is an open problem.

Of course, the phase of Bj need not be coupled to A. From the perspective of the
derivation of the envelope equation, the Bj may have any temporal dynamics in the
τ timescale. To find the dynamics of the Bj requires appending to equation (2.1) a
model for surfactant transport, see for example [10, 13, 18].

The conclusion for water waves, that small variations in a parameter can change
the focusing nature of an envelope equation, is fairly generic. The equivalent of
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equation (2.11) has been developed here for a family of models which share the form
of equation (2.2)

ηtt + Ω2η + εQ[η, η] + ε2C[η, η, η] + εF [η, σ̃] + ε2G[η, η, σ̃] = 0 (2.12)

where the nonlinear character of the functions Q,C, F,G is denoted by its arguments
- in that Q is quadratic in η, C is cubic in η etc, and Ω2 is a Gallilean invariant linear
operator whose Fourier symbol is real. To derive the envelope equation, one must
know the action of these terms on harmonics eik1(x−ct), so we introduce the notation

F̂ [k1, k2]ei(k1+k2)(x−ct) = F (eik1(x−ct), eik2(x−ct))

with similar definitions for Q̂[k1, k2], Ĝ[k1, k2, k3] and Ĉ[k1, k2, k3], so that the function
F̂ plays the role of the Fourier coefficient of F . We will consider models which conserve
ηt, e.g. have no mean flow, by assuming

F̂ [k,−k] = Ĝ[k,−k] = Ĉ[k, j,−(k + j)] = Ĝ[k, j,−(j + k)] = 0.

To derive the envelope equation, we will make the generic assumption that the model
does not support a triad interaction between the carrier wave frequency and its har-
monics, and then write σ̃ and η as before as sums of slowly varying envelopes of
traveling harmonics - taking the ansatz (2.3) and (2.7). The correction η1, is then

η1 =
Q̂[1, 1]

Λ(2)
A2e2iθ +

∑
n

F̂ [n, 1]

Λ(n+ 1)
ABne

i(n+1)θ + ∗. (2.13)

where Λ(k) = Ω̂2[k]− k2Ω̂[k]2. The envelope equation is

iAτ + λAξξ + χ0|A|2A+ χ1B̄1A
2 + χ2|A|2B1 + χ3Ā

2B3

+
∑

γjBjB2−jĀ+
∑

ρj |Bj |2A = 0 (2.14)

where

λ =
Ω′′(1)

2
,

χ0 =
−1

2iΩ(1)

(
Q̂[1, 1](Q̂[2,−1] + Q̂[−1, 2])

Λ(2)
+ Ĉ[1, 1,−1] + Ĉ[1,−1, 1] + Ĉ[−1, 1, 1]

)
,

χ1 =
−1

2iΩ(1)

(
Q̂[1, 1]F̂ [2,−1]

Λ(2)
+ Ĝ[1, 1,−1]

)
,

χ2 =
−1

2iΩ(1)

(
F̂ [1, 1](Q̂[2,−1] + Q̂[−1, 2])

Λ(2)
+ Ĝ[1,−1, 1] + Ĝ[−1, 1, 1]

)
,

χ3 =
−1

2iΩ(1)

(
Q̂[−1,−1]F̂ [−2, 3]

Λ(−2)
+
F̂ [−1, 3](Q̂[2,−1] + Q̂[−1, 2])

Λ(2)
+ Ĝ[−1,−1, 3]

)
,

γj =
−1

2iΩ(1)

(
F̂ [−1, j + 2]F̂ [j + 1,−j]

Λ(j + 1)
+
F̂ [−1, j]F̂ [j − 1, j + 2]

Λ(j − 1)

)
,

ρj =
−1

2iΩ(1)

(
F̂ [1, j]F̂ [j + 1,−j]

Λ(j + 1)
+
F̂ [1,−j]F̂ [1− j, j]

Λ(1− j)

)
.
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The key feature to note in the general problem is that, excluding models with special
symmetry, χ1 does not equal χ2. If B1 = µA, the associated model equation will be a
complex Ginzburg-Landau equation for general phase choices µ. For real µ, equation
(2.10) will be an NLS equation which is focusing or defocusing depending on µ.

3. Conclusion. An envelope equation was derived for deep water waves with a
variable Bond number, as a simple model for water waves in the presence of surfac-
tant. It is shown that the phase of the harmonics of the Bond number relative to that
of a traveling wave effects the focusing/defocusing nature of this envelope equation.
Small changes in the value of the Bond number can thus stabilize the Benjamin-Feir
instability - by changing envelope equation from focusing to defocusing. The model
of a variable Bond number is an extreme simplification of the physics of surfactant,
however the the envelope equation which is derived is similar to that of a more gen-
eral family of models. The results motivate future research in physical models for
surfactant as well as water wave experiments with intentionally non-constant surface
tension.
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